
L07 – Assemblers and Compilers 1Comp 411

Assemblers and Compilers

When I find my code in tons of trouble,
Friends and colleagues come to me,

Speaking words of wisdom:
"Write in C."

Long, long, time ago, I can still remember
How mnemonics used to make me smile...
And I knew that with just the opcode names
that I could play those assembly games
and maybe hack some programs for a while.
But Comp 411 made me shiver,
With every new lecture that was delivered,
There was bad news at the door step,
I couldn’t handle another problem set.
My whole life thus far must have flashed,
the day the MARS simulator crossed my path,
All I know is that it made my hard disk crash,
On the day the hardware died.
And I was singing…

Study sections 2.10,12,13

L07 – Assemblers and Compilers 2Comp 411

Path from Programs to Bits

∙ Traditional Compilation

C or C++ program

Compiler

Assembly Code

Assembler

“Object Code”

Linker

“Executable”

Loader

“Memory”

“Library Routines”
High-level, portable
(architecture
independent) program
description

Architecture dependent
mnemonic program
description with symbolic
memory references

Machine language
with symbolic memory
references

A collection of precompiled
object code modules

Machine language
with all memory references
resolved

Program and data bits
loaded into memory

L07 – Assemblers and Compilers 3Comp 411

How an Assembler Works

Three major components of assembly

1) Allocating and initialing data storage

2) Conversion of mnemonics to binary instructions

3) Resolving addresses
.data

array: .space 40

total: .word 0

.text

.globl main

main: la $t1,array

move $t2,$0

move $t3,$0

beq $0,$0,test

loop: sll $t0,$t3,2

add $t0,$t1,$t0

sw $t3,($t0)

add $t2,$t2,$t3

addi $t3,$t3,1

test: slti $t0,$t3,10

bne $t0,$0,loop

sw $t2,total

j $ra

L07 – Assemblers and Compilers 4Comp 411

How an Assembler Works

Three major components of assembly

1) Allocating and initialing data storage

2) Conversion of mnemonics to binary instructions

3) Resolving addresses
.data

array: .space 40

total: .word 0

.text

.globl main

main: la $t1,array

move $t2,$0

move $t3,$0

beq $0,$0,test

loop: sll $t0,$t3,2

add $t0,$t1,$t0

sw $t3,($t0)

add $t2,$t2,$t3

addi $t3,$t3,1

test: slti $t0,$t3,10

bne $t0,$0,loop

sw $t2,total

j $ra

L07 – Assemblers and Compilers 5Comp 411

How an Assembler Works

Three major components of assembly

1) Allocating and initialing data storage

2) Conversion of mnemonics to binary instructions

3) Resolving addresses
.data

array: .space 40

total: .word 0

.text

.globl main

main: la $t1,array

move $t2,$0

move $t3,$0

beq $0,$0,test

loop: sll $t0,$t3,2

add $t0,$t1,$t0

sw $t3,($t0)

add $t2,$t2,$t3

addi $t3,$t3,1

test: slti $t0,$t3,10

bne $t0,$0,loop

sw $t2,total

j $ra

lui $9, arrayhi

ori $9,$9,arraylo

L07 – Assemblers and Compilers 6Comp 411

How an Assembler Works

Three major components of assembly

1) Allocating and initialing data storage

2) Conversion of mnemonics to binary instructions

3) Resolving addresses
.data

array: .space 40

total: .word 0

.text

.globl main

main: la $t1,array

move $t2,$0

move $t3,$0

beq $0,$0,test

loop: sll $t0,$t3,2

add $t0,$t1,$t0

sw $t3,($t0)

add $t2,$t2,$t3

addi $t3,$t3,1

test: slti $t0,$t3,10

bne $t0,$0,loop

sw $t2,total

j $ra

lui $9, arrayhi

ori $9,$9,arraylo

0x3c09????

0x3529????

L07 – Assemblers and Compilers 7Comp 411

How an Assembler Works

Three major components of assembly

1) Allocating and initialing data storage

2) Conversion of mnemonics to binary instructions

3) Resolving addresses
.data

array: .space 40

total: .word 0

.text

.globl main

main: la $t1,array

move $t2,$0

move $t3,$0

beq $0,$0,test

loop: sll $t0,$t3,2

add $t0,$t1,$t0

sw $t3,($t0)

add $t2,$t2,$t3

addi $t3,$t3,1

test: slti $t0,$t3,10

bne $t0,$0,loop

sw $t2,total

j $ra

lui $9, arrayhi

ori $9,$9,arraylo

0x3c09????

0x3529????

