
Representing Information

“Bit Juggling”

- Representing information

using bits

- Number representations

- Some other bits

∙ Chapters 1 and 2.3,2.4
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Motivations

∙ Computers Process Information

∙ Information is measured in bits

∙ By virtue of containing only “switches” 

and “wires” digital computer technologies 

use a binary representation of bits

∙ How do we use/interpret bits?

∙ We need standards of representations for

– Letters

– Numbers

– Colors/pixels

– Music

– Etc.
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Encoding

 Encoding describes the process of

assigning representations to information

 Choosing an appropriate and efficient encoding is 

a real engineering challenge (and an art)

 Impacts design at many levels

- Mechanism (devices, # of components used)

- Efficiency (bits used)

- Reliability (noise)

- Security (encryption)



If all choices are equally likely (or we have no reason to 

expect otherwise), then a fixed-length code is often 

used. Such a code should use at least enough bits to 

represent the information content.

ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9}

4-bit BCD (binary code decimal) 

ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10), 

punctuation (8), math (9), financial (5)}

7-bit ASCII (American Standard Code for Information Interchange)

Fixed-Length Encodings

bits<=)( 76.39284log 2

bits<=)( 43.32210log 2



Encoding Positive Integers
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21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

It is straightforward to encode positive integers as a sequence 

of bits. Each bit is assigned a weight. Ordered from right to left, 

these weights are increasing powers of 2. The value of an n-bit 

number encoded in this fashion is given by the following 

formula:

24 =     16

+ 28 =   256

+ 26 =    64
+ 27 =    128

+ 29 =    512
+ 210 = 1024

200010



Octal
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21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

03720

Octal - base 8

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

Often it is convenient to cluster groups of bits 

together for a more compact representation. The 

clustering of 3 bits is called Octal. Octal is not that 

common today.

= 200010

Seems natural
to me!

0273

200010

0*80 =        0

+ 3*83 =   1536

+ 2*81 =     16
+ 7*82 =    448



Hex
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21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

0x7d0

Hexadecimal - base 16

0000 - 0   1000 - 8
0001 - 1     1001 - 9
0010 - 2    1010 - a
0011 - 3     1011 - b
0100 - 4     1100 - c
0101 - 5     1101 - d
0110 - 6     1110 - e
0111 - 7     1111 - f

Clusters of 4 bits are used most frequently. This 

representation is called hexadecimal. The 

hexadecimal digits include 0-9, and A-F, and each 

digit position represents a power of 16.

= 200010

0d7

200010

0*160 =         0 
+ 13*161 =    208
+ 7*162 =    1792



Encoding Text in ASCII



Unicode

∙ ASCII is biased towards western languages.

English in particular.

∙ There are, in fact, many more than 256 characters 

in common use:

â, m, ö, ñ, è, ¥, 揗, 敇, 횝, カ, ℵ, ℷ, ж, క, ค

∙ Unicode is a worldwide standard that supports all 

languages, special characters, classic, and arcane

∙ Several encoding variants 16-bit (UTF-8)

1 0 x x x x x x1 0 z y y y y x1 1 1 1 0www 1 0wwz z z z

0 x x x x x x xASCII equiv range:

1 0x x x x x x1 1 0 y y y y xLower 11-bits of 16-bit Unicode

1 0 x x x x x x1 0 z y y y y x1 1 1 0 z z z z16-bit Unicode



Some Bit Tricks

- You are going to have to get accustomed to 

working in binary. It will be helpful throughout 

your career as a computer scientist.

- Here are some helpful guides 

1. Memorize the first 10 powers of 2

20 = 1 25 = 32

21 = 2 26 = 64

22 = 4 27 = 128

23 = 8 28 = 256

24 = 16 29 = 512



More Tricks with Bits

1. Memorize the first 10 powers of 2

2.  Memorize the prefixes for powers of 2 that are

multiples of 10

210 = Kilo (1024)

220 = Mega (1024*1024)

230 = Giga (1024*1024*1024)

240 = Tera (1024*1024*1024*1024)

250 = Peta (1024*1024*1024 *1024*1024)

260 = Exa (1024*1024*1024*1024*1024*1024) 



Even More Tricks with Bits

1. When you convert a binary number to 

decimal, first break it down into clusters 

of 10 bits.

2. Then compute the value of the leftmost 

remaining bits (1) find the appropriate 

prefix (GIGA) (Often this is sufficient)

3. Compute the value of and add in each 

remaining 10-bit cluster

00001010000000001100000000001101



Signed-Number Representations

∙ There are also schemes for representing signed 
integers with bits. One obvious method is to 
encode the sign of the integer using one bit. 
Conventionally, the most significant bit is used for 
the sign. This encoding for signed integers is 
called the SIGNED MAGNITUDE representation.

S 21029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000
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Signed-Number Representations

∙ There are also schemes for representing signed 
integers with bits. One obvious method is to 
encode the sign of the integer using one bit. 
Conventionally, the most significant bit is used for 
the sign. This encoding for signed integers is 
called the SIGNED MAGNITUDE representation.

