Operands and Addressing Modes

* Where is the data?
* Addresses as data
* Names and Yalues

¢ Indirection

Comp 411 L4 — Addressing Modes 1

Just enough C

For our purposes C is almost identical to JAVA except:

C has “functions”, JAYA has “methods”.
function = method without “class”.
A global method.

C has “pointers” explicitly. JAYA has them but hides them
under the covers.

Comp 411 L4 — Addressing Modes 2

C pointers

int i; // simple integer variable

int a[l10]; // array of integers

int *p; // pointer to integer (s)

* (expression) is content of address computed by expression .
al[k] = *(a+k)

a is a constant of type “int *”

alk] = a[k+1l] = *(atk) = *(a+k+l)

Comp 411 L4 — Addressing Modes 3

Comp 411

Legal uses of C Pointers

int 1i;
int a[l0];
int *p;

o

I

'3

] |-.'

o
|
4

o

//
//
//

//
//
//
//
//
//
//
//

simple integer variable
array of integers
pointer to integer (s)

& means address of

no need for & on a

address of 6% element of a
value of location pointed by p
change value of that location
change value of next location
exactly the same as above

step pointer to the next element

L4 — Addressing Modes 4

Comp 411

Legal uses of Pointers

int i; // simple integer variable
int a[l10];// array of integers
int *p; // pointer to integer(s)

So what happens when
p = &i;

What is value of p[0]~?
What is value of p[1l]°~?

L4 - Add

ressin

Comp 411

C Pointers vs. object size

Does “p++” really add 1 to the pointer?
NO! It adds 4.
Why 47?

char *q;

gt++; // really does add 1

L4 - Add

ressin

Clear123

void clearl (int array|[], int size) {
for(int 1=0; i<size; i++)
array[i] = O0;

void clear2 (int *array, int size) ({
for (int *p = &array[0];, p < &array[size]; p++)
*y = .
p=0;

void clear3 (int *array, int size) {
int *arrayend = array + size;
while (array < arrayend) *array++ = 0;

Comp 411 L4 — Addressing Modes 7

Pointer summary

* [n the “C” world and in the “machine” world:
— a pointer is just the address of an object in memory
— size of pointer is fixed regardless of size of object
— to get to the next object increment by the object’s size in
bytes
— to get the the i*" object add i*sizeof(object)
* More details:
— int R[B] =R is int* constant address of 20 bytes storage
— R[i] = *(R+i)
— int *p = &R[3] = p = (R+3) (p points 12 bytes after R)

Comp 411 L4 — Addressing Modes &

Last Time - "Machine” Language

32-bit (4-byte) ADD instruction:

000000{00100/00010{00011/00000{100000
op=R-type Rs Rt Rd func = add

Means, to MIPS, Reg[3] = Reg[4] + Reg[2]

But, most of us would prefer to write
add $3, $4, $2 (ASSEMBLER)

or, better yet,
a = b+c; (C)

Comp 411 L4 — Addressing Modes 9

Revisiting Operands

* Operands — the variables needed to perform an
instruction’s operation

* Three types in the MIPS ISA:

— Register:
add $2, $3, $4 # operands are the “Contents” of a register
— Immediate:
addi $2,$2,1 # 2" source operand is part of the instruction

— Register-Indirect:
lw $2,12($28) # source operand is in memory
sw $2,12($28) # destination operand is memory

e Simple enough, but is it enough?

Comp 411 L4 — Addressing Modes 10

Comp 411

Common “"Addressing Modes”

Absolute (Direct): 1w ss, ox1000(s0)

— VYalue = Mem[constant]

— Use: accessing static data
Indirect: 1w s$s, o(s9)

— VYalue = Mem[Reg[x]]

— Use: pointer accesses
Displacement: 1w ss8, 16(s9)

— VYalue = Mem[Reg[x] + constant]

— Use: access to local variables
Indexed:

— VYalue = Mem[Reg[x] + Reg[y]]

— Use: array accesses (base+index)

Memory indirect:

— Value = Mem[Mem[Reg[x]]]

— Use: access thru pointer in mem
Autoincrement:

— Value = Mem[Reg[x]]; Reg[x]++

— Use: sequential pointer accesses
Autodecrement:

— VYalue = Reg[X]--; Mem[Reg[x]]

— Use: stack operations
Scaled:

— VYalue = Mem[Reg[x] + ¢ + d*Reg[y]]

— Use: array accesses (base+index)

L4 — Addressing Modes 11

Common “"Addressing Modes”

* Absolute (Direct): 1w ss, oxio00(s0 o Memory indirect:

— Value = Mem[constant] — Value = Mem[Mem[Reg[x]]]

— Use: accessing static data — Use: access thru pointer in mem
 Indirect: 1w ss, 0(s9) e Autoincrement:

— Value = Mem[Reg[x]] — Value = Mem[Reg[x]]; Reg[x]++

— Use: pointer accesses — Use: sequential pointer accesses
* Displacement: 1v ss, 16(59) e Autodecrement:

— VYalue = Mem[Reg[x] + constant] — Value = Reg[X]--; Mem[Reg[x]]

— Use: access to local variables — Use: stack operations
* Indexed: Scaled:

— VYalue = Mem[Reg[x] + Reg[y]] — Value = Mem[Reg[x] + ¢ + d*Reg[y]]

— Use: array accesses (base+index) — Use: array accesses (base+index)

Argh! s the complexity worth the cost?
Need a cost/benefit analysis!

