
L08 – Transistors and Logic 1Comp 411

Transistors and Logic

A

B

1) The digital contract
2) Encoding bits with voltages
3) Processing bits with transistors
4) Gates
5) Truth-table SOP Realizations
6) Multiplexer Logic

L08 – Transistors and Logic 2Comp 411

Where Are We?

Things we know so far -
1) Computers process information
2) Information is measured in bits
3) Data can be represented as groups of bits
4) Computer instructions are encoded as bits
5) Computer instructions are just data

6) We, humans, don‟t want to deal with bits…
So we invent ASSEMBLY Language
even that is too low-level so we invent
COMPILERs, and they are too rigid so …

But, what PROCESSES all these bits?

L08 – Transistors and Logic 3Comp 411

A Substrate for Computation

We can build devices for processing and representing bits
using almost any physical phenomenon

neutrino flux
trained elephants
engraved stone tablets
orbits of planets
sequences of amino acids
polarization of a photon

Wait! Those last ones
might have potential...

1 0 1 0 0

1 1 0 1 0
0 1

L08 – Transistors and Logic 4Comp 411

Using Electromagnetic Phenomena

Things like:
voltages phase
currents frequency

For today let‟s discuss using voltages to encode information.
Voltage pros:

easy generation, detection
voltage changes can be very fast
lots of engineering knowledge

Voltage cons:
easily affected by environment
need wires everywhere

L08 – Transistors and Logic 5Comp 411

Representing Information with Voltage

Representation of each point (x, y) on a B&W Picture:

0 volts: BLACK
1 volt: WHITE
0.37 volts: 37% Gray
etc.

Representation of a picture:
Scan points in some prescribed
raster order… generate voltage
waveform

L08 – Transistors and Logic 6Comp 411

Representing Information with Voltage

Representation of each point (x, y) on a B&W Picture:

0 volts: BLACK
1 volt: WHITE
0.37 volts: 37% Gray
etc.

Representation of a picture:
Scan points in some prescribed
raster order… generate voltage
waveform

L08 – Transistors and Logic 7Comp 411

Representing Information with Voltage

Representation of each point (x, y) on a B&W Picture:

0 volts: BLACK
1 volt: WHITE
0.37 volts: 37% Gray
etc.

Representation of a picture:
Scan points in some prescribed
raster order… generate voltage
waveform

How much information
at each point?

L08 – Transistors and Logic 8Comp 411

Information Processing = Computation

First, let‟s introduce some processing blocks:
(say, using a fancy photocopier/scanner/printer)

vCopyv

INVv 1-v

L08 – Transistors and Logic 9Comp 411

Let‟s build a system!

?

Copy INV

Copy INV

Copy INV

Copy INV

output

input

L08 – Transistors and Logic 10Comp 411

Let‟s build a system!

?

Copy INV

Copy INV

Copy INV

Copy INV

output

(In Theory)
input

L08 – Transistors and Logic 11Comp 411

Let‟s build a system!

?

Copy INV

Copy INV

Copy INV

Copy INV

output

(In Theory)(Reality)

input

L08 – Transistors and Logic 12Comp 411

Why Did Our System Fail?

Why doesn‟t reality match theory?
1. COPY Operator doesn‟t work right

2. INVERSION Operator doesn‟t work right

3. Theory is imperfect

4. Reality is imperfect

5. Our system architecture stinks

ANSWER: all of the above!
Noise and inaccuracy are inevitable; we can‟t reliably
reproduce infinite information-- we must design our
system to tolerate some amount of error if it is to
process information reliably.

L08 – Transistors and Logic 13Comp 411

The Key to System Design

A SYSTEM is a structure that is guaranteed to exhibit a
specified behavior, assuming all of its components obey
their specified behaviors.

How is this achieved?

L08 – Transistors and Logic 14Comp 411

The Key to System Design

A SYSTEM is a structure that is guaranteed to exhibit a
specified behavior, assuming all of its components obey
their specified behaviors.