L07 – Assemblers and Compilers 8Comp 411

Resolving Addresses- 1st Pass

∙ “Old-style” 2-pass assembler approach

Segment

offset

Code Instruction

0

4

0x3c090000

0x35290000

la $t1,array

8

12

0x00005021

0x00005821

move $t2,$

move $t3,$0

16 0x10000000 beq $0,$0,test

20 0x000b4080 loop:

sll $t0,$t3,2

24

28

32

36

0x01284020

0xad0b0000

0x014b5020

0x216b0001

add $t0,$t1,$t0

sw $t0,($t0)

add $t0,$t1,$t0

addi $t3,$t3,1

40 0x2968000a test:

slti $t0,$t3,10

44 0x15000000 bne $t0,$0,loop

48

52

0x3c010000

0xac2a0000

sw $t2,total

56 0x03e00008 j $ra

Symbol Segment

Location

pointer

offset

array data 0

total data 40

main text 0

loop text 20

test text 40

Pass 1

Symbol table after Pass 1

- In the first pass, data and
instructions are encoded
and assigned offsets within
their segment, while the
symbol table is
constructed.
- Unresolved address
references are set to 0

L07 – Assemblers and Compilers 9Comp 411

Resolving Addresses – 2nd Pass

∙ “Old-style” 2-pass assembler approach

Pass 2

Symbol Segment

Location

pointer

offset

array data 0

total data 40

main text 0

loop text 20

test text 40

Symbol table after Pass 1

– In the second pass, the
appropriate fields of those
instructions that reference
memory are filled in with the
correct values if possible.

Segment

offset

Code Instruction

0

4

0x3c091001

0x35290000

la $t1,array

8

12

0x00005021

0x00005821

move $t2,$

move $t3,$0

16 0x10000005 beq $0,$0,test

20 0x000b4080 loop:

sll $t0,$t3,2

24

28

32

36

0x01284020

0xad0b0000

0x014b5020

0x216b0001

add $t0,$t1,$t0

sw $t0,($t0)

add $t0,$t1,$t0

addi $t3,$t3,1

40 0x2968000a test:

slti $t0,$t3,10

44 0x1500fff9 bne $t0,$0,loop

48

52

0x3c011001

0xac2a0028

sw $t2,total

56 0x03e00008 j $ra

L07 – Assemblers and Compilers 10Comp 411

Modern Way – 1-Pass Assemblers

Modern assemblers keep more information in their
symbol table which allows them to resolve addresses in a
single pass.

• Known addresses (backward references) are immediately
resolved.

• Unknown addresses (forward references) are “back-filled”
once they are resolved.

SYMBOL SEGMENT Location

pointer

offset

Resolved

?

Reference

list

array data 0 y null

total data 40 y null

main text 0 y null

loop text 16 y null

test text ? n 16

L07 – Assemblers and Compilers 11Comp 411

The Role of a Linker

Some aspects of address resolution cannot be handled by
the assembler alone.

1) References to data or routines in other object modules
2)The layout of all segments in memory
3) Support for REUSABLE code modules
4) Support for RELOCATABLE code modules

This final step of resolution is the job of a LINKER

Linker
Executable

File

Libraries

Source
file

Assembler
Object

file

Source
file

Assembler
Object

file

Source
file

Assembler
Object

file

L07 – Assemblers and Compilers 12Comp 411

Static and Dynamic Libraries

• LIBRARIES are commonly used routines stored as a
concatenation of “Object files”. A global symbol table is
maintained for the entire library with entry points for
each routine.

• When routines in LIBRARIES are referenced by assembly
modules, the routine’s entry points are resolved by the
LINKER, and the appropriate code is added to the
executable. This sort of linking is called STATIC linking.

• Many programs use common libraries. It is wasteful of
both memory and disk space to include the same code in
multiple executables. The modern alternative to STATIC
linking is to allow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines.
This form of lining is called DYNAMIC linking (e.x. .dll).

L07 – Assemblers and Compilers 13Comp 411

Dynamically Linked Libraries

∙ C call to library function:
printf(“sqr[%d] = %d\n”, x, y);

∙ Assembly code

∙ Maps to:

addi $a0,$0,1

la $a1,ctrlstring

lw $a2,x

lw $a3,y

call fprintf

addi $a0,$0,1

lui $a1,ctrlstringHi

ori $a1,ctrlstringLo

lui $at,xhi

lw $a2,xlo($at)

lw $a3,ylo($at)

lui $at,fprintfHi

ori $at,fprintfLo

jalr $at

How does
dynamic linking
work?

L07 – Assemblers and Compilers 14Comp 411

Why are we loading the
function’s address into
a register first, and then
calling it?

Dynamically Linked Libraries

∙ C call to library function:
printf(“sqr[%d] = %d\n”, x, y);

∙ Assembly code

∙ Maps to:

addi $a0,$0,1

la $a1,ctrlstring

lw $a2,x

lw $a3,y

call fprintf

addi $a0,$0,1

lui $a1,ctrlstringHi

ori $a1,ctrlstringLo

lui $at,xhi

lw $a2,xlo($at)

lw $a3,ylo($at)

lui $at,fprintfHi

ori $at,fprintfLo

jalr $at

How does
dynamic linking
work?

