
L03 – Instruction Set 1Comp 411

Concocting an Instruction Set
move flour,bowl

add milk,bowl

add egg,bowl

move bowl,mixer

rotate mixer

...

Nerd Chef at work.

Read: Chapter 2.1-2.7

L03 – Instruction Set 2Comp 411

A General-Purpose Computer
The von Neumann Model

Many architectural approaches to the general purpose computer have been
explored. The one on which nearly all modern, practical computers is based was
proposed by John von Neumann in the late 1940s. Its major components are:

L03 – Instruction Set 3Comp 411

A General-Purpose Computer
The von Neumann Model

Many architectural approaches to the general purpose computer have been
explored. The one on which nearly all modern, practical computers is based was
proposed by John von Neumann in the late 1940s. Its major components are:

Central
Processing

Unit

Central Processing Unit (CPU): A device which fetches,
interprets, and executes a specified set of
operations called Instructions.

L03 – Instruction Set 4Comp 411

A General-Purpose Computer
The von Neumann Model

Many architectural approaches to the general purpose computer have been
explored. The one on which nearly all modern, practical computers is based was
proposed by John von Neumann in the late 1940s. Its major components are:

Central
Processing

Unit

Central Processing Unit (CPU): A device which fetches,
interprets, and executes a specified set of
operations called Instructions.

Main
Memory

Memory: storage of N words of W bits each, where
W is a fixed architectural parameter, and
N can be expanded to meet needs.

L03 – Instruction Set 5Comp 411

A General-Purpose Computer
The von Neumann Model

Many architectural approaches to the general purpose computer have been
explored. The one on which nearly all modern, practical computers is based was
proposed by John von Neumann in the late 1940s. Its major components are:

Central
Processing

Unit

Central Processing Unit (CPU): A device which fetches,
interprets, and executes a specified set of
operations called Instructions.

Main
Memory

Memory: storage of N words of W bits each, where
W is a fixed architectural parameter, and
N can be expanded to meet needs.

Input/
Output

I/O: Devices for communicating with the outside world.

L03 – Instruction Set 6Comp 411

Anatomy of an Instruction

L03 – Instruction Set 7Comp 411

Anatomy of an Instruction

add $t0, $t1, $t2

L03 – Instruction Set 8Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

L03 – Instruction Set 9Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

Operation

L03 – Instruction Set 10Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

Operation
Operands
(variables, arguments, etc.)

L03 – Instruction Set 11Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

Operation
Operands
(variables, arguments, etc.)

L03 – Instruction Set 12Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

Operation
Operands
(variables, arguments, etc.)

Source Operands

L03 – Instruction Set 13Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

Operation
Operands
(variables, arguments, etc.)

Source Operands
Destination Operand

L03 – Instruction Set 14Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

addi $t0, $t1, 1

Operation
Operands
(variables, arguments, etc.)

Source Operands
Destination Operand

L03 – Instruction Set 15Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

addi $t0, $t1, 1

Operation
Operands
(variables, arguments, etc.)

Source Operands
Destination Operand

Immediate Operand

L03 – Instruction Set 16Comp 411

Anatomy of an Instruction

• Computers execute a set of primitive operations called
instructions

• Instructions specify an operation and its operands
(the necessary variables to perform the operation)

• Types of operands: immediate, source, and destination

add $t0, $t1, $t2

addi $t0, $t1, 1

Operation
Operands
(variables, arguments, etc.)

Source Operands
Destination Operand

Immediate Operand

Why the “$” on
some operands?
$X is a convention
to denote the
“contents” of a
temporary
variable named
“X”, whereas
immediate
operands indicate
the specified
value

L03 – Instruction Set 17Comp 411

Meaning of an Instruction

• Operations are abbreviated into opcodes (1-4 letters)

• Instructions are specified with a very regular syntax
• First an opcode followed by arguments

• Usually the destination is next, then source arguments
(This is not strictly the case, but it is generally true)

• Why this order?

• Analogy to high-level language like Java or C

L03 – Instruction Set 18Comp 411

Meaning of an Instruction

• Operations are abbreviated into opcodes (1-4 letters)

• Instructions are specified with a very regular syntax
• First an opcode followed by arguments

• Usually the destination is next, then source arguments
(This is not strictly the case, but it is generally true)

• Why this order?

• Analogy to high-level language like Java or C

add $t0, $t1, $t2

L03 – Instruction Set 19Comp 411

Meaning of an Instruction

• Operations are abbreviated into opcodes (1-4 letters)

• Instructions are specified with a very regular syntax
• First an opcode followed by arguments

• Usually the destination is next, then source arguments
(This is not strictly the case, but it is generally true)

• Why this order?

• Analogy to high-level language like Java or C

add $t0, $t1, $t2

int t0, t1, t2
t0 = t1 + t2

implies

L03 – Instruction Set 20Comp 411

Meaning of an Instruction

• Operations are abbreviated into opcodes (1-4 letters)

• Instructions are specified with a very regular syntax
• First an opcode followed by arguments

• Usually the destination is next, then source arguments
(This is not strictly the case, but it is generally true)

• Why this order?

