
•1

11/11/2004 Comp 120 Fall 2004 1

11 November

• Six Classes to Go!
• Questions!
• VM and Making Programs Go

11/11/2004 Comp 120 Fall 2004 2

Operating System
• The OS is JUST A PROGRAM

– but it runs in SUPERVISOR state
• access to PHYSICAL addresses
• access to special registers (like page table register)
• all IO devices, etc.

– whereas ordinary programs run in USER state

• only access to VIRTUAL addresses through page tables
• normally no access to IO devices

• Programs ask the OS for services (syscall)
– give me more memory
– read/write data from/to disk
– put pixel on screen
– give me the next character from the keyboard

• The OS may choose to “map” devices such as the screen into 
USER space

11/11/2004 Comp 120 Fall 2004 3

Shell
• You normally interact with a SHELL
• It provides the command prompt, or GUI (graphical user interface)
• It is JUST A PROGRAM
• It runs in USER state just like your programs
• It interprets your mouse clicks or typed commands and asks the OS 

to implement your requests

• Suppose you “double-click” on a program icon
What happens?

11/11/2004 Comp 120 Fall 2004 4

Program Startup in SHELL
• First the SHELL finds the file (using FILE SYSTEM in OS) indicated 

by the icon
• It checks some permissions and such
• Finally it calls the EXEC system call with the file name and possibly 

some arguments
• Now the OS takes over

11/11/2004 Comp 120 Fall 2004 5

OS Exec
• The OS keeps a PROCESS TABLE of all running programs

– disk location of executable

– memory location of page tables

– priority

– current status (running, waiting ready, waiting on an event, etc.)
– PID (process ID) a number assigned to the process

• A PROCESS is an independent program running in its own memory 
space

• The OS allocates a new entry in the PROCESS TABLE
• And sets up the PAGE TABLE for the new process

11/11/2004 Comp 120 Fall 2004 6

Initial Page Table

foo

foo

swap

0xfffff000

0xffffe000

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

data segment1

text segment0

text segment0

memory

disk

page table



•2

11/11/2004 Comp 120 Fall 2004 7

Program Startup
• Now everything is ready

– The PROCESS TABLE entry has been set up
– The PAGE TABLE for the process has been initialized
– The TEXT SEGMENT is out on disk
– The DATA SEGMENT is in memory
– The STACK SEGMENT has been allocated 1 PAGE

• The OS is ready to take the leap of faith

• ONLY ONE program runs at a time
• When your program is running the OS is not
• To run your program and maintain control the OS must trust that is 

will eventually get control again
– when the program asks for a service
– when the program does something illegal

– when a timer goes off

11/11/2004 Comp 120 Fall 2004 8

Fault in the Text
• When we branch to the beginning of “main” we get a page fault
• So the OS copies the first page of the TEXT of main to a free page 

in memory

11/11/2004 Comp 120 Fall 2004 9

Fault in the Text

foo

foo

swap

0xfffff000

0xffffe000

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

data segment1

text segment0

text segment1

memory

disk

page table

11/11/2004 Comp 120 Fall 2004 10

Allocate a block of memory
• Now suppose the first thing our program needs to do is get 6k of

memory for an array
• The program uses “new” to make an array
• Down inside “new” it calls “malloc”
• Down inside “malloc” it uses a system call to ask the OS for 

memory
• The OS will have to find 2 pages to hold 6k

11/11/2004 Comp 120 Fall 2004 11

Allocate a block of memory

foo

foo

swap

0xfffff000

0xffffe000

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

heap1

heap1

data segment1

text segment0

text segment1

disk

page table

11/11/2004 Comp 120 Fall 2004 12

Fault in the other page of TEXT

foo

foo

swap

0xfffff000

0xffffe000

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

heap1

heap1

data segment1

text segment1

text segment1

memory

disk

page table



•3

11/11/2004 Comp 120 Fall 2004 13

Grow the stack
• Now our program needs more stack space
• Perhaps it has to call a recursive function to transverse a complex 

data structure
• Or perhaps the user declares an “automatic” array like

double work[1000];
which needs 8000 bytes of memory

11/11/2004 Comp 120 Fall 2004 14

Grow the stack

foo

foo

swap

0xfffff000

0xffffe000

0xffffd000

...

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

1

1

heap1

heap1

data segment1

text segment1

text segment1

memory

disk

page table

11/11/2004 Comp 120 Fall 2004 15

Get partially paged out
• Sometime later, some other program running on the system needs 

more memory
• It asks the OS
• The OS realizes that not enough physical memory remains 

available
• So the OS chooses to PAGE OUT one page from our program
• It would choose one that hasn’t been used for a while

– like possibly one of the heap segments

11/11/2004 Comp 120 Fall 2004 16

Partially Paged Out

foo

foo

swap

0xfffff000

0xffffe000

0xffffd000

...

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

1

1

heap1

heap0

data segment1

text segment1

text segment1

memory

disk

page table

11/11/2004 Comp 120 Fall 2004 17

Later we need that page

foo

foo

swap

0xfffff000

0xffffe000

0xffffd000

...

0x00005000

0x00004000

0x00003000

0x00002000

0x00001000

0x00000000

stack1

1

1

heap1

heap1

data segment1

text segment1

text segment1

memory

disk

page table

11/11/2004 Comp 120 Fall 2004 18

Exit
• Finally our program exits
• It calls the “exit” system call to notify the OS that it is done
• The OS cleans puts the memory back on the free list
• Cleans up the PAGE TABLE and PROCESS TABLE
• And goes on about its business...

• What does the OS do when no programs are ready?



•4

11/11/2004 Comp 120 Fall 2004 19

Classes to go!

5