How is this achieved? Contracts

Every system component will have clear obligations and
responsibilities. If these are maintained we have every
right to expect the system to behave as planned. If
contracts are violated all bets are off.

L08 – Transistors and Logic 15Comp 411

The Digital Panacea ...

Why DIGITAL?

… because it keeps the contracts SIMPLE!

The price we pay for this robustness?

All the information that we transfer
between components is only 1 crummy bit!

But, in exchange, we get a guarantee
of a reliable system.

0 or 1

L08 – Transistors and Logic 16Comp 411

The Digital Panacea ...

Why DIGITAL?

… because it keeps the contracts SIMPLE!

The price we pay for this robustness?

All the information that we transfer
between components is only 1 crummy bit!

But, in exchange, we get a guarantee
of a reliable system.

0 or 1

L08 – Transistors and Logic 17Comp 411

The Digital Abstraction

Real World

“Ideal”
Abstract World

Volts or
Electrons or
Ergs or Gallons

Bits

0/1

Keep in mind, the world is not digital, we engineer it to behave that way.
We must use real physical phenomena to implement digital designs!

Noise

Manufacturing
Variations

L08 – Transistors and Logic 18Comp 411

A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each
output for every possible combination of valid input
values  output depends only on the latest inputs

– a timing specification consisting (at minimum) of an
upper bound tpd on the time the device will take to
produce the output value from stable valid input values

L08 – Transistors and Logic 19Comp 411

A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each
output for every possible combination of valid input
values  output depends only on the latest inputs

– a timing specification consisting (at minimum) of an
upper bound tpd on the time the device will take to
produce the output value from stable valid input values

input A

input B

input C

L08 – Transistors and Logic 20Comp 411

A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each
output for every possible combination of valid input
values  output depends only on the latest inputs

– a timing specification consisting (at minimum) of an
upper bound tpd on the time the device will take to
produce the output value from stable valid input values

input A

input B

input C

output Y

L08 – Transistors and Logic 21Comp 411

A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each
output for every possible combination of valid input
values  output depends only on the latest inputs

– a timing specification consisting (at minimum) of an
upper bound tpd on the time the device will take to
produce the output value from stable valid input values

Output a “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

input A

input B

input C

output Y

L08 – Transistors and Logic 22Comp 411

A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each
output for every possible combination of valid input
values  output depends only on the latest inputs

– a timing specification consisting (at minimum) of an
upper bound tpd on the time the device will take to
produce the output value from stable valid input values

Output a “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

input A

input B

input C

output Y

L08 – Transistors and Logic 23Comp 411

A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each
output for every possible combination of valid input
values  output depends only on the latest inputs

– a timing specification consisting (at minimum) of an
upper bound tpd on the time the device will take to
produce the output value from stable valid input values

Static
Discipline

Output a “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

input A

input B

input C

output Y

L08 – Transistors and Logic 24Comp 411

A Combinational Digital System

• A system of interconnected elements is
combinational if
– each circuit element is combinational

– every input is connected to exactly one output
or directly to a source of 0‟s or 1‟s

– the circuit contains no directed cycles

• But, in order to realize digital processing
elements we have one more requirement!

L08 – Transistors and Logic 25Comp 411

A Combinational Digital System

• A system of interconnected elements is
combinational if
– each circuit element is combinational

– every input is connected to exactly one output
or directly to a source of 0‟s or 1‟s

– the circuit contains no directed cycles

• But, in order to realize digital processing
elements we have one more requirement!

No feedback (yet!)

L08 – Transistors and Logic 26Comp 411

Noise Margins

 Key idea:
Don‟t allow “0” to be mistaken for a “1” or vice versa

 Use the same “uniform representation convention”, for
every component in our digital system

 To implement devices with high reliability, we outlaw
“close calls” via a representation convention which
forbids a range of voltages between “0” and “1”.