• Analogy to high-level language like Java or C

add $t0, $t1, $t2

int t0, t1, t2
t0 = t1 + t2

implies
The instruction syntax
provides operands in the same
order as you would expect in a
statement from a high level
language.

L03 – Instruction Set 21Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

L03 – Instruction Set 22Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

L03 – Instruction Set 23Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12

L03 – Instruction Set 24Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12

L03 – Instruction Set 25Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12 24

L03 – Instruction Set 26Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12 24

L03 – Instruction Set 27Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12 24 48

L03 – Instruction Set 28Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12 24 48

L03 – Instruction Set 29Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12 24 48

42

L03 – Instruction Set 30Comp 411

Being the Machine!

• Generally…
• Instructions are executed sequentially from a list

• Instructions execute after all previous instructions have
completed, therefore their results are available to the next
instruction

• But, you may see exceptions to these rules

$t0: 0

$t1: 6

$t2: 8

$t3: 10

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

12 24 48

42What is this
program doing?

L03 – Instruction Set 31Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

L03 – Instruction Set 32Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

L03 – Instruction Set 33Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x

L03 – Instruction Set 34Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x

L03 – Instruction Set 35Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x

L03 – Instruction Set 36Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x

L03 – Instruction Set 37Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x 8x

L03 – Instruction Set 38Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x 8x

L03 – Instruction Set 39Comp 411

Analyzing the Machine!

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x 8x

7x

L03 – Instruction Set 40Comp 411

Analyzing the Machine!

• Repeat the process treating the variables as unknowns

• Knowing what the program does allows us to write down
its specification, and give it a meaningful name

• The instruction sequence is now a general purpose tool

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x 8x

7x

L03 – Instruction Set 41Comp 411

Analyzing the Machine!

• Repeat the process treating the variables as unknowns

• Knowing what the program does allows us to write down
its specification, and give it a meaningful name

• The instruction sequence is now a general purpose tool

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

2x4x 8x

7x

times7:

L03 – Instruction Set 42Comp 411

Looping the Flow

• Operations to change the flow of sequential execution

• A jump instruction with opcode „j‟

• The operand refers to a label of some other instruction

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

times7:

L03 – Instruction Set 43Comp 411

Looping the Flow

• Operations to change the flow of sequential execution

• A jump instruction with opcode „j‟

• The operand refers to a label of some other instruction

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

times7:

j times7

L03 – Instruction Set 44Comp 411

Looping the Flow

• Operations to change the flow of sequential execution

• A jump instruction with opcode „j‟

• The operand refers to a label of some other instruction

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

8x

7x

times7:

j times7

L03 – Instruction Set 45Comp 411

Looping the Flow

• Operations to change the flow of sequential execution

• A jump instruction with opcode „j‟

• The operand refers to a label of some other instruction

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

8x

7x

times7:

j times7

56x

49x

L03 – Instruction Set 46Comp 411

Looping the Flow

• Operations to change the flow of sequential execution

• A jump instruction with opcode „j‟

• The operand refers to a label of some other instruction

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

8x

7x

times7:

j times7

56x

49x

392x

343x

L03 – Instruction Set 47Comp 411

Looping the Flow

• Operations to change the flow of sequential execution

• A jump instruction with opcode „j‟

• The operand refers to a label of some other instruction

$t0: w

$t1: x

$t2: y

$t3: z

Variables

add $t0, $t1, $t1

add $t0, $t0, $t0

add $t0, $t0, $t0

sub $t1, $t0, $t1

Instructions

8x

7x

times7:

j times7

56x

49x

392x

343x
An infinite loop

L03 – Instruction Set 48Comp 411

Open Issues in our Simple Model

• WHERE are INSTRUCTIONS stored?
• HOW are instructions represented?
• WHERE are VARIABLES stored?
• How are labels associated with particular instructions?
• How do you access more complicated variable types like

• Arrays?
• Structures?
• Objects?

• Where does a program start executing?
• How does it stop?

L03 – Instruction Set 49Comp 411

The Stored-Program Computer
• The von Neumann architecture addresses these issues of our simple

programmable machine example:
• Instructions and Data are stored in a common memory

• Sequential semantics: To the programmer all instructions
appear to be executed sequentially

L03 – Instruction Set 50Comp 411

The Stored-Program Computer
• The von Neumann architecture addresses these issues of our simple

programmable machine example:
• Instructions and Data are stored in a common memory

• Sequential semantics: To the programmer all instructions
appear to be executed sequentially

CPU fetches and executes instructions from memory ...

• The CPU is a H/W interpreter

• Program IS simply data for this interpreter

• Main memory: Single expandable resource pool
- constrains both data and program size
- don‟t need to make separate decisions of
how large of a program or data memory to buy

Key idea: Memory holds not only
data, but coded instructions that
make up a program.

