
L4 – Addressing Modes   1Comp 411 

Operands and Addressing Modes

• Where is the data?
• Addresses as data
• Names and Values
• Indirection



L4 – Addressing Modes   2Comp 411 

Just enough C

For our purposes C is almost identical to JAVA except:

C has “functions”, JAVA has “methods”.  

function ≡ method without “class”. 

A global method.

C has “pointers” explicitly. JAVA has them but hides them 
under the covers.



L4 – Addressing Modes   3Comp 411 

C pointers

int i; // simple integer variable

int a[10]; // array of integers

int *p; // pointer to integer(s)

*(expression) is content of address computed by expression.

a[k] ≡ *(a+k)

a is a constant of type “int *”

a[k] = a[k+1]  ≡  *(a+k) = *(a+k+1)



L4 – Addressing Modes   4Comp 411 

Legal uses of C Pointers

int i; // simple integer variable

int a[10]; // array of integers

int *p; // pointer to integer(s)

p = &i; // & means address of

p = a; // no need for & on a

p = &a[5]; // address of 6th element of a

*p // value of location pointed by p

*p = 1; // change value of that location

*(p+1) = 1; // change value of next location

p[1] = 1; // exactly the same as above

p++; // step pointer to the next element



L4 – Addressing Modes   5Comp 411 

Legal uses of Pointers

int i; // simple integer variable

int a[10];// array of integers

int *p; // pointer to integer(s) 

So what happens when

p = &i;

What is value of p[0]? 

What is value of p[1]?



L4 – Addressing Modes   6Comp 411 

C Pointers vs. object size

Does “p++” really add 1 to the pointer?

NO! It adds 4.

Why 4?

char *q;

...

q++; // really does add 1



L4 – Addressing Modes   7Comp 411 

Clear123

void clear1(int array[], int size) {

for(int i=0; i<size; i++)

array[i] = 0;

}

void clear2(int *array, int size) {

for(int *p = &array[0]; p < &array[size]; p++)

*p = 0;

}

void clear3(int *array, int size) {

int *arrayend = array + size;

while(array < arrayend) *array++ = 0;

}



L4 – Addressing Modes   8Comp 411 

Pointer summary

• In the “C” world and in the “machine” world:

– a pointer is just the address of an object in memory

– size of pointer is fixed regardless of size of object

– to get to the next object increment by the object’s size in 
bytes

– to get the the ith object add i*sizeof(object)

• More details:

– int R[5]  R is int* constant address of 20 bytes storage

– R[i]  *(R+i)

– int *p = &R[3]  p = (R+3) (p points 12 bytes after R)



L4 – Addressing Modes   9Comp 411 

Last Time - “Machine” Language

Means, to MIPS,    Reg[3]  =  Reg[4] + Reg[2]

op = R-type RdRt

0 0 0 0 0 1 0 00 0 10 0 00 10 0 0 1

Rs

0 0 01 0 00 0 00 0

32-bit (4-byte) ADD instruction:

But, most of us would prefer to write

a = b+c;

add $3, $4, $2

or, better yet,

(ASSEMBLER)

(C)

0

func = add



L4 – Addressing Modes   10Comp 411 

Revisiting Operands

• Operands – the variables needed to perform an 
instruction’s operation

• Three types in the MIPS ISA:
– Register:

add $2, $3, $4 # operands are the “Contents” of a register

– Immediate:
addi $2,$2,1 # 2nd source operand is part of the instruction

– Register-Indirect:
lw  $2, 12($28) # source operand is in memory

sw $2, 12($28) # destination operand is memory

• Simple enough, but is it enough?



L4 – Addressing Modes   11Comp 411 

Common “Addressing Modes”

• Absolute (Direct):  lw  $8, 0x1000($0)
– Value = Mem[constant]

– Use: accessing static data

• Indirect:    lw  $8, 0($9)
– Value = Mem[Reg[x]]

– Use: pointer accesses

• Displacement:    lw  $8, 16($9)
– Value = Mem[Reg[x] + constant]

– Use: access to local variables

• Indexed:
– Value = Mem[Reg[x] + Reg[y]]

– Use: array accesses (base+index)

• Memory indirect:
– Value = Mem[Mem[Reg[x]]]

– Use: access thru pointer in mem

• Autoincrement:
– Value = Mem[Reg[x]]; Reg[x]++

– Use: sequential pointer accesses

• Autodecrement:
– Value = Reg[X]--; Mem[Reg[x]]

– Use: stack operations

• Scaled:
– Value = Mem[Reg[x] + c + d*Reg[y]]

– Use: array accesses (base+index)



L4 – Addressing Modes   12Comp 411 

Common “Addressing Modes”

• Absolute (Direct):  lw  $8, 0x1000($0)
– Value = Mem[constant]

– Use: accessing static data

• Indirect:    lw  $8, 0($9)
– Value = Mem[Reg[x]]