L08 – Transistors and Logic 27Comp 411

Noise Margins

 Key idea:
Don‟t allow “0” to be mistaken for a “1” or vice versa

 Use the same “uniform representation convention”, for
every component in our digital system

 To implement devices with high reliability, we outlaw
“close calls” via a representation convention which
forbids a range of voltages between “0” and “1”.

volts
Forbidden Zone

Valid
“0”

Valid
“1”

Invalid

Min Voltage Max Voltage

L08 – Transistors and Logic 28Comp 411

Noise Margins

 Key idea:
Don‟t allow “0” to be mistaken for a “1” or vice versa

 Use the same “uniform representation convention”, for
every component in our digital system

 To implement devices with high reliability, we outlaw
“close calls” via a representation convention which
forbids a range of voltages between “0” and “1”.

volts
Forbidden Zone

Valid
“0”

Valid
“1”

Invalid

CONSEQUENCE:

Notion of “VALID” and “INVALID” logic levels

Min Voltage Max Voltage

L08 – Transistors and Logic 29Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

I will only output
a „1‟ if all my
inputs are „1‟

A

B
Y OR

I will output a
„1‟ if any of my
inputs are „1‟

A

B
Y

A Y

A

B
YXOR

I will only output a
„1‟ if an odd number
of my inputs are „1‟

buffer inverter

I will output the
complement of

my input

I will copy and
restore my input

to my output

L08 – Transistors and Logic 30Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

I will only output
a „1‟ if all my
inputs are „1‟

A

B
Y OR

I will output a
„1‟ if any of my
inputs are „1‟

A

B
Y

A Y

A

B
YXOR

I will only output a
„1‟ if an odd number
of my inputs are „1‟

buffer inverter

I will output the
complement of

my input

L08 – Transistors and Logic 31Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

I will only output
a „1‟ if all my
inputs are „1‟

A

B
Y OR

I will output a
„1‟ if any of my
inputs are „1‟

A

B
Y

A Y

A

B
YXOR

I will only output a
„1‟ if an odd number
of my inputs are „1‟

buffer inverter

L08 – Transistors and Logic 32Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

A

B
Y OR

I will output a
„1‟ if any of my
inputs are „1‟

A

B
Y

A Y

A

B
YXOR

I will only output a
„1‟ if an odd number
of my inputs are „1‟

buffer inverter

L08 – Transistors and Logic 33Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

A

B
Y OR

A

B
Y

A Y

A

B
YXOR

I will only output a
„1‟ if an odd number
of my inputs are „1‟

buffer inverter

L08 – Transistors and Logic 34Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

A

B
Y OR

A

B
Y

A Y

A

B
YXOR

buffer inverter

L08 – Transistors and Logic 35Comp 411

AND

Digital Processing Elements

Some digital processing elements occur so frequently
that we give them special names and symbols

A Y

A

B
Y OR

A

B
Y

A Y

A

B
YXOR

buffer inverter

In honor of the richest
man in the world we will
henceforth refer to
digital processing
elements as “GATES”

L08 – Transistors and Logic 36Comp 411

From What Do We Make Digital Devices?

• Recall our common thread
from Lecture 2…

• A controllable switch is a
common link of all computing
technologies

• How do you control voltages
with a switch?

• By creating and opening
paths between higher and
lower potentials

Load

L08 – Transistors and Logic 37Comp 411

From What Do We Make Digital Devices?

• Recall our common thread
from Lecture 2…

• A controllable switch is a
common link of all computing
technologies

• How do you control voltages
with a switch?

• By creating and opening
paths between higher and
lower potentials

Load

This symbol
indicates a
“low” or ground
potential

L08 – Transistors and Logic 38Comp 411

From What Do We Make Digital Devices?

• Recall our common thread
from Lecture 2…

• A controllable switch is a
common link of all computing
technologies

• How do you control voltages
with a switch?

• By creating and opening
paths between higher and
lower potentials

Load

This symbol
indicates a
“low” or ground
potential

This symbol
indicates a “high”
potential, or the
voltage of the
power supply

L08 – Transistors and Logic 39Comp 411

N-Channel Field-Effect Transistors (NFETs)

D

G

S

D

G

S
+

+

- -
VGS

VDS 0

Operating regions:

cut-off:
VGS < VTH

linear:
VGS VTH
VDS < VDsat

saturation:
VGS VTH
VDS VDsat

S D

VGS - VTH

0.8V

S D

S D“ “

IDS

VDS

VGS

linear saturation

When the gate
voltage is high, the
switch “closes”
(connects).
Good at pulling
things “low”.