Central
Processing

Unit

Main Memory

instruction
instruction

instruction

data

data

data

L03 – Instruction Set 51Comp 411

Anatomy of a von Neumann Computer

Control
Unit

Data
Paths

In
te

rn
al

 s
to

ra
ge

MEMORY

control

status

instructionsdata addressaddress

L03 – Instruction Set 52Comp 411

Anatomy of a von Neumann Computer

Control
Unit

Data
Paths

In
te

rn
al

 s
to

ra
ge

MEMORY

control

status

instructionsdata

…

dest

asel

fn

bsel

Cc‟sALU

addressaddress

L03 – Instruction Set 53Comp 411

registers

Anatomy of a von Neumann Computer

Control
Unit

Data
Paths

In
te

rn
al

 s
to

ra
ge

MEMORY

control

status

instructionsdata

…

dest

asel

fn

bsel

Cc‟sALU

addressaddress

L03 – Instruction Set 54Comp 411

registers

operations

Anatomy of a von Neumann Computer

Control
Unit

Data
Paths

In
te

rn
al

 s
to

ra
ge

MEMORY

control

status

instructionsdata

…

dest

asel

fn

bsel

Cc‟sALU

addressaddress

L03 – Instruction Set 55Comp 411

registers

operations

Anatomy of a von Neumann Computer

Control
Unit

Data
Paths

In
te

rn
al

 s
to

ra
ge

MEMORY

control

status

instructionsdata

…

dest

asel

fn

bsel

Cc‟sALU

addressaddress

More about
this stuff

later!

L03 – Instruction Set 56Comp 411

registers

operations

Anatomy of a von Neumann Computer

Control
Unit

Data
Paths

In
te

rn
al

 s
to

ra
ge

MEMORY

control

status

instructionsdata

…

dest

asel

fn

bsel

Cc‟sALU

PC 1101000111011

• INSTRUCTIONS coded as binary data

• PROGRAM COUNTER or PC: Address of
next instruction to be executed

• logic to translate instructions into
control signals for data path

+1
R1 R2+R3

addressaddress

More about
this stuff

later!

L03 – Instruction Set 57Comp 411

Instruction Set Architecture (ISA)
Encoding of instructions raises some interesting choices...

• Tradeoffs: performance, compactness, programmability

• Uniformity. Should different instructions
• Be the same size?

• Take the same amount of time to execute?

 Trend: Uniformity. Affords simplicity, speed, pipelining.

• Complexity. How many different instructions? What level operations?
• Level of support for particular software operations: array indexing,

procedure calls, “polynomial evaluate”, etc

 “Reduced Instruction Set Computer”
(RISC) philosophy: simple instructions, optimized for speed

Mix of Engineering & Art...
Trial (by simulation) is our best technique for making choices!

Our representative example: the MIPS architecture!

L03 – Instruction Set 58Comp 411

MIPS Programming Model
a representative simple RISC machine

Processor State
(inside the CPU)

Main Memory

Fetch/Execute loop:

• fetch Mem[PC]
• PC = PC + 4†

• execute fetched instruction
(may change PC!)

• repeat!

†MIPS uses byte memory addresses.
However, each instruction is 32-bits
wide, and *must* be aligned on a
multiple of 4 (word) address. Each word
contains four 8-bit bytes. Addresses of
consecutive instructions (words) differ
by 4.

00PC

r0
r1
r2

...

r31

000000....0

32 bit “words”

0123

(4 bytes)
32 bit “words”

031

next instruction

General Registers:
A small scratchpad
of frequently used

or temporary variables

In Comp 411 we‟ll use a clean and
sufficient subset of the
MIPS-32 core Instruction set.

0
4
8

16
20

Addresses

L03 – Instruction Set 59Comp 411

Some MIPs Memory Nits

• Memory locations are 32 bits wide
• BUT, they are addressable in different-sized chunks

• 8-bit chunks (bytes)

• 16-bit chunks (shorts)

• 32-bit chunks (words)

• 64-bit chunks (longs/double)

• We also frequently need
access to individual bits!
(Instructions help to do this)

• Every BYTE has a unique address
(MIPS is a byte-addressable machine)

• Every instruction is one word

0123

4567

Addr
0:
4:
8:
12:

891012

12131415

L03 – Instruction Set 60Comp 411

Some MIPs Memory Nits

• Memory locations are 32 bits wide
• BUT, they are addressable in different-sized chunks

• 8-bit chunks (bytes)

• 16-bit chunks (shorts)

• 32-bit chunks (words)

• 64-bit chunks (longs/double)

• We also frequently need
access to individual bits!
(Instructions help to do this)

• Every BYTE has a unique address
(MIPS is a byte-addressable machine)

• Every instruction is one word

0123

4567

Addr
0:
4:
8:
12:

891012

12131415

byte3 byte2 byte1 byte0

L03 – Instruction Set 61Comp 411

Some MIPs Memory Nits

• Memory locations are 32 bits wide
• BUT, they are addressable in different-sized chunks

• 8-bit chunks (bytes)

• 16-bit chunks (shorts)

• 32-bit chunks (words)

• 64-bit chunks (longs/double)

• We also frequently need
access to individual bits!
(Instructions help to do this)