– Use: pointer accesses

• Displacement:    lw  $8, 16($9)
– Value = Mem[Reg[x] + constant]

– Use: access to local variables

• Indexed:
– Value = Mem[Reg[x] + Reg[y]]

– Use: array accesses (base+index)

• Memory indirect:
– Value = Mem[Mem[Reg[x]]]

– Use: access thru pointer in mem

• Autoincrement:
– Value = Mem[Reg[x]]; Reg[x]++

– Use: sequential pointer accesses

• Autodecrement:
– Value = Reg[X]--; Mem[Reg[x]]

– Use: stack operations

• Scaled:
– Value = Mem[Reg[x] + c + d*Reg[y]]

– Use: array accesses (base+index)

Argh!   Is the complexity worth the cost?
Need a cost/benefit analysis!



L4 – Addressing Modes   13Comp 411 

MIPS can do these with appropriate 
choices for Ra and const

Common “Addressing Modes”

• Absolute (Direct):  lw  $8, 0x1000($0)
– Value = Mem[constant]

– Use: accessing static data

• Indirect:    lw  $8, 0($9)
– Value = Mem[Reg[x]]

– Use: pointer accesses

• Displacement:    lw  $8, 16($9)
– Value = Mem[Reg[x] + constant]

– Use: access to local variables

• Indexed:
– Value = Mem[Reg[x] + Reg[y]]

– Use: array accesses (base+index)

• Memory indirect:
– Value = Mem[Mem[Reg[x]]]

– Use: access thru pointer in mem

• Autoincrement:
– Value = Mem[Reg[x]]; Reg[x]++

– Use: sequential pointer accesses

• Autodecrement:
– Value = Reg[X]--; Mem[Reg[x]]

– Use: stack operations

• Scaled:
– Value = Mem[Reg[x] + c + d*Reg[y]]

– Use: array accesses (base+index)

Argh!   Is the complexity worth the cost?
Need a cost/benefit analysis!



L4 – Addressing Modes   14Comp 411 

Memory Operands: Usage

Usage of different memory operand modes

Fr
om

 H
en

ne
ss

y 
&

 P
at

te
rs

on



L4 – Addressing Modes   15Comp 411 

Absolute (Direct) Addressing

• What we want:
– The contents of a specific memory location

• Examples:

• Caveats
– In practice $gp is used instead of $0

– Can only address the first and last 32K of memory this way

– Sometimes generates a two instruction sequence:

“C”
int x = 10;

main() {

x = x + 1;

}

“MIPS Assembly”
.data

.global x

x: .word 10

.text

.global main

main:

lw   $2,x($0)

addi $2,$2,1

sw   $2,x($0)



L4 – Addressing Modes   16Comp 411 

Absolute (Direct) Addressing

• What we want:
– The contents of a specific memory location

• Examples:

• Caveats
– In practice $gp is used instead of $0

– Can only address the first and last 32K of memory this way

– Sometimes generates a two instruction sequence:

“C”
int x = 10;

main() {

x = x + 1;

}

“MIPS Assembly”
.data

.global x

x: .word 10

.text

.global main

main:

lw   $2,x($0)

addi $2,$2,1

sw   $2,x($0)

lui  $1,xhighbits

lw   $2,xlowbits($1)



L4 – Addressing Modes   17Comp 411 

Absolute (Direct) Addressing

• What we want:
– The contents of a specific memory location

• Examples:

• Caveats
– In practice $gp is used instead of $0

– Can only address the first and last 32K of memory this way

– Sometimes generates a two instruction sequence:

“C”
int x = 10;

main() {

x = x + 1;

}

“MIPS Assembly”
.data

.global x

x: .word 10

.text

.global main

main:

lw   $2,x($0)

addi $2,$2,1

sw   $2,x($0)

lui  $1,xhighbits

lw   $2,xlowbits($1)

Allocates  space 
for a single integer 
(4-bytes) and 
initializes its value 
to 10



L4 – Addressing Modes   18Comp 411 

Indirect Addressing

• What we want:
– The contents of a memory

location held in a register

• Examples:

• Caveats
– You must make sure that the register contains a valid address

(double, word, or short aligned as required)

“C”
int x = 10;

main() {

int *y = &x;

*y = 2;

}

“MIPS Assembly”
.data

.global x

x: .word   10

.text

.global main

main:

la   $2,x

addi $3,$0,2

sw   $3,0($2)



L4 – Addressing Modes   19Comp 411 

Indirect Addressing

• What we want:
– The contents of a memory

location held in a register

• Examples:

• Caveats
– You must make sure that the register contains a valid address

(double, word, or short aligned as required)

“C”
int x = 10;

main() {

int *y = &x;

*y = 2;