L08 – Transistors and Logic 40Comp 411

P-Channel Field-Effect Transistors (PFETs)

S

G

D

S

G

D

+
--

+

VGS

VDS  0

Operating regions:

cut-off:
VGS > VTH

linear:
VGS  VTH
VDS > VDsat

saturation:
VGS  VTH
VDS  VDsat

S D

VGS - VTH

–0.8V

S D

S D“ “

-IDS

-VDS

-VGS

linearsaturation

When the gate
voltage is low, the
switch “closes”
(connects).
Good at pulling
things “high”.

L08 – Transistors and Logic 41Comp 411

Finally… Using Transistors to
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

L08 – Transistors and Logic 42Comp 411

Finally… Using Transistors to
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

pulldown: make this connection
when VIN is near VDD so that VOUT = 0

L08 – Transistors and Logic 43Comp 411

Finally… Using Transistors to
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

pulldown: make this connection
when VIN is near VDD so that VOUT = 0

We‟ll use
PFETs here

L08 – Transistors and Logic 44Comp 411

Finally… Using Transistors to
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

pulldown: make this connection
when VIN is near VDD so that VOUT = 0

We‟ll use
PFETs here

and, NFETs
here

L08 – Transistors and Logic 45Comp 411

CMOS Inverter

Vin Vout

Vin

Vout

L08 – Transistors and Logic 46Comp 411

CMOS Inverter

Vin Vout

Vin

Vout

“1” “0”

“0” “1”

L08 – Transistors and Logic 47Comp 411

CMOS Inverter

Vin Vout

Vin

Vout

“1” “0”

“0” “1”

L08 – Transistors and Logic 48Comp 411

CMOS Inverter

Vin Vout

Vin

Vout

only a narrow range
of input voltages
result in “invalid”
output values.
(this diagram is
greatly
exaggerated)

Valid “1”

Valid “0”

Invalid

“1” “0”

“0” “1”

L08 – Transistors and Logic 49Comp 411

CMOS Inverter

Vin Vout

Vin

Vout

A Y
inverter

only a narrow range
of input voltages
result in “invalid”
output values.
(this diagram is
greatly
exaggerated)

Valid “1”

Valid “0”

Invalid

“1” “0”

“0” “1”

L08 – Transistors and Logic 50Comp 411

CMOS Complements
What a nice
VOH you have...

Thanks. It runs
in the family...

conducts when A is high conducts when A is low

A A

L08 – Transistors and Logic 51Comp 411

CMOS Complements
What a nice
VOH you have...

Thanks. It runs
in the family...

conducts when A is high conducts when A is low

conducts when A is high
and B is high: A.B

A

B
A B

conducts when A is low
or B is low: A+B = A.B

A A

Series N connections:

Parallel P connections:

L08 – Transistors and Logic 52Comp 411

CMOS Complements
What a nice
VOH you have...

Thanks. It runs
in the family...

conducts when A is high conducts when A is low

conducts when A is high
and B is high: A.B

A

B
A B

conducts when A is low
or B is low: A+B = A.B

conducts when A is high
or B is high: A+B

A

B
A B

conducts when A is low
and B is low: A.B = A+B

A A

Series N connections:

Parallel N connections:

Parallel P connections:

Series P connections:

L08 – Transistors and Logic 53Comp 411

A Two Input Logic Gate

What function does
this gate compute?

A B C

0 0
0 1
1 0
1 1

A

B

C

L08 – Transistors and Logic 54Comp 411

Here‟s Another…

What function does
this gate compute?

A B C

0 0
0 1
1 0
1 1

A

B

C

L08 – Transistors and Logic 55Comp 411

CMOS Gates Like to Invert

OBSERVATION: CMOS gates tend to be
inverting!