• Every BYTE has a unique address
(MIPS is a byte-addressable machine)

• Every instruction is one word

0123

4567

Addr
0:
4:
8:
12:

891012

12131415

byte3 byte2 byte1 byte0

short2 short0

L03 – Instruction Set 62Comp 411

Some MIPs Memory Nits

• Memory locations are 32 bits wide
• BUT, they are addressable in different-sized chunks

• 8-bit chunks (bytes)

• 16-bit chunks (shorts)

• 32-bit chunks (words)

• 64-bit chunks (longs/double)

• We also frequently need
access to individual bits!
(Instructions help to do this)

• Every BYTE has a unique address
(MIPS is a byte-addressable machine)

• Every instruction is one word

0123

4567

Addr
0:
4:
8:
12:

891012

12131415

byte3 byte2 byte1 byte0

short2 short0

long0

long8

L03 – Instruction Set 63Comp 411

Some MIPs Memory Nits

• Memory locations are 32 bits wide
• BUT, they are addressable in different-sized chunks

• 8-bit chunks (bytes)

• 16-bit chunks (shorts)

• 32-bit chunks (words)

• 64-bit chunks (longs/double)

• We also frequently need
access to individual bits!
(Instructions help to do this)

• Every BYTE has a unique address
(MIPS is a byte-addressable machine)

• Every instruction is one word

0123

4567

Addr
0:
4:
8:
12:

891012

12131415

byte3 byte2 byte1 byte0

short2 short0

long0

long8

31 30 29 … … 4 3 2 1 0

L03 – Instruction Set 64Comp 411

MIPS Register Nits

• There are 32 named registers [$0, $1, …. $31]
• The operands of *all* ALU instructions are registers

• This means to operate on a variables in memory you must:
 Load the value/values from memory into a register
 Perform the instruction
 Store the result back into memory

• Going to and from memory can be expensive
(4x to 20x slower than operating on a register)

• Net effect: Keep variables in registers as much as possible!

• 2 registers have H/W specific “side-effects”
(ex: $0 always contains the value „0‟… more later)

• 4 registers are dedicated to specific tasks by convention
• 26 are available for general use
• Further conventions delegate tasks to other registers

L03 – Instruction Set 65Comp 411

MIPS Instruction Formats

All MIPs instructions fit in a single 32-bit word. Every instruction
includes various “fields” that encode combinations of

• a 6-bit operation or “OPCODE”

•specifying one of < 64 basic operations

•escape codes to enable extended functions

• several 5-bit OPERAND fields, for specifying the sources and
destination of the operation, usually one of the 32 registers

• Embedded constants (“immediate” values) of various sizes,
16-bits, 5-bits, and 26-bits. Sometimes treated as signed values,
sometimes not.

There are three basic instruction formats:

L03 – Instruction Set 66Comp 411

MIPS Instruction Formats

All MIPs instructions fit in a single 32-bit word. Every instruction
includes various “fields” that encode combinations of

• a 6-bit operation or “OPCODE”

•specifying one of < 64 basic operations

•escape codes to enable extended functions

• several 5-bit OPERAND fields, for specifying the sources and
destination of the operation, usually one of the 32 registers

• Embedded constants (“immediate” values) of various sizes,
16-bits, 5-bits, and 26-bits. Sometimes treated as signed values,
sometimes not.

There are three basic instruction formats:

• R-type, 3 register operands
(2 sources, destination) OP rs rt rd

L03 – Instruction Set 67Comp 411

MIPS Instruction Formats

All MIPs instructions fit in a single 32-bit word. Every instruction
includes various “fields” that encode combinations of

• a 6-bit operation or “OPCODE”

•specifying one of < 64 basic operations

•escape codes to enable extended functions

• several 5-bit OPERAND fields, for specifying the sources and
destination of the operation, usually one of the 32 registers

• Embedded constants (“immediate” values) of various sizes,
16-bits, 5-bits, and 26-bits. Sometimes treated as signed values,
sometimes not.

There are three basic instruction formats:

• R-type, 3 register operands
(2 sources, destination) OP rs rt rd func

L03 – Instruction Set 68Comp 411

MIPS Instruction Formats

All MIPs instructions fit in a single 32-bit word. Every instruction
includes various “fields” that encode combinations of

• a 6-bit operation or “OPCODE”

•specifying one of < 64 basic operations

•escape codes to enable extended functions

• several 5-bit OPERAND fields, for specifying the sources and
destination of the operation, usually one of the 32 registers

• Embedded constants (“immediate” values) of various sizes,
16-bits, 5-bits, and 26-bits. Sometimes treated as signed values,
sometimes not.

There are three basic instruction formats:

• R-type, 3 register operands
(2 sources, destination) OP rs rt rd funcshamt

L03 – Instruction Set 69Comp 411

MIPS Instruction Formats

All MIPs instructions fit in a single 32-bit word. Every instruction
includes various “fields” that encode combinations of

• a 6-bit operation or “OPCODE”

•specifying one of < 64 basic operations

•escape codes to enable extended functions

• several 5-bit OPERAND fields, for specifying the sources and
destination of the operation, usually one of the 32 registers

• Embedded constants (“immediate” values) of various sizes,
16-bits, 5-bits, and 26-bits. Sometimes treated as signed values,
sometimes not.