}

“MIPS Assembly”
.data

.global x

x: .word   10

.text

.global main

main:

la   $2,x

addi $3,$0,2

sw   $3,0($2)

lui  $2,xhighbits

ori  $2,$2,xlowbits

“la” is not a  real instruction, 
It’s a convenient 
pseudoinstruction that 
constructs a  constant via 
either a 1 instruction  or
2 instruction sequence

ori  $2,$0,x



L4 – Addressing Modes   20Comp 411 

Displacement Addressing

• What we want:
– The contents of a memory location relative to a register

• Examples:

• Caveats
– Must multiply (shift) the “index” to be properly aligned

“C”
int a[5];

main() {

int i = 3; 

a[i] = 2;

}

“MIPS Assembly”
.data

.global a

a: .space   20

.text

.global main

main:

addi $2,$0,3

addi $3,$0,2

sll  $1,$2,2

sw   $3,a($1)



L4 – Addressing Modes   21Comp 411 

Displacement Addressing

• What we want:
– The contents of a memory location relative to a register

• Examples:

• Caveats
– Must multiply (shift) the “index” to be properly aligned

“C”
int a[5];

main() {

int i = 3; 

a[i] = 2;

}

“MIPS Assembly”
.data

.global a

a: .space   20

.text

.global main

main:

addi $2,$0,3

addi $3,$0,2

sll  $1,$2,2

sw   $3,a($1)

Allocates  space 
for a 5 uninitialized 
integers (20-bytes)



L4 – Addressing Modes   22Comp 411 

Displacement Addressing: Once More

• What we want:
– The contents of a memory location relative to a register

• Examples:

• Caveats
– Constants offset to the various fields of the structure

– Structures larger than 32K use a different approach

“C”
struct p { 

int x, y; }

main() {

p.x = 3; 

p.y = 2;

}

“MIPS Assembly”
.data

.global p

p: .space   8

.text

.global main

main:

la   $1,p

addi $2,$0,3

sw   $2,0($1)

addi $2,$0,2

sw   $2,4($1)



L4 – Addressing Modes   23Comp 411 

Displacement Addressing: Once More

• What we want:
– The contents of a memory location relative to a register

• Examples:

• Caveats
– Constants offset to the various fields of the structure

– Structures larger than 32K use a different approach

“C”
struct p { 

int x, y; }

main() {

p.x = 3; 

p.y = 2;

}

“MIPS Assembly”
.data

.global p

p: .space   8

.text

.global main

main:

la   $1,p

addi $2,$0,3

sw   $2,0($1)

addi $2,$0,2

sw   $2,4($1)

Allocates  space 
for 2 uninitialized 
integers (8-bytes)



L4 – Addressing Modes   24Comp 411 

Conditionals

C code:

if (expr) {

STUFF1

} else {

STUFF2

}

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lelse

(compile STUFF1)
beq $0, $0, Lendif

Lelse:

(compile STUFF2)
Lendif:

C code:

if (expr) {

STUFF

}

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lendif

(compile STUFF)
Lendif:

There are little tricks 
that come into play 
when compiling 
conditional code blocks. 
For instance, the 
statement:

if (y > 32) {

x = x + 1;

}

compiles to:
lw   $24, y

ori  $15, $0, 32

slt  $1, $15, $24

beq  $1, $0, Lendif

lw   $24, x

addi $24, $24, 1

sw   $24, x

Lendif:



L4 – Addressing Modes   25Comp 411 

Loops

MIPS assembly:
Lwhile:

(compute expr in $rx)
beq $rX,$0,Lendw

(compile STUFF)
beq $0,$0,Lwhile

Lendw:

C code:
while (expr) {

STUFF

} 

Alternate MIPS 
assembly:

beq $0,$0,Ltest

Lwhile:
(compile STUFF)

Ltest:

(compute expr in $rx)
bne $rX,$0,Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- moving all possible computations outside of loops
- unrolling loops to reduce branching overhead
- simplifying expressions that depend on “loop variables”



L4 – Addressing Modes   26Comp 411 

For Loops
• Most high-level languages provide loop constructs that 

establish and update an iteration variable, which is used 
to control the loop’s behavior

MIPS assembly:
sum:

.word 0x0

data:

.word 0x1, 0x2, 0x3, 0x4, 0x5

.word 0x6, 0x7, 0x8, 0x9, 0xa

add $30,$0,$0

Lfor:

lw $24,sum($0)

sll $15,$30,2

lw $15,data($15)

addu $24,$24,$15

sw $24,sum

add $30,$30,1

slt $24,$30,10

bne $24,$0,Lfor

Lendfor:

C code:
int sum = 0;

int data[10] =

{1,2,3,4,5,6,7,8,9,10};

int i;

for (i=0; i<10; i++) {

sum += data[i]

} 



L4 – Addressing Modes   27Comp 411 

Next Time

• We’ll write some real assembly code

• Play with a simulator