S 21029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000
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∙ The Good:  Easy to negate, find absolute value

∙ The Bad:
– Add/subtract is complicated; depends on the signs

– Two different ways of representing a 0

– It is not used that frequently in practice



2’s Complement Integers

20212223…
2N-2-2N-1 ……

N bits

The 2’s complement representation for signed integers 
is the most commonly used signed-integer 
representation. It is a simple modification of unsigned 
integers where the most significant bit is considered 
negative.

“binary” point“sign bit”
Range: – 2N-1 to  2N-1 – 1
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8-bit 2’s complement example:

11010110 = –27 + 26 + 24 + 22 + 21

= – 128 + 64 + 16 + 4 + 2 = – 42



Why 2’s Complement?
If we use a two’s complement representation for 
signed integers, the same binary addition mod 2n

procedure will work for adding positive and 
negative numbers (don’t need separate 
subtraction rules).  The same procedure will also 
handle unsigned numbers!

Example:

5510 =   001101112

+  1010 =  000010102

6510 =   010000012

5510 =   001101112

+ -1010 =   111101102

4510 = 1001011012

When using signed 

magnitude 

representations, adding 

a negative value really 

means to subtract a 

positive value. However, 

in 2’s complement, 

adding is adding 

regardless of sign. In 

fact, you NEVER need to 

subtract when you use a 

2’s complement 

representation.



2’s Complement Tricks

- Negation – changing the sign of a number

- First complement every bit (i.e. 1  0, 0  1)

- Add 1

Example:  20 = 00010100, -20 = 11101011 + 1 = 

11101100

- Sign-Extension – aligning different sized 

2’s complement integers

- Simply copy the sign bit into higher positions



CLASS EXERCISE

10’s-complement Arithmetic 
(You’ll never need to borrow again)

Step 1) Write down two 3-digit numbers that you 

want to subtract

Step 2) Form the 9’s-complement of each digit

in the second number (the subtrahend)
0  9

1  8

2  7

3  6

4  5

5  4

6  3

7  2

8  1

9  0

Helpful Table of the

9’s complement for

each digit

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

What did you get? Why weren’t you taught to 

subtract this way?

Step 5) If your result was less than 1000,

form the 9’s complement again and add 1

and remember your result is negative

else

subtract 1000



Fixed-Point Numbers

By moving the implicit location of the 
“binary” point, we can represent signed 
fractions too. This has no effect on how 
operations are performed, assuming that 
the operands are properly aligned.

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3

= – 8 + 4 + 1 + 0.25 + 0.125
= – 2.625

OR
1101.0110      = -42 * 2-4 = -42/16 = -2.625

-23 22 21 20 2-1 2-2 2-3 2-4



Repeated Binary Fractions

Not all fractions can be represented exactly using 

a finite representation. You’ve seen this before in 

decimal notation where the fraction 1/3 (among 

others) requires an infinite number of digits to 

represent (0.3333…).

In Binary, a great many fractions that you’ve 

grown attached to require an infinite number of 

bits to represent exactly.

EX:  1 / 10 = 0.110 = .0001100110011…2

1 / 5 = 0.210 = .001100110011…2 = 0.333…16



Bias Notation

∙ There is yet one more way to represent signed 

integers, which is surprisingly simple. It involves 

subtracting a fixed constant from a given 

unsigned number. This representation is called  

“Bias Notation”.
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2 1 1 0 1 0 1 1 0

2025 24 23 22 212627

EX: (Bias = 127)
6 * 1   =        6

13 * 16   =   208

- 127

87
Why? Monotonicity



Floating Point Numbers

Another way to represent numbers is to use a 

notation similar to Scientific Notation. This format 

can be used to represent numbers with fractions 

(3.90 x 10-4), very small numbers (1.60 x 10-19), and 

large numbers (6.02 x 1023). This notation uses 

two fields to represent each number. The first part 

represents a normalized fraction (called the 

significand), and the second part represents the 

exponent (i.e. the position of the “floating” binary 

point). Exponent
FractionNormalized 2

Normalized Fraction

“dynamic range” “bits of accuracy”

Exponent



IEEE 754 Format
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ExponentS
dSignifican=v

1 11

S

52

SignificandExponent

1023
21.1




ExponentS
dSignifican=v

23

Significand

This is effectively a 

signed magnitude  

fixed-point number 

with a “hidden” 1.

The 1 is 

hidden 

because it 

provides no 

information

after the 

number is 

“normalized”

8

Exponent

The 

exponent is 

represented 

in bias 127 

notation. 

Why?

Single precision format

Double precision format



Summary

1) Selecting the encoding of information has 

important implications on how this information 

can be processed, and how much space it 

requires.

2) Computer arithmetic is constrained by finite 

representations, this has advantages (it allows 

for complement arithmetic) and disadvantages (it 

allows for overflows, numbers too big or small to 

be represented). 

3) Bit patterns can be interpreted in an endless 

number of ways, however important standards do 

exist

- Two’s complement

- IEEE 754 floating point