Precisely, one or more “0” inputs are
necessary to generate a “1” output, and
one or more “1” inputs are necessary to
generate a “0” output. Why?

A

B

C

L08 – Transistors and Logic 56Comp 411

General CMOS Gate Recipe

Step 1. Figure out pulldown network that
does what you want (i.e the set of
conditions where the output is „0‟)

e.g., F = A*(B+C)

A

B C

L08 – Transistors and Logic 57Comp 411

General CMOS Gate Recipe

Step 1. Figure out pulldown network that
does what you want (i.e the set of
conditions where the output is „0‟)

e.g., F = A*(B+C)

A

B C

Step 2. Walk the hierarchy replacing nfets
with pfets, series subnets with parallel
subnets, and parallel subnets with series
subnets

A
B

C

L08 – Transistors and Logic 58Comp 411

General CMOS Gate Recipe

Step 1. Figure out pulldown network that
does what you want (i.e the set of
conditions where the output is „0‟)

e.g., F = A*(B+C)

A

B C

Step 2. Walk the hierarchy replacing nfets
with pfets, series subnets with parallel
subnets, and parallel subnets with series
subnets

A
B

C

Step 3. Combine pfet pullup network
from Step 2 with nfet pulldown
network from Step 1 to form fully-
complementary CMOS gate.

But isn‟t it
hard to wire
it all up?

A
B

C

A

B C

L08 – Transistors and Logic 59Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

L08 – Transistors and Logic 60Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

L08 – Transistors and Logic 61Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A

L08 – Transistors and Logic 62Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

L08 – Transistors and Logic 63Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

L08 – Transistors and Logic 64Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

L08 – Transistors and Logic 65Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

B C

L08 – Transistors and Logic 66Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

B C

Step 3: Combine and Verify

A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

L08 – Transistors and Logic 67Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

B C

Step 3: Combine and Verify

A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1
1
1
0
0
0
0
0

L08 – Transistors and Logic 68Comp 411

Now We‟re Ready to Design Stuff!

We need to start somewhere -- usually it‟s the functional
specification

A

B YIf C is 1 then
copy B to Y,

otherwise copy
A to YC

If you are like most engineers you’d rather
see a table, or formula than parse a logic
puzzle. The fact is, any combinational
function can be expressed as a table.

These “truth tables” are a concise
description of the combinational system’s
function. Conversely, any computation
performed by a combinational system can
expressed as a truth table.

Argh… I’m tired of word games

L08 – Transistors and Logic 69Comp 411

Now We‟re Ready to Design Stuff!

We need to start somewhere -- usually it‟s the functional
specification

A

B YIf C is 1 then
copy B to Y,

otherwise copy
A to YC

If you are like most engineers you’d rather
see a table, or formula than parse a logic
puzzle. The fact is, any combinational
function can be expressed as a table.

These “truth tables” are a concise
description of the combinational system’s
function. Conversely, any computation
performed by a combinational system can
expressed as a truth table.

Argh… I’m tired of word games

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

L08 – Transistors and Logic 70Comp 411

Where Do We Start?

We have a bag of gates.

We want to
build a computer.
What do we do?
Did I mention we
have gates?

We need
… a systematic approach for designing logic

A

B

L08 – Transistors and Logic 71Comp 411

A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)

… 2 inputs have 4 possible values

How many possible patterns for 4 outputs are there? ___

AB Y

00 0

01 0

10 0

11 1

AND
AB Y

00 0

01 1

10 1

11 1

OR
AB Y

00 1

01 1

10 1

11 0

NAND
AB Y

00 1

01 0

10 0

11 0

NOR

L08 – Transistors and Logic 72Comp 411

A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)

… 2 inputs have 4 possible values

How many possible patterns for 4 outputs are there? ___

AB Y

00 0

01 0

10 0

11 1

AND
AB Y

00 0

01 1

10 1

11 1

OR
AB Y

00 1

01 1

10 1

11 0

NAND
AB Y

00 1

01 0

10 0

11 0

NOR

24

L08 – Transistors and Logic 73Comp 411

A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)

… 2 inputs have 4 possible values

How many possible patterns for 4 outputs are there? ___

AB Y

00 0

01 0

10 0

11 1

AND
AB Y

00 0

01 1

10 1

11 1

OR
AB Y

00 1

01 1

10 1

11 0

NAND
AB Y

00 1

01 0

10 0

11 0

NOR

24

Generalizing, there are 2 , N-input gates!
2N

L08 – Transistors and Logic 74Comp 411

There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?

