11 November

Six Classes to Go!
Questions!
VM and Making Programs Go

11/11/2004 Comp 120 Fall 2004 1

Operating System

* The OS is JUST A PROGRAM
— butit runs in SUPERVISOR state
« accessto PHY SICAL addresses
« access to specia registers (like page table register)
« al 1O devices, etc.
— whereas ordinary programs run in USER state
« only accessto VIRTUAL addresses through page tables
« normally no access to 1O devices
* Programs ask the OS for services (syscall)
— give me more memory
— read/write data from/to disk
— put pixel on screen
— give me the next character from the keyboard
+ The OS may choose to “map” devices such as the screen into
USER space

11/11/2004 Comp 120 Fall 2004 2

Shell

You normally interact with a SHELL

It provides the command prompt, or GUI (graphical user interface)
Itis JUST A PROGRAM

It runs in USER state just like your programs

It interprets your mouse clicks or typed commands and asks the OS
to implement your requests

Suppose you “double-click” on a program icon
What happens?

11/11/2004 Comp 120 Fall 2004 3

Program Startup in SHELL

* First the SHELL finds the file (using FILE SYSTEM in OS) indicated
by the icon
* It checks some permissions and such

» Finally it calls the EXEC system call with the file name and possibly
some arguments

+ Now the OS takes over

11/11/2004 Comp 120 Fall 2004 4

OS Exec

The OS keeps a PROCESS TABLE of all running programs
— disk location of executable
— memory location of page tables
— priority
— current status (running, waiting ready, waiting on an event, etc.)
— PID (process ID) a number assigned to the process
A PROCESS is an independent program running in its own memory
space
The OS allocates a new entry in the PROCESS TABLE
And sets up the PAGE TABLE for the new process

11/11/2004 Comp 120 Fall 2004 5

Initial Page Table

memorn

page table
0x00000000 | 0 | text segment

0x00001000
0x00002000

text segment

0x00003000
0x00004000
0x00005000

oxf f f fe000
Oxf ffffoo0

11/11/2004 Comp 120 Fall 2004

Program Startup

« Now everything is ready
— The PROCESS TABLE entry has been set up
— The PAGE TABLE for the process has been initialized
— The TEXT SEGMENT is out on disk
— The DATA SEGMENT is in memory
— The STACK SEGMENT has been allocated 1 PAGE

* The OS is ready to take the leap of faith
* ONLY ONE program runs at a time
« When your program is running the OS is not
« To run your program and maintain control the OS must trust that is
will eventually get control again
— when the program asks for a service
— when the program does something illegal
— when a timer goes off

11/11/2004 Comp 120 Fall 2004 7

Fault in the Text

* When we branch to the beginning of “main” we get a page fault

+ So the OS copies the first page of the TEXT of main to a free page
in memory

11/11/2004 Comp 120 Fall 2004 8

Fault in the Text

page table
0x00000000 |1 | text segment

0x00001000 |0 | text segment
0x00002000 |1
0x00003000

0x00004000

0x00005000

oxffffe000

oxfffffoo0 |1 |stack

11/11/2004 Comp 120 Fall 2004 [foo] 9

Allocate a block of memory

+ Now suppose the first thing our program needs to do is get 6k of
memory for an array

+ The program uses “new” to make an array
« Down inside “new” it calls “malloc”

« Down inside “malloc” it uses a system call to ask the OS for
memory

* The OS will have to find 2 pages to hold 6k

11/11/2004 Comp 120 Fall 2004 10

Allocate a block of memory

page table
0x00000000 | 1 | text segment

0x00001000 text segment

0x00003000 heap

0x00004000 heap
0x00005000

Lo

NS

oxffffe000

[_foo]
oxf 11000 [1 [stack L__fo

11/11/2004 Comp 120 Fall 2004 1

Fault in the other page of TEXT

memorn

page table
0x00000000 | 1 | text segment

0x00001000 text segment

0x00002000

0x00003000

0x00004000

0x00005000

oxf f f fe000

Oxf ffffoo0

11/11/2004 Comp 120 Fall 2004

Grow the stack

< Now our program needs more stack space

« Perhaps it has to call a recursive function to transverse a complex
data structure

« Or perhaps the user declares an “automatic” array like
double work[1000];
which needs 8000 bytes of memory

11/11/2004 Comp 120 Fall 2004 13

Grow the stack

page table
0x00000000 | 1 | text segment

0x00001000 text segment

0x00002000

0x00003000

0x00004000

0x00005000

oxf f f f d00O

oxf f f fe000

Oxfffffoo0

11/11/2004 Comp 120 Fall 2004

Get partially paged out

« Sometime later, some other program running on the system needs
more memory
« Itasks the OS

« The OS realizes that not enough physical memory remains
available

* So the OS chooses to PAGE OUT one page from our program
« It would choose one that hasn't been used for a while
— like possibly one of the heap segments

11/11/2004 Comp 120 Fall 2004 15

page table
0x00000000 | 1 | text segment

0x00001000 text segment

0x00002000

0x00003000

0x00004000

0x00005000

Oxf f f f d0OO

Oxf f f f e000

oxf ffffooo

11/11/2004 Comp 120 Fall 2004 16

Later we need that page

memol
page table
0x00000000 | 1 | text segment

0x00001000 text segment

0x00003000 heap

NS

NS

0x00004000

heap

0x00005000

oxffffdooo |1

oxffffe000 |1
Ooxfffffoo0 |1 |stack

11/11/2004 Comp 120 Fall 2004 17

Exit

« Finally our program exits

« It calls the “exit” system call to notify the OS that it is done
* The OS cleans puts the memory back on the free list

+ Cleans up the PAGE TABLE and PROCESS TABLE

+ And goes on about its business...

* What does the OS do when no programs are ready?

11/11/2004 Comp 120 Fall 2004 18

Classes to go!

11/11/2004

Comp 120 Fall 2004