L07 – Assemblers and Compilers 15Comp 411

Modern Languages

∙ Intermediate “object code language”

Java program

Compiler

JVM bytecodes

Interpreter

“Library Routines”

High-level, portable
(architecture
independent) program
description

PORTABLE mnemonic
program description with
symbolic memory
references

An application that
EMULATES a virtual
machine. Can be written
for any Instruction Set
Architecture. In the end,
machine language
instructions must be
executed for each JVM
bytecode

L07 – Assemblers and Compilers 16Comp 411

Modern Languages

∙ Intermediate “object code language”

Java program

Compiler

JVM bytecodes

JIT Compiler

“Library Routines”

High-level, portable
(architecture
independent) program
description

PORTABLE mnemonic
program description with
symbolic memory
references

While interpreting on the
first pass it keeps a copy
of the machine language
instructions used.
Future references access
machine language code,
avoiding further
interpretation

“Memory”

Today’s JITs are nearly as
fast as a native compiled
code (ex. .NET).

L07 – Assemblers and Compilers 17Comp 411

Compiler Optimizations

∙ Example “C” Code:

int a[10];

int total;

int main() {

int i;

total = 0;

for (i = 0; i < 10; i++) {

a[i] = i;

total = total + i;

}

}

L07 – Assemblers and Compilers 18Comp 411

Unoptimized Assembly Output

∙ With debug flags set:

.globl main

.text

main:

addu $sp,$sp,-8 # allocates space for ra and i

sw $0,total # total = 0

sw $0,0($sp) # i = 0

lw $8,0($sp) # copy i to $t0

b L.3 # goto test

L.2: # for(...) {

sll $24,$8,2 # make i a word offset

sw $8,array($24) # array[i] = i

lw $24,total # total = total + i

addu $24,$24,$8

sw $24,total

addi $8,$8,1 # i = i + 1

L.3:

sw $8,0($sp) # update i in memory

la $24,10 # loads const 10

blt $8,$24,L.2 #} loops while i < 10

addu $sp,$sp,8

j $31

L07 – Assemblers and Compilers 19Comp 411

Register Allocation

∙ Assign local variables to registers

.globl main

.text

main:

addu $sp,$sp,-4 #allocates space for ra

sw $0,total #total = 0

move $8,$0 #i = 0

b L.3 #goto test

L.2: #for(...) {

sll $24,$8,2 # make i a word offset

sw $8,array($24) # array[i] = i

lw $24,total # total = total + i

addu $24,$24,$8

sw $24,total

addi $8,$8,1 # i = i + 1

L.3:

la $24,10 # loads const 10

blt $8,$24,L.2 #} loops while i < 10

addu $sp,$sp,4

j $31

L07 – Assemblers and Compilers 20Comp 411

Loop-Invariant Code Motion

∙ Assign globals to temp registers and moves
assignments outside of loop

.globl main

.text

main:

addu $sp,$sp,-4 #allocates space for ra

sw $0,total #total = 0

move $9,$0 #temp for total

move $8,$0 #i = 0

b L.3 #goto test

L.2: #for(...) {

sll $24,$8,2 # make i a word offset

sw $8,array($24) # array[i] = i

addu $9,$9,$8

sw $9,total

addi $8,$8,1 # i = i + 1

L.3:

la $24,10 # loads const 10

blt $8,$24,L.2 #} loops while i < 10

addu $sp,$sp,4

j $31

L07 – Assemblers and Compilers 21Comp 411

Remove Unnecessary Tests

∙ Since “i” is initially set to “0”, we already know it is less
than “10”, so why test it the first time through?

.globl main

.text

main:

addu $sp,$sp,-4 #allocates space for ra

sw $0,total #total = 0

move $9,$0 #temp for total

move $8,$0 #i = 0

L.2: #for(...) {

sll $24,$8,2 # make i a word offset

sw $8,array($24) # array[i] = i

addu $9,$9,$8

addi $8,$8,1 # i = i + 1

slti $24,$8,10 # loads const 10

bne $24,$0,L.2 #} loops while i < 10

sw $9,total

addu $sp,$sp,4

j $31

L07 – Assemblers and Compilers 22Comp 411

Remove Unnecessary Stores

∙ All we care about it the value of total after the loop, and
simplify loop

.globl main

.text

main:

addu $sp,$sp,-4 #allocates space for ra and i

sw $0,total #total = 0

move $9,$0 #temp for total

move $8,$0 #i = 0

L.2:

sll $24,$8,2 #for(...) {

sw $8,array($24) # array[i] = i

addu $9,$9,$8

addi $8,$8,1 # i = i + 1

slti $24,$8,10 # loads const 10

bne $24,$0,L.2 #} loops while i < 10

sw $9,total

addu $sp,$sp,4

j $31

L07 – Assemblers and Compilers 23Comp 411

Unrolling Loop

∙ Two copies of the inner loop reduce the branching
overhead

.globl main

.text

main:

addu $sp,$sp,-4 #allocates space for ra and i

sw $0,total #total = 0

move $9,$0 #temp for total

move $8,$0 #i = 0

L.2:

sll $24,$8,2 #for(...) {

sw $8,array($24) # array[i] = i

addu $9,$9,$8

addi $8,$8,1 # i = i + 1

sll $24,$8,2 #

sw $8,array($24) # array[i] = i

addu $9,$9,$8

addi $8,$8,1 # i = i + 1

slti $24,$8,10 # loads const 10

bne $24,$0,L.2 #} loops while i < 10

sw $9,total

addu $sp,$sp,4

j $31