I

N

P

U

T

AB

Z

E

R

O

A

N

D

A

>

B

A

B

>

A

B

X

O

R

O

R

N

O

R

X

N

O

R

N

O

T

„B‟

A

<=

B

N

O

T

„A‟

B

<=

A

N

A

N

D

O

N

E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

L08 – Transistors and Logic 75Comp 411

There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?

I

N

P

U

T

AB

Z

E

R

O

A

N

D

A

>

B

A

B

>

A

B

X

O

R

O

R

N

O

R

X

N

O

R

N

O

T

„B‟

A

<=

B

N

O

T

„A‟

B

<=

A

N

A

N

D

O

N

E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Nope. After all, we describe them all using AND, OR, and NOT.

L08 – Transistors and Logic 76Comp 411

There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?

I

N

P

U

T

AB

Z

E

R

O

A

N

D

A

>

B

A

B

>

A

B

X

O

R

O

R

N

O

R

X

N

O

R

N

O

T

„B‟

A

<=

B

N

O

T

„A‟

B

<=

A

N

A

N

D

O

N

E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Nope. After all, we describe them all using AND, OR, and NOT.

How many of
these gates
can be
implemented
using a single
CMOS gate?

L08 – Transistors and Logic 77Comp 411

There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?

I

N

P

U

T

AB

Z

E

R

O

A

N

D

A

>

B

A

B

>

A

B

X

O

R

O

R

N

O

R

X

N

O

R

N

O

T

„B‟

A

<=

B

N

O

T

„A‟

B

<=

A

N

A

N

D

O

N

E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Nope. After all, we describe them all using AND, OR, and NOT.

How many of
these gates
can be
implemented
using a single
CMOS gate?

L08 – Transistors and Logic 78Comp 411

There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?

I

N

P

U

T

AB

Z

E

R

O

A

N

D

A

>

B

A

B

>

A

B

X

O

R

O

R

N

O

R

X

N

O

R

N

O

T

„B‟

A

<=

B

N

O

T

„A‟

B

<=

A

N

A

N

D

O

N

E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Nope. After all, we describe them all using AND, OR, and NOT.

How many of
these gates
can be
implemented
using a single
CMOS gate?

L08 – Transistors and Logic 79Comp 411

There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?

I

N

P

U

T

AB

Z

E

R

O

A

N

D

A

>

B

A

B

>

A

B

X

O

R

O

R

N

O

R

X

N

O

R

N

O

T

„B‟

A

<=

B

N

O

T

„A‟

B

<=

A

N

A

N

D

O

N

E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Nope. After all, we describe them all using AND, OR, and NOT.

How many of
these gates
can be
implemented
using a single
CMOS gate?

L08 – Transistors and Logic 80Comp 411

We Can Make Most Gates Out of Others

How many different gates do we really need?

AB Y

00 0

01 1

10 0

11 0

B>A

A

B
y

AB Y

00 0

01 1

10 1

11 0

XOR

A
B

Y

A
B

Y

L08 – Transistors and Logic 81Comp 411

One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

L08 – Transistors and Logic 82Comp 411

One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

=

=

=

L08 – Transistors and Logic 83Comp 411

One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

=

=

=

=

=

=

L08 – Transistors and Logic 84Comp 411

Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A1

A3 A4 AN

A2

A

B
C

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1

tpd = O(___) -- WORST CASE.

output = 1
iff number of 1s
input is ODD
(“ODD PARITY”)

Can we compute N-input XOR faster?