Comp 411 L4 — Addressing Modes 12

Common "Addressing Modes”

MIPS can do these with appropriate
choices for Ra and const

* Absolute (Direct): 1w ss, ox1000(s0)

Memory indirect:

— Value = Mem[constant] — Value = Mem[Mem[Reg[x]]]

— Use: accessing static data — Use: access thru pointer in mem
° Indirect: 1« ss, 0(s9) e Autoincrement:

— Value = Mem[Reg[x]] — Value = Mem[Reg[x]]; Reg[x]++

— Use: pointer accesses — Use: sequential pointer accesses
* Displacement: 1v ss, 16(59) e Autodecrement:

— VYalue = Mem[Reg[x] + constant] — Value = Reg[X]--; Mem[Reg[x]]

— Use: access to local variables — Use: stack operations
* Indexed: Scaled:

— VYalue = Mem[Reg[x] + Reg[y]] — Value = Mem[Reg[x] + ¢ + d*Reg[y]]

— Use: array accesses (base+index) — Use: array accesses (base+index)

Argh! s the complexity worth the cost?
Need a cost/benefit analysis!

Comp 411 L4 — Addressing Modes 13

Memory Operands: Usage

Memory indirect

Scaled

Register indirect

Immediate

Displacement

Usage of different memory operand modes

Comp 411

TeX
spice
gcc

TeX
spice
gce

TeX
spice
gce

TeX
spice
gcc

TeX
spice
gcce

1%

h 6%
1%

0%

16%
6%
3%
_ 11%

24%

43%

17%
39%

From Hennessy & Patterson

32%
55%
40%
0% 10% 20% 30% 40% 60%

Frequency of the addressing mode

© 2003 Elsevier Science (USA). All riahts reserved.

L4 — Addressing Modes 14

Absolute (Direct) Addressing

e What we want:

— The contents of a specific memory location

* Examples:

“c”
int x = 10;
main () {
X =x+1;
}
e Caveats

“MIPS Assembly”
.data

.global x

x: .word 10

. text

.global main

main:
lw $2,x($0)
addi $2,$2,1
sSwW $2,x($0)

— In practice $gp is used instead of $0
— Can only address the first and last 32K of memory this way
— Sometimes generates a two instruction sequence:

Comp 411

L4 — Addressing Modes 15

Absolute (Direct) Addressing

e What we want:
— The contents of a specific memory location

* Examples:

“MIPS Assembly”
“c” .data
int x = 10; .global x
x: .word 10
main() {
X =x + 1; .text
} .global main
main:
lw $2,x($0)
addi $2,$2,1
sw $2,x($0)
e Caveats

— In practice $gp is used instead of $0
— Can only address the first and last 32K of memory this way

— Sometimes generates a two instruction sequence:
lui $1,xhighbits
1w $2,xlowbits ($1)

Comp 411 L4 — Addressing Modes 16

Absolute (Direct) Addressing

e What we want:
— The contents of a specific memory location

* Examples:
“MIPS Asaembly” Allocates space

for a single integer
“C” data (4-bytes) and
int x = 10; .global x 'y 7 initializes its value
x: .word 10 to 10
main () {
XxX=x+ 1; .text
} .global main
main:
lw $2,x($0)
addi $2,$2,1
sw $2,x($0)
e Caveats

— In practice $gp is used instead of $0
— Can only address the first and last 32K of memory this way

— Sometimes generates a two instruction sequence:
lui $1,xhighbits
1w $2,xlowbits ($1)

Comp 411 L4 — Addressing Modes 17

Indirect Addressing

e What we want:

— The contents of a memory
location held in a register

e Examples: ':;';':f Assembly
.global x
“c” X: .word 10
int x = 10;
. text
main() { .global main
int *y = &x; main:
*y = 2; la $2,x
} addi $3,$0,2
SwW $3,0($2)
e Caveats

— You must make sure that the register contains a valid address
(double, word, or short aligned as required)

Comp 411 L4 — Addressing Modes 18

Indirect

e What we want:

— The contents of a memory
location held in a register

* Examples:

“c”

int x

10;

main() {
int *y = &x;

e (Caveats

Addressing

“la” is not a real instruction,
It’s a convenient
pseudoinstruction that
constructs a constant via
either a 1 instruction or