There are three basic instruction formats:

• R-type, 3 register operands
(2 sources, destination)

• I-type, 2 register operands,
16-bit literal constant

OP rs rt rd

OP rs rt 16-bit constant

funcshamt

L03 – Instruction Set 70Comp 411

MIPS Instruction Formats

All MIPs instructions fit in a single 32-bit word. Every instruction
includes various “fields” that encode combinations of

• a 6-bit operation or “OPCODE”

•specifying one of < 64 basic operations

•escape codes to enable extended functions

• several 5-bit OPERAND fields, for specifying the sources and
destination of the operation, usually one of the 32 registers

• Embedded constants (“immediate” values) of various sizes,
16-bits, 5-bits, and 26-bits. Sometimes treated as signed values,
sometimes not.

There are three basic instruction formats:

• R-type, 3 register operands
(2 sources, destination)

• I-type, 2 register operands,
16-bit literal constant

OP rs rt rd

OP rs rt 16-bit constant

funcshamt

• J-type, no register
operands, 26-bit literal
constant

OP 26-bit constant

L03 – Instruction Set 71Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0R-type:

L03 – Instruction Set 72Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

R-type:

L03 – Instruction Set 73Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

func = 0x20
dictating an

add

R-type:

L03 – Instruction Set 74Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

func = 0x20
dictating an

add

R-type:

L03 – Instruction Set 75Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source rt = 9

Reg[9]
source

func = 0x20
dictating an

add

R-type:

L03 – Instruction Set 76Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

func = 0x20
dictating an

add

R-type:

L03 – Instruction Set 77Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

unused
fields are
set to „0‟

func = 0x20
dictating an

add

R-type:

L03 – Instruction Set 78Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

What we prefer to write: add $10, $11, $9 (“assembly language”)

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

unused
fields are
set to „0‟

func = 0x20
dictating an

add

R-type:

L03 – Instruction Set 79Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

What we prefer to write: add $10, $11, $9 (“assembly language”)

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

unused
fields are
set to „0‟

func = 0x20
dictating an

add

References to
register
contents are
prefixed by a “$”
to distinguish
them from
constants or
memory
addresses

R-type:

L03 – Instruction Set 80Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

What we prefer to write: add $10, $11, $9 (“assembly language”)

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

unused
fields are
set to „0‟

func = 0x20
dictating an

add

References to
register
contents are
prefixed by a “$”
to distinguish
them from
constants or
memory
addresses

R-type:

The convention with MIPS assembly language is to specify
the destination operand first, followed by source operands.

L03 – Instruction Set 81Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

What we prefer to write: add $10, $11, $9 (“assembly language”)

add rd, rs, rt:

“Add the contents of rs to
the contents of rt; store
the result in rd”

Reg[rd] = Reg[rs] + Reg[rt]

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

unused
fields are
set to „0‟

func = 0x20
dictating an

add

References to
register
contents are
prefixed by a “$”
to distinguish
them from
constants or
memory
addresses

R-type:

The convention with MIPS assembly language is to specify
the destination operand first, followed by source operands.

L03 – Instruction Set 82Comp 411

MIPS ALU Operations

Sample coded operation: ADD instruction

What we prefer to write: add $10, $11, $9 (“assembly language”)

add rd, rs, rt:

“Add the contents of rs to
the contents of rt; store
the result in rd”

Reg[rd] = Reg[rs] + Reg[rt] arithmetic: add, sub, addu, subu,
mult, multu, div, divu

compare: slt, sltu
logical: and, or, xor, nor
shift: sll, srl, sra, sllv, srav, srlv

Similar instructions for other
ALU operations:

0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0

op = 0x00
dictating an
ALU function

rs = 11
Reg[11]
source

rd = 10
Reg[10]

destinationrt = 9
Reg[9]
source

unused
fields are
set to „0‟

func = 0x20
dictating an

add

References to
register
contents are
prefixed by a “$”
to distinguish
them from
constants or
memory
addresses

R-type:

The convention with MIPS assembly language is to specify
the destination operand first, followed by source operands.

L03 – Instruction Set 83Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0R-type:

L03 – Instruction Set 84Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

R-type:

L03 – Instruction Set 85Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

func = 0x00
dictating an

sll

R-type:

L03 – Instruction Set 86Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

rt = 2
Reg[2]
source

func = 0x00
dictating an

sll

R-type:

L03 – Instruction Set 87Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

rt = 2
Reg[2]
source

shamt = 4
dictates a
shift of 4-

bits

func = 0x00
dictating an

sll

R-type:

L03 – Instruction Set 88Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

rd = 2
Reg[2]

destinationrt = 2
Reg[2]
source

shamt = 4
dictates a
shift of 4-

bits

func = 0x00
dictating an

sll

R-type:

