
•1

11/4/2004 Comp 120 Fall 2004 1

4 November

• 8 classes to go!
• Read 7.3-7.5
• Section 7.5 especially important!
• New Assignment on the web

11/4/2004 Comp 120 Fall 2004 2

Direct-Mapping Example

38

4

23

99

291016

11040

171000

441024

Tag Data

41044

11040

251036

971032

991028

441024

381020

291016

51012

111008

231004

171000

Memory

•With 8 byte BLOCKS, the bottom 3 bits determine the byte in the BLOCK

•With 4 cache BLOCKS, the next 2 bits determine which BLOCK to use

1024d = 10000000000b � line = 00b = 0d

1000d = 01111101000b � line = 01b = 1d

1040d = 10000010000b � line = 10b = 2d

11/4/2004 Comp 120 Fall 2004 3

Direct Mapping Miss

38

4

23

99

291016

11040

171000

441024

Tag Data

41044

11040

251036

971032

991028

441024

381020

291016

51012

111008

231004

171000

Memory

•What happens when we now ask for address 1008?

1008d = 01111110000b � line = 10b = 2d

but earlier we put 1040d there...

1040d = 10000010000b � line = 10b = 2d

5111008

11/4/2004 Comp 120 Fall 2004 4

Miss Penalty and Rate
• The MISS PENALTY is the time it takes to read the memory if it

isn’t in the cache
– 50 to 100 cycles is common.

• The MISS RATE is the fraction of accesses which MISS
• The HIT RATE is the fraction of accesses which HIT
• MISS RATE + HIT RATE = 1

Suppose a particular cache has a MISS PENALTY of 100 cycles and a
HIT RATE of 95%. The CPI for load is normally 5 but on a miss it is
105. What is the average CPI for load?

Average CPI = 10

Suppose MISS PENALTY = 120 cycles?

then CPI = 11 (slower memory doesn’t hurt much)

5 * 0.95 + 105 * 0.05 = 10

11/4/2004 Comp 120 Fall 2004 5

Some Associativity can help
• Direct-Mapped caches are very common but can cause problems...
• SET ASSOCIATIVITY can help.
• Multiple Direct-mapped caches, then compare multiple TAGS

– 2-way set associative = 2 direct mapped + 2 TAG comparisons

– 4-way set associative = 4 direct mapped + 4 TAG comparisons

• Now array size == power of 2 doesn’t get us in trouble
• But

– slower

– less memory in same area

– maybe direct mapped wins...

11/4/2004 Comp 120 Fall 2004 6

Associative Cache

•2

11/4/2004 Comp 120 Fall 2004 7

What about store?
• What happens in the cache on a store?

– WRITE BACK CACHE � put it in the cache, write on replacement

– WRITE THROUGH CACHE � put in cache and in memory

• What happens on store and a MISS?
– WRITE BACK will fetch the line into cache
– WRITE THROUGH might just put it in memory

11/4/2004 Comp 120 Fall 2004 8

Cache Block Size and Hit Rate
• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality in code:

1 KB�

8 KB�

16 KB�

64 KB�

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

11/4/2004 Comp 120 Fall 2004 9

Cache Performance

• Simplified model:

execution time = (execution cycles + stall cycles) × cycle time

stall cycles = # of instructions × miss ratio × miss penalty

• Two ways of improving performance:
– decreasing the miss ratio

– decreasing the miss penalty

What happens if we increase block size?

11/4/2004 Comp 120 Fall 2004 10

Associative Performance

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB�

2 KB�

4 KB�

8 KB

M
is

s
ra

te

Associativity 16 KB�

32 KB�

64 KB�

128 KB

11/4/2004 Comp 120 Fall 2004 11

Multilevel Caches
• We can reduce the miss penalty with a 2nd level cache
• Add a second level cache:

– often primary cache is on the same chip as the processor

– use SRAMs to add another cache above primary memory (DRAM)

– miss penalty goes down if data is in 2nd level cache

• Example:
– Base CPI=1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access
– Adding 2nd level cache with 20ns access time decreases miss rate to 2%

• Using multilevel caches:
– try and optimize the hit time on the 1st level cache