L08 – Transistors and Logic 85Comp 411

Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A1

A3 A4 AN

A2

A

B
C

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1

tpd = O(___) -- WORST CASE.

output = 1
iff number of 1s
input is ODD
(“ODD PARITY”)

Can we compute N-input XOR faster?

N

L08 – Transistors and Logic 86Comp 411

I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

L08 – Transistors and Logic 87Comp 411

I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

21

L08 – Transistors and Logic 88Comp 411

I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

2122

L08 – Transistors and Logic 89Comp 411

I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

2122
2

log2N

L08 – Transistors and Logic 90Comp 411

I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

log N

2122
2

log2N

L08 – Transistors and Logic 91Comp 411

I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

log N

log N

2122
2

log2N

L08 – Transistors and Logic 92Comp 411

Here‟s a Design Approach

1) Write out our functional spec as a
truth table

2) Write down a Boolean expression for
every „1‟ in the output

3) Wire up the gates, call it a day, and
go home!

This approach will always give us logic
expressions in a particular form:

SUM-OF-PRODUCTS

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

CBAACBBACABCY 

L08 – Transistors and Logic 93Comp 411

Here‟s a Design Approach

1) Write out our functional spec as a
truth table

2) Write down a Boolean expression for
every „1‟ in the output

3) Wire up the gates, call it a day, and
go home!

This approach will always give us logic
expressions in a particular form:

SUM-OF-PRODUCTS

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

-it‟s systematic!
-it works!
-it‟s easy!
-we get to go home!

CBAACBBACABCY 

L08 – Transistors and Logic 94Comp 411

Straightforward Synthesis

We can implement

SUM-OF-PRODUCTS

with just three levels of

logic.

INVERTERS/AND/OR

A
B
C

A
B
C

A
B
C

A
B
C

Y

L08 – Transistors and Logic 95Comp 411

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y

“Pushing Bubbles”

L08 – Transistors and Logic 96Comp 411

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 97Comp 411

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 98Comp 411

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 99Comp 411

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 

C

A

B

Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 100Comp 411

AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 

C

A

B

Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 101Comp 411

AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 

C

A

B

Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 102Comp 411

AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 



C

A

B

Y

yxyx 

C

A

B

Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 103Comp 411

AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 



C

A

B

Y

yxyx 

C

A

B

Y

C

A

B

Y

AB=A+B “Pushing Bubbles”

L08 – Transistors and Logic 104Comp 411

AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 



C

A

B

Y

yxyx 

C

A

B

Y

C

A

B

Y

AB=A+B “Pushing Bubbles”

DeMorgan‟s Laws

L08 – Transistors and Logic 105Comp 411

An Interesting 3-Input Gate

Based on C, select the A or B input to be
copied to the output Y.

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B

C

A

Y

A

B

C

0

1

schematic

Gate
symbol

L08 – Transistors and Logic 106Comp 411

MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

L08 – Transistors and Logic 107Comp 411

MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

A
B
C
D
S

0
1
2
3

Y

L08 – Transistors and Logic 108Comp 411

MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

0
1
0
1S

0
1
0
1S

A2

B2

A3

B3

Y0

S

0
1
0
1S

0
1
0
1S

A0

B0

A1

B1
Y1

Y2

Y3

A 4-bit wide Mux

A
B
C
D
S

0
1
2
3

Y

L08 – Transistors and Logic 109Comp 411

MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

0
1
0
1S

0
1
0
1S

A2

B2

A3

B3

Y0

S

0
1
0
1S

0
1
0
1S

A0

B0

A1

B1
Y1

Y2

Y3

A 4-bit wide Mux

A
B
C
D
S

0
1
2
3

Y
A0-3

B0-3

S

Y0-3

L08 – Transistors and Logic 110Comp 411

Mux Logic Synthesis

Consider implementation of some arbitrary
Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

A B Cin Cout

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

L08 – Transistors and Logic 111Comp 411

Mux Logic Synthesis

Consider implementation of some arbitrary
Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

A B Cin Cout

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