L03 – Instruction Set 89Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

unused
set to

„0‟

rd = 2
Reg[2]

destinationrt = 2
Reg[2]
source

shamt = 4
dictates a
shift of 4-

bits

func = 0x00
dictating an

sll

R-type:

L03 – Instruction Set 90Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

unused
set to

„0‟

rd = 2
Reg[2]

destinationrt = 2
Reg[2]
source

shamt = 4
dictates a
shift of 4-

bits

func = 0x00
dictating an

sll

Assembly: sllv $2, $2, $8

sllv rd, rt, rs:

“Shift the contents of rt
left by the contents of
rs; store the result in rd”

Reg[rd] = Reg[rt] << Reg[rs]

R-type:

L03 – Instruction Set 91Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

unused
set to

„0‟

rd = 2
Reg[2]

destinationrt = 2
Reg[2]
source

shamt = 4
dictates a
shift of 4-

bits

func = 0x00
dictating an

sll

Assembly: sllv $2, $2, $8

sllv rd, rt, rs:

“Shift the contents of rt
left by the contents of
rs; store the result in rd”

Reg[rd] = Reg[rt] << Reg[rs]

This is peculiar
syntax for
MIPS, in this
ALU
instruction the
rt operand
precedes the
rs operand.
Usually, it‟s
the other way
around

R-type:

L03 – Instruction Set 92Comp 411

MIPS Shift Operations

Sample coded operation: SHIFT LOGICAL LEFT instruction

Assembly: sll $2, $2, 4

sll rd, rt, shamt:

“Shift the contents of rt
to the left by shamt;
store the result in rd”

Reg[rd] = Reg[rt] << shamt

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0

op = 0x00
dictating an
ALU function

unused
set to

„0‟

rd = 2
Reg[2]

destinationrt = 2
Reg[2]
source

shamt = 4
dictates a
shift of 4-

bits

func = 0x00
dictating an

sll

Assembly: sllv $2, $2, $8

sllv rd, rt, rs:

“Shift the contents of rt
left by the contents of
rs; store the result in rd”

Reg[rd] = Reg[rt] << Reg[rs]

This is peculiar
syntax for
MIPS, in this
ALU
instruction the
rt operand
precedes the
rs operand.
Usually, it‟s
the other way
around

R-type:

How are shifts useful?

L03 – Instruction Set 93Comp 411

MIPS ALU Operations with Immediate

addi instruction: adds register contents, signed-constant:

Symbolic version: addi $9, $11, -3

“Add the contents of rs to
const; store result in rt”

OP = 0x08,
dictating addi rs = 11, Reg[11]

source
rt = 9, Reg[9]
destination

Reg[rt] = Reg[rs] + sxt(imm) arithmetic: addi, addiu
compare: slti, sltiu
logical: andi, ori, xori, lui

Similar instructions for other
ALU operations:

constant field,
indicating -3 as
second operand
(sign-extended!)

addi rt, rs, imm:

0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

Immediate values are
sign-extended for
arithmetic and compare
operations, but not for
logical operations.

I-type:

L03 – Instruction Set 94Comp 411

Why Built-in Constants? (Immediate)

One way to answer architectural questions is to evaluate the
consequences of different choices using carefully chosen representative
benchmarks (programs and/or code sequences). Make choices that are
“best” according to some metric (cost, performance, …).

• Why not…
• put constants in memory (was common in older instruction sets)?
• create more hard-wired registers for constants (like $0)?

• SMALL constants are used frequently (50% of operands)
• In a C compiler (gcc) 52% of ALU operations involve a constant
• In a circuit simulator (spice) 69% involve constants
• e.g., B = B + 1; C = W & 0x00ff; A = B + 0;

• ISA Design Principle: Make the common cases fast
• MIPS Instructions:

addi $29, $29, 4

slti $8, $18, 10

andi $29, $29, 6

ori $29, $29, 4

How large of constants
should we allow for? If they
are too big, we won‟t have
enough bits leftover for
the instructions.

Why are there so many
different sized constants
in the MIPS ISA? Couldn‟t
the shift amount have
been encoded using the
I-format?

L03 – Instruction Set 95Comp 411

1010101010101010 0000000000000000

How About Larger Constants?

L03 – Instruction Set 96Comp 411

• In order to load a 32-bit constant into a register a two
instruction sequence is used, “load upper immediate”

lui $8, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $8, $8, 1010101010101010

1010101010101010 0000000000000000

How About Larger Constants?

L03 – Instruction Set 97Comp 411

• In order to load a 32-bit constant into a register a two
instruction sequence is used, “load upper immediate”

lui $8, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $8, $8, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

How About Larger Constants?

L03 – Instruction Set 98Comp 411

• In order to load a 32-bit constant into a register a two
instruction sequence is used, “load upper immediate”

lui $8, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $8, $8, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

How About Larger Constants?

Reminder: In MIPS,
Logical Immediate
instructions (ANDI,
ORI, XORI) do not
sign-extend their
constant operand

L03 – Instruction Set 99Comp 411

First MIPS Program
(fragment)

add $8,$17,$18 # (g + h)

add $9,$19,$20 # (i + j)

sub $16,$8,$9 # f = (g + h) – (i + j)

Suppose you want to compute the following expression:
f = (g + h) – (i + j)

Where the variables f, g, h, i, and j are assigned to registers $16, $17,
$18, $19, and $20 respectively. What is the MIPS assembly code?