– try and optimize the miss rate on the 2nd level cache

11/4/2004 Comp 120 Fall 2004 12

Matrix Multiply

• A VERY common operation in scientific programs

• Multiply a LxM matrix by an MxN matrix to get an LxN matrix result

• This requires L*N inner products each requiring M * and +

• So 2*L*M*N floating point operations

• Definitely a FLOATING POINT INTENSIVE application

• L=M=N=100, 2 Million floating point operations

•3

11/4/2004 Comp 120 Fall 2004 13

Matrix Multiply
const int L = 2;

const int M = 3;

const int N = 4;

void mm(double A[L][M], double B[M][N], double C[L][N])

{

for(int i=0; i<L; i++)

for(int j=0; j<N; j++) {

double sum = 0.0;

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

C[i][j] = sum;

}

}

11/4/2004 Comp 120 Fall 2004 14

Matrix Memory Layout
Our memory is a 1D array of bytes

How can we put a 2D thing in a 1D memory?

1 21 11 0

0 20 10 0

1 2

0 2

1 1

0 1

1 0

0 0

1 2

1 1

1 0

0 2

0 1

0 0

double A[2][3];

Row Major Column Major
addr = base+(i*3+j)*8

addr = base + (i + j*2)*8

11/4/2004 Comp 120 Fall 2004 15

Where does the time go?
The inner loop takes all the time

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

L1: mul $t1, i, M

add $t1, $t1, k

mul $t1, $t1, 8

add $t1, $t1, A

l.d $f1, 0($t1)

mul $t2, k, N

add $t2, $t2, j

mul $t2, $t2, 8

add $t2, $t2, B

l.d $f2, 0($t2)

mul.d $f3, $f1, $f2

add.d $f4, $f4, $f3

add k, k, 1

slt $t0, k, M

bne $t0, $zero, L1

11/4/2004 Comp 120 Fall 2004 16

Change Index * to +
The inner loop takes all the time

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

L1: l.d $f1, 0($t1)

add $t1, $t1, AColStep

l.d $f2, 0($t2)

add $t2, $t2, BRowStep

mul.d $f3, $f1, $f2

add.d $f4, $f4, $f3

add k, k, 1

slt $t0, k, M

bne $t0, $zero, L1

AColStep = 8

BRowStep = 8 * N

11/4/2004 Comp 120 Fall 2004 17

Eliminate k, use an address instead
The inner loop takes all the time

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

L1: l.d $f1, 0($t1)

add $t1, $t1, AColStep

l.d $f2, 0($t2)

add $t2, $t2, BRowStep

mul.d $f3, $f1, $f2

add.d $f4, $f4, $f3

bne $t1, LastA, L1

11/4/2004 Comp 120 Fall 2004 18

We made it faster
The inner loop takes all the time

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

L1: l.d $f1, 0($t1)

add $t1, $t1, AColStep

l.d $f2, 0($t2)

add $t2, $t2, BRowStep

mul.d $f3, $f1, $f2

add.d $f4, $f4, $f3

bne $t1, LastA, L1

Now this is FAST! Only 7 instructions in
the inner loop!

BUT...

When we try it on big matrices it slows
way down.

Whas Up?

•4

11/4/2004 Comp 120 Fall 2004 19

Now where is the time?
The inner loop takes all the time

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

L1: l.d $f1, 0($t1)

add $t1, $t1, AColStep

l.d $f2, 0($t2)

add $t2, $t2, BRowStep

mul.d $f3, $f1, $f2

add.d $f4, $f4, $f3

bne $t1, LastA, L1

lots of time wasted here!

possibly a little stall right here

11/4/2004 Comp 120 Fall 2004 20

Why?
The inner loop takes all the time

for(int k=0; k<M; k++)

sum = sum + A[i][k] * B[k][j];

L1: l.d $f1, 0($t1)

add $t1, $t1, AColStep

l.d $f2, 0($t2)

add $t2, $t2, BRowStep

mul.d $f3, $f1, $f2

add.d $f4, $f4, $f3

bne $t1, LastA, L1

This load always misses!

This load usually hits (maybe 3 of 4)

11/4/2004 Comp 120 Fall 2004 21

Matrix Multiply Simulation

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Matrix Size NxN

Cycles/MAC

Simulation of 2k direct-mapped cache with 32 and 16 byte blocks

11/4/2004 Comp 120 Fall 2004 22

classes to go

7
•Read 7.3-7.5
•Section 7.5 especially important!

