4 November

8 classes to go!

Read 7.3-7.5

Section 7.5 especially important!
New Assignment on the web

11/4/2004 Comp 120 Fall 2004 1

Direct-Mapping Example

*With 8 byte BLOCKS, the bottom 3 bits determine the byte in the BLOCK
*With 4 cache BLOCKS, the next 2 bits determine which BLOCK to use
1024d = 10000000000b - line = 00b = 0d

1000d = 01111101000b - line = 01b = 1d

1040d = 10000010000b > line = 10b = 2d Memor
1000 |17
1004 | 23
Tag Data
1008 | 11
1024 44 99 1012 [ 5
1000 17 23 1016 129
1020 | 38
1040 1 4 1024 a2
1016 29 38 1028 | 99
1032 | 97
1036 | 25
1040 | 1
11/4/2004 Comp 120 Fall 2004 1044 | 4 2

Direct Mapping Miss

*What happens when we now ask for address 1008?
1008d = 01111110000b -> line = 10b = 2d

but earlier we put 1040d there...

1040d = 10000010000b -> line = 10b = 2d

Memor
1000 |17
1004 |23
Tag Data
1008 |11
1024 44 99 1012 |5
1000 17 23 1016 129
1020 |38
1008 11 5 1024 | 44
1016 29 38 1028 |99
1032 |97
1036 |25
1040 (1
11/4/2004 Comp 120 Fall 2004 1044 |4 3

Miss Penalty and Rate

Suppose a particular cache has a MISS PENALTY of 100 cycles and a

The MISS PENALTY is the time it takes to read the memory if it
isn’'t in the cache

— 50 to 100 cycles is common.

The MISS RATE is the fraction of accesses which MISS

The HIT RATE is the fraction of accesses which HIT

MISS RATE + HITRATE =1

HIT RATE of 95%. The CPI for load is normally 5 but on a miss it is
105. What is the average CPI for load?

Average CPI = 10 5%0.95 + 105 * 0.05 = 10

Suppose MISS PENALTY = 120 cycles?

then CPI = 11 (slower memory doesn’t hurt much)

11/4/2004 Comp 120 Fall 2004 4

Some Associativity can help

Direct-Mapped caches are very common but can cause problems...
SET ASSOCIATIVITY can help.

Multiple Direct-mapped caches, then compare multiple TAGS

— 2-way set associative = 2 direct mapped + 2 TAG comparisons

— 4-way set associative = 4 direct mapped + 4 TAG comparisons
Now array size == power of 2 doesn’t get us in trouble
But

— slower

— less memory in same area

— maybe direct mapped wins...

11/4/2004 Comp 120 Fall 2004 5

Associative Cache

o ssociative

(direct mapped)

Bock Tag Do

Twoway set assoctative
Set Tag Daa Tag Dota

Four-way set associative
St Tag Daa Tag Dota Tag Dola Tag Data

Elght.way set assoclative (fully associative)
Tog Dsla Tog Dala Teg Data Teg Data Tag Data Tag Data Tag Date Tag Date

LT T T T T T TTTTTTTTT]

11/4/2004 Comp 120 Fall 2004 6




What about store?

* What happens in the cache on a store?
— WRITE BACK CACHE - put it in the cache, write on replacement
— WRITE THROUGH CACHE - put in cache and in memory
* What happens on store and a MISS?
— WRITE BACK will fetch the line into cache
— WRITE THROUGH might just put it in memory

11/4/2004 Comp 120 Fall 2004 7

Cache Block Size and Hit Rate

Increasing the block size tends to decrease miss rate:

a0

§

Block size (bytes) =1k8

Use split caches because there is more spatial locality in code:

Block size in Instruction Data miss Effective combined
Proaram words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 17% 1.9%
spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%
11/4/2004 Comp 120 Fall 2004 8

Cache Performance

« Simplified model:
execution time = (execution cycles + stall cycles) x cycle time
stall cycles = # of instructions x miss ratio x miss penalty

« Two ways of improving performance:

— decreasing the miss ratio
— decreasing the miss penalty

What happens if we increase block size?

11/4/2004 Comp 120 Fall 2004 9

Associative Performance

—~_ a
9%
K \-\
o — —
E
0%
Gnevay Twoway Fourway Eightvay
Associatiy =1k o 16K8
2kp e 2KE
- aKB = 6aKB
<BKE = 8KE
11/4/2004 Comp 120 Fall 2004 10

Multilevel Caches

< We can reduce the miss penalty with a 2" level cache

« Add a second level cache:
— often primary cache is on the same chip as the processor
— use SRAMs to add another cache above primary memory (DRAM)
— miss penalty goes down if data is in 2nd level cache

« Example:
— Base CPI=1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access
— Adding 2nd level cache with 20ns access time decreases miss rate to 2%

« Using multilevel caches:
— try and optimize the hit time on the 1st level cache
— try and optimize the miss rate on the 2nd level cache