These three instructions are like our little ad-hoc machine from the
beginning of lecture. Of course, limiting ourselves to registers for
storage falls short of our ambitions....

Needed: instruction-set support for reading and writing
locations in main memory...

L03 – Instruction Set 100Comp 411

MIPS Load & Store Instructions

lw rt, imm(rs) Reg[rt]= Mem[Reg[rs] + sxt(const)]

sw rt, imm(rs) Mem[Reg[rs] + sxt(const)]= Reg[rt]

“Fetch into rt the contents of the memory location whose
address is const plus the contents of rs”
Abbreviation: lw rt,imm for lw rt, imm($0)

“Store the contents of rt into the memory location whose
address is const plus the contents of rs”
Abbreviation: sw rt, imm for sw rt, imm($0)

BYTE ADDRESSES, but lw and sw 32-bit word access word-aligned
addresses. The resulting lowest two address bits must be 0!

OP rs rt 16-bit signed constant

MIPS is a LOAD/STORE architecture. This means that *all* data
memory accesses are limited to load and store instructions,
which transfer register contents to-and-from memory. ALU
operations work only on registers.

I-type:

L03 – Instruction Set 101Comp 411

Storage Conventions

• Data and Variables are stored in memory

• Operations done on registers

• Registers hold Temporary results

1000:
1004:
1008:

1010:
100C:

n
r
x
y

L03 – Instruction Set 102Comp 411

Storage Conventions

• Data and Variables are stored in memory

• Operations done on registers

• Registers hold Temporary results

1000:
1004:
1008:

1010:
100C:

n
r
x
y

Address assigned at compile time

L03 – Instruction Set 103Comp 411

Storage Conventions

• Data and Variables are stored in memory

• Operations done on registers

• Registers hold Temporary results

1000:
1004:
1008:

1010:
100C:

n
r
x
y

Address assigned at compile time int x, y;

y = x + 37;

L03 – Instruction Set 104Comp 411

Storage Conventions

• Data and Variables are stored in memory

• Operations done on registers

• Registers hold Temporary results

1000:
1004:
1008:

1010:
100C:

n
r
x
y

Address assigned at compile time int x, y;

y = x + 37;

lw $t0, 0x1008($0)

addi $t0, $t0, 37

sw $t0, 0x100C($0)

translates
to

Compilation approach:
LOAD, COMPUTE, STORE

L03 – Instruction Set 105Comp 411

Storage Conventions

• Data and Variables are stored in memory

• Operations done on registers

• Registers hold Temporary results

1000:
1004:
1008:

1010:
100C:

n
r
x
y

Address assigned at compile time int x, y;

y = x + 37;

x=0x1008

y=0x100C

lw $t0, x

addi $t0, $t0, 37

sw $t0, y

or, more
humanely,

to

rs defaults to Reg[0] (0)

lw $t0, 0x1008($0)

addi $t0, $t0, 37

sw $t0, 0x100C($0)

translates
to

Compilation approach:
LOAD, COMPUTE, STORE

L03 – Instruction Set 106Comp 411

MIPS Register Usage Conventions

Name Register number Usage

$zero 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

By convention, the MIPS registers are assigned to specific uses,
and names. These are supported by the assembler, and higher-
level languages. We‟ll use these names increasingly.

L03 – Instruction Set 107Comp 411

Capabilities thus far: Expression Evaluation
Translation of an Expression:

int x, y;

y = (x-3)*(y+123456)

x: .word 0
y: .word 0
c: .word 123456

...

lw $t0, x
addi $t0, $t0, -3
lw $t1, y
lw $t2, c
add $t1, $t1, $t2
mul $t0, $t0, $t1
sw $t0, y

• VARIABLES are allocated
storage in main memory

• VARIABLE references translate
to LD or ST

• OPERATORS translate to ALU
instructions

• SMALL CONSTANTS translate
to ALU instructions w/ built-in
constant

• “LARGE” CONSTANTS
translate to initialized
variables

NB: Here we assume that
variable addresses fit into 16-

bit constants!

L03 – Instruction Set 108Comp 411

Can We Run Any Algorithm?

Model thus far:

• Executes instructions sequentially –

• Number of operations executed =
number of instructions in our program!

L03 – Instruction Set 109Comp 411

Can We Run Any Algorithm?

Model thus far:

• Executes instructions sequentially –

• Number of operations executed =
number of instructions in our program!

Good news: programs can‟t “loop forever”!

• So far the MIPS subset produces
straight-line code only

L03 – Instruction Set 110Comp 411

Can We Run Any Algorithm?

Model thus far:

• Executes instructions sequentially –

• Number of operations executed =
number of instructions in our program!

Good news: programs can‟t “loop forever”!