2 instruction sequence

“MIPS Assembly”
.data ori $2,$0,x
.global x
x: .word 10 lui $2,xhighbits
ori $2,$2,xlowbits
. text
.global main
main: __‘
la $2,x
addi $3,80,2
sw $3,0($2)

— You must make sure that the register contains a valid address
(double, word, or short aligned as required)

Comp 411

L4 — Addressing Modes 19

Displacement Addressing

e What we want:
— The contents of a memory location relative to a register

* Examples:

“MIPS Assembly”
“c” .data
int a[5]; .global a
a: .space 20
main() {
int i = 3; .text
a[i] = 2; .global main
} main:
addi $2,$0,3
addi $3,$0,2
sll $1,%$2,2
sSW $3,a($1)
e Caveats

— Must multiply (shift) the “index” to be properly aligned

Comp 411

L4 — Addressing Modes 20

Displacement Addressing

e What we want:
— The contents of a memory location relative to a register

* Examples:

“MIPS Asaembly” Allocates space
- for a 5 uninitialized
c” -data integers (20-bytes)
int a[5]; .global a iy
a: .space 20
main() {
int i = 3; .text
a[i] = 2; .global main
} main:

addi $2,$0,3
addi $3,%0,2
sll $1,%$2,2
sSwW $3,a($1)

* Caveats
— Must multiply (shift) the “index” to be properly aligned

Comp 411 L4 — Addressing Modes 21

Displacement Addressing: Once More

e What we want:
— The contents of a memory location relative to a register

* Examples:

“MIPS Assembly”
“c” .data
struct p { .global p
int x, y; } p: .space 8
main () { .text
p.x = 3; .global main
p.y = 2; main:
} la $1,p
addi $2,$0,3
SW $2,0($1)
addi $2,5%0,2
sw $2,4(%1)
e Caveats

— Constants offset to the various fields of the structure
— Structures larger than 32K use a different approach

Comp 411

L4 — Addressing Modes 22

Displacement Addressing: Once More

e What we want:

— The contents of a memory location relative to a register

* Examples:
“c”

struct p {
int x,

main () {
P.-x
P.Y

N

e (Caveats

Yy

w

“MIPS Ass embly” Allocates space

for 2 uninitialized
-data integers (8-bytes)
.global p iy

p: .space 8
. text ! ;

.global main
main:
la $1,p
addi $2,$0,3
sw $2,0(S$1)
addi $2,$0,2
sw $2,4($1)

— Constants offset to the various fields of the structure
— Structures larger than 32K use a different approach

Comp 411

L4 — Addressing Modes 23

Comp 411

C code:

if (expr) {
STUFF
}

C code:

if (expr) {
STUFF1

} else {
STUFF2

}

Conditionals

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lendif
(compile STUFF)

Lendif:

MIPS assembly:

(compute exprin $rx)
beq $rx, $0, Lelse
(compile STUFFT)

beq $0, $0, Lendif

Lelse:

(compile STUFF2)
Lendif:

There are little tricks
that come into play
when compiling
conditional code blocks.
For instance, the
statement:

if (y > 32) {

Xx=x+ 1;
}
compiles to:
1w $24, y
ori $15, $0, 32
slt $1, $15, $24
beq $1, $0, Lendif
1w $24, x
addi $24, $24, 1
sSwW $24, x

Lendif:
L4 — Addressing Modes 24

Loops

C code: MIPS assembly: Alternate MIPS
: Lwhile: assem bly:
while (expr) ({
STUFF (compute expr in $rx) lfeq $0,$0,Ltest
} beq $rX,$0,Lendw Lwhile:

(compile STUFF)

(compile STUFF) Ltest-

beq $0,$0,Lwhile

Lendw: (compute expr in $rx)

bne $rX,$0,Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- moving all possible computations outside of loops
- unrolling loops to reduce branching overhead
- simplifying expressions that depend on “loop variables”

Comp 411 L4 — Addressing Modes 25

For Loops

* Most high-level languages provide loop constructs that
establish and update an iteration variable, which is used
to control the loop’s behavior

MIPS assembly:
C code: cum: Y
int sum = 0; .word 0xO0
data:
int data[l0] = .word Ox1l, O0x2, O0x3, O0x4, 0x5
{(1,2,3,4,5,6,7,8,9,10}; .word 0x6, O0x7, 0x8, 0x9, Oxa

add $30,50,$0

int i: Lfor:
lw $24,sum($0)
for (i=0; i<10; i++) { sll $15,$30,2
sum += data[i] lw $15,data($15)
} addu $24,$24,$15

sw $24,sum

add $30,$30,1
slt $24,$30,10
bne $24,$0,Lfor

Lendfor:
Comp 411 L4 — Addressing Modes 26

Next Time

e We'll write some real assembly code
e Play with a simulator

oA
_vex¥

Comp 411 L4 — Addressing Modes 27