11/4/2004 Comp 120 Fall 2004 1

Matrix Multiply

A VERY common operation in scientific programs

Multiply a LxM matrix by an MxN matrix to get an LxN matrix result
This requires L*N inner products each requiring M * and +

So 2*L*M*N floating point operations

Definitely a FLOATING POINT INTENSIVE application

L=M=N=100, 2 Million floating point operations

11/4/2004 Comp 120 Fall 2004 12




Matrix Multiply

const int L = 2
const int M= 3;
const int N = 4;
void mr(double A[L][M, double BIM[N], double CIL][N])
{
for(int i=0; i<L; i++)
for(int j=0; j<N j++) {
doubl e sum = 0.0;
for(int k=0; k<M k++)
sum= sum+ A[i][k] * B[K][j];
dillj] = sum

11/4/2004 Comp 120 Fall 2004

Matrix Memory Layout

Our memory is a 1D array of bytes
How can we put a 2D thing in a 1D memory?

double A[2][3];

00 (01|02

10|11 |12

Row Major Column Major
00 addr = base+(i*3+j)*8 00
01 10
02 01
10 11
11 02
addr = base + (i +j*2)*8
12 12
11/4/2004 Comp 120 Fall 2004 14

Where does the time go?

The inner loop takes all the time
for(int k=0; k<M k++)
sum = sum + A[i][k] * B[kI[]];
L1: mul $t1, i, M

add $t1, $t1, k
mul $t1, $t1, 8

mul .d $f3, $f1, $f2

add $t1, $t1, A

I.d $f1, o(s$t1) add.d $f4, $f4, $f3
ml $t2, k, N add k, k, 1
add $t2, $t2, j

slt $t0, k, M

mul $t2, $t2, 8
bne $t0, $zero, L1

add $t2, $t2, B
$f2, 0($t2)

11/4/2004 Comp 120 Fall 2004

Change Index * to +

The inner loop takes all the time
for(int k=0; k<M k++)
sum = sum + A[i][k] * B[K][]];

L1: |.d $f1, 0O($t1)
add $t1, $t1, ACol Step AColStep =8
| $f2, 0($t2)
add $t2, $t2, BRowStep

BRowStep =8 * N

nul.d $f3, $f1, $f2
add.d $f4, $f4, $f3
add k, k, 1

slt $t0, k, M

bne $t0, $zero, L1

11/4/2004 Comp 120 Fall 2004 16

Eliminate k, use an address instead

The inner loop takes all the time
for(int k=0; k<M k++)
sum = sum + A[i][k] * B[kI[]];
L1: 1.d $f1, 0($t1)
add $t1, $t1, ACol Step
I.d $f2, 0($t2)
add $t2, $t2, BRowStep

nul.d $f3, $f1, $f2
add.d $f4, $f4, $f3
bne $t1, LastA, L1

11/4/2004 Comp 120 Fall 2004

We made it faster

The inner loop takes all the time
for(int k=0; k<M k++)
sum = sum+ A[i][k] * B[Kk][]];

L1: |.d $f1, 0($t1)
add $t1, $t1, ACol Step

I.d $f2, 0(st2) Novx_/ this is FAST! Only 7 instructions in
the inner loop!
add $t2, $t2, BRowStep
BUT...
nul.d $f3, $f1, $f2 When we try it on big matrices it slows
ay down.
add. d $f4, $f4, $f3 way dow
Whas Up?
bne $t1, LastA, L1 s Up
11/4/2004 Comp 120 Fall 2004 18




Now where is the time?

The inner loop takes all the time
for(int k=0; k<M k++)
sum = sum + A[i][k] * B[kI[]];
L1: |.d $f1, O($t1)
add $t1, $t1, ACol Step
I.d $f2, 0($t2) lots of time wasted here!
add $t2, $t2, BRowStep

nul.d $f3, $f1, $f2
add.d $f4, $f4, $f3
bne $t1, LastA, L1

possibly a little stall right here

11/4/2004 Comp 120 Fall 2004

Why?

The inner loop takes all the time
for(int k=0; k<M k++)
sum = sum+ A[i][k] * B[Kk][]];

L1: |.d $f1, 0o($t1) This load usually hits (maybe 3 of 4)
add $t1, $t1, ACol Step
1.d $f2, 0($t2) This load always misses!

add $t2, $t2, BRowStep

mul .d $f3, $f1, $f2
add.d $f4, $f4, $f3
bne $t1, LastA, L1

11/4/2004 Comp 120 Fall 2004 20

Matrix Multiply Simulation

Simulation of 2k direct-mapped cache with 32 and 16 byte blocks

100

Cycles/MAC

Matrix Size NxN

11/4/2004 Comp 120 Fall 2004

21

classes to go

*Read 7.3-7.5
*Section 7.5 especially important!

11/4/2004 Comp 120 Fall 2004 22