• So far the MIPS subset produces
straight-line code only

Bad news:
• Straight-line code
• Can‟t do a loop
• Can‟t reuse a block of code

L03 – Instruction Set 111Comp 411

Can We Run Any Algorithm?

Needed:
ability to

change the
PC.

Model thus far:

• Executes instructions sequentially –

• Number of operations executed =
number of instructions in our program!

Good news: programs can‟t “loop forever”!

• So far the MIPS subset produces
straight-line code only

Bad news:
• Straight-line code
• Can‟t do a loop
• Can‟t reuse a block of code

L03 – Instruction Set 112Comp 411

MIPS Branch Instructions

if (REG[RS] != REG[RT])

{

PC = PC + 4 + 4*offset;

}

bne rs, rt, label # Branch if not equal

if (REG[RS] == REG[RT])

{

PC = PC + 4 + 4*offset;

}

beq rs, rt, label # Branch if equal

NB: Branch targets are specified relative to the current instruction
(actually relative to the next instruction, which would be fetched by
default). The assembler hides the calculation of these offset values
from the user, by allowing them to specify a target address (usually a
label) and it does the job of computing the offset‟s value. The size of
the constant field (16-bits) limits the range of branches.

OPCODE rs rt 16-bit signed constant

MIPS branch instructions provide a way of conditionally changing the PC to
some nearby location...

I-type:

L03 – Instruction Set 113Comp 411

MIPS Branch Instructions

if (REG[RS] != REG[RT])

{

PC = PC + 4 + 4*offset;

}

bne rs, rt, label # Branch if not equal

if (REG[RS] == REG[RT])

{

PC = PC + 4 + 4*offset;

}

beq rs, rt, label # Branch if equal

NB: Branch targets are specified relative to the current instruction
(actually relative to the next instruction, which would be fetched by
default). The assembler hides the calculation of these offset values
from the user, by allowing them to specify a target address (usually a
label) and it does the job of computing the offset‟s value. The size of
the constant field (16-bits) limits the range of branches.

OPCODE rs rt 16-bit signed constant

MIPS branch instructions provide a way of conditionally changing the PC to
some nearby location...

I-type:

Notice on memory references offsets are multiplied by 4, so
that branch targets are restricted to word boundaries.

L03 – Instruction Set 114Comp 411

• The range of MIPS branch instructions is limited to approximately
 64K instructions from the branch instruction. In order to branch farther
an unconditional jump instruction is used.

• Instructions:
j label # jump to label (PC = PC[31-28] || CONST[25:0]*4)
jal label # jump to label and store PC+4 in $31
jr $t0 # jump to address specified by register‟s contents
jalr $t0, $ra # jump to address specified by register‟s contents

• Formats:

MIPS Jumps

• J-type: used for j OP = 2 26-bit constant

• J-type: used for jal OP = 3 26-bit constant

• R-type, used for jr OP = 0 rs func = 8000

• R-type, used for jalr OP = 0 rs func = 900 rd

L03 – Instruction Set 115Comp 411

Now we can do a real program: Factorial...

n: .word 123

ans: .word 0

...

addi $t0, $0, 1 # t0 = 1

lw $t1, n # t1 = n

loop: beq $t1, $0, done # while (t1 != 0)

mul $t0, $t0, $t1 # t0 = t0 * t1

addi $t1, $t1, -1 # t1 = t1 - 1

beq $0, $0, loop # Always branch

done: sw $t0, ans # ans = r1

int n, ans;

register int r1, r2;

r1 = 1;

r2 = n;

while (r2 != 0) {

r1 = r1 * r2;

r2 = r2 – 1;

}

ans = r1;

Synopsis (in C):
• Input in n, output in ans
• r1, r2 used for temporaries
• follows algorithm of our earlier

data paths.

MIPS code, in assembly language:

L03 – Instruction Set 116Comp 411

To summarize:
MIPS operands

Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
30

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to

PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to

PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;

else $s1 = 0

Compare less than; for beq, bne

set less than

immediate
slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;

else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For switch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

L03 – Instruction Set 117Comp 411

MIPS Instruction Decoding Ring
OP 000 001 010 011 100 101 110 111

000 ALU j jal beq bne
001 addi addiu slti sltiu andi ori xori lui
010
011
100 lw
101 sw
110
111

ALU 000 001 010 011 100 101 110 111
000 sll srl sra sllv srlv srav
001 jr jalr
010
011 mult multu div divu
100 add addu sub subu and or xor nor
101 slt sltu
110
111

L03 – Instruction Set 118Comp 411

Summary
• We will use a subset of MIPS instruction set as a prototype

• Fixed-size 32-bit instructions

• Mix of three basic instruction formats

• R-type - Mostly 2 source and 1 destination register

• I-type - 1-source, a small (16-bit) constant, and
a destination register

• J-type - A large (26-bit) constant used for jumps

• Load/Store architecture

• 31 general purpose registers, one hardwired to 0, and, by
convention, several are used for specific purposes.

• ISA design requires tradeoffs, usually based on

• History

• Art

• Engineering

• Benchmark results

