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Transistors and Logic

A

B

1) The digital contract
2) Encoding bits with voltages
3) Processing bits with transistors
4) Gates
5) Truth-table SOP Realizations
6) Multiplexer Logic
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Where Are We?

Things we know so far -
1) Computers process information
2) Information is measured in bits
3) Data can be represented as groups of bits
4) Computer instructions are encoded as bits
5) Computer instructions are just data

6) We, humans, don‟t want to deal with bits…
So we invent ASSEMBLY Language
even that is too low-level so we invent
COMPILERs, and they are too rigid so …

But, what PROCESSES all these bits?
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A Substrate for Computation

We can build devices for processing and representing bits 
using almost any physical phenomenon

neutrino flux
trained elephants
engraved stone tablets
orbits of planets
sequences of amino acids
polarization of a photon

Wait! Those last ones
might have potential...

1      0      1       0      0

1       1        0     1       0
0     1
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Using Electromagnetic Phenomena

Things like:
voltages phase
currents frequency

For today let‟s discuss using voltages to encode information.
Voltage pros:

easy generation, detection
voltage changes can be very fast
lots of engineering knowledge

Voltage cons:
easily affected by environment
need wires everywhere
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Representing Information with Voltage

Representation of each point (x, y) on a B&W Picture:

0 volts: BLACK
1  volt: WHITE
0.37 volts: 37% Gray
etc.

Representation of a picture:
Scan points in some prescribed
raster order… generate voltage
waveform
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Representing Information with Voltage

Representation of each point (x, y) on a B&W Picture:

0 volts: BLACK
1  volt: WHITE
0.37 volts: 37% Gray
etc.

Representation of a picture:
Scan points in some prescribed
raster order… generate voltage
waveform

How much information
at each point?
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Information Processing = Computation

First, let‟s introduce some processing blocks:
(say, using a fancy photocopier/scanner/printer)

vCopyv

INVv 1-v
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Let‟s build a system!

?

Copy INV

Copy INV

Copy INV

Copy INV

output

input
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input
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Let‟s build a system!

?

Copy INV

Copy INV

Copy INV

Copy INV

output

(In Theory)(Reality)  

input
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Why Did Our System Fail?

Why doesn‟t reality match theory?
1. COPY Operator doesn‟t work right

2. INVERSION Operator doesn‟t work right

3. Theory is imperfect

4. Reality is imperfect

5. Our system architecture stinks

ANSWER:  all of the above! 
Noise and inaccuracy are inevitable; we can‟t reliably 
reproduce infinite information-- we must design our 
system to tolerate some amount of error if it is to 
process information reliably.
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The Key to System Design

A SYSTEM is a structure that is guaranteed to exhibit a 
specified behavior, assuming all of its components obey 
their specified behaviors.

How is this achieved? 
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The Key to System Design

A SYSTEM is a structure that is guaranteed to exhibit a 
specified behavior, assuming all of its components obey 
their specified behaviors.

How is this achieved? Contracts

Every system component will have clear obligations and 
responsibilities. If these are maintained we have every 
right to expect the system to behave as planned. If 
contracts are violated all bets are off.
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The Digital Panacea ...

Why DIGITAL?

… because it keeps the contracts SIMPLE!

The price we pay for this robustness?

All the information that we transfer
between components is only 1 crummy bit!

But, in exchange, we get a guarantee 
of a reliable system. 

0 or 1
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The Digital Panacea ...

Why DIGITAL?

… because it keeps the contracts SIMPLE!

The price we pay for this robustness?

All the information that we transfer
between components is only 1 crummy bit!

But, in exchange, we get a guarantee 
of a reliable system. 

0 or 1
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The Digital Abstraction

Real World

“Ideal”
Abstract World

Volts or
Electrons or
Ergs or Gallons

Bits

0/1

Keep in mind, the world is not digital, we engineer it to behave that way. 
We must use real physical phenomena to implement digital designs!

Noise

Manufacturing
Variations
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A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each 
output for every possible combination of valid input 
values   output depends only on the latest inputs

– a timing specification consisting (at minimum) of an 
upper bound tpd on the time the device will take to 
produce the output value from stable valid input values
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• A combinational device is a circuit element that has
– one or more digital inputs
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input A

input B

input C
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A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each 
output for every possible combination of valid input 
values   output depends only on the latest inputs

– a timing specification consisting (at minimum) of an 
upper bound tpd on the time the device will take to 
produce the output value from stable valid input values

input A

input B

input C

output Y
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A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each 
output for every possible combination of valid input 
values   output depends only on the latest inputs

– a timing specification consisting (at minimum) of an 
upper bound tpd on the time the device will take to 
produce the output value from stable valid input values

Output a “1” if at 
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

input A

input B

input C

output Y
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A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each 
output for every possible combination of valid input 
values   output depends only on the latest inputs

– a timing specification consisting (at minimum) of an 
upper bound tpd on the time the device will take to 
produce the output value from stable valid input values

Output a “1” if at 
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after 
seeing valid inputs

input A

input B

input C

output Y
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A Digital Processing Element

• A combinational device is a circuit element that has
– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each 
output for every possible combination of valid input 
values   output depends only on the latest inputs

– a timing specification consisting (at minimum) of an 
upper bound tpd on the time the device will take to 
produce the output value from stable valid input values

Static
Discipline

Output a “1” if at 
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after 
seeing valid inputs

input A

input B

input C

output Y
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A Combinational Digital System

• A system of interconnected elements is 
combinational if
– each circuit element is combinational

– every input is connected to exactly one output
or directly to a source of 0‟s or 1‟s

– the circuit contains no directed cycles

• But, in order to realize digital processing
elements we have one more requirement!
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A Combinational Digital System

• A system of interconnected elements is 
combinational if
– each circuit element is combinational

– every input is connected to exactly one output
or directly to a source of 0‟s or 1‟s

– the circuit contains no directed cycles

• But, in order to realize digital processing
elements we have one more requirement!

No feedback (yet!)
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Noise Margins

 Key idea: 
Don‟t allow “0” to be mistaken for a “1” or vice versa

 Use the same “uniform representation convention”, for 
every component in our digital system

 To implement devices with high reliability, we outlaw 
“close calls” via a representation convention which 
forbids a range of voltages between “0” and “1”.
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Noise Margins

 Key idea: 
Don‟t allow “0” to be mistaken for a “1” or vice versa

 Use the same “uniform representation convention”, for 
every component in our digital system

 To implement devices with high reliability, we outlaw 
“close calls” via a representation convention which 
forbids a range of voltages between “0” and “1”.

volts
Forbidden Zone

Valid
“0”

Valid
“1”

Invalid

Min Voltage Max Voltage
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Noise Margins

 Key idea: 
Don‟t allow “0” to be mistaken for a “1” or vice versa

 Use the same “uniform representation convention”, for 
every component in our digital system

 To implement devices with high reliability, we outlaw 
“close calls” via a representation convention which 
forbids a range of voltages between “0” and “1”.

volts
Forbidden Zone

Valid
“0”

Valid
“1”

Invalid

CONSEQUENCE: 

Notion of “VALID” and “INVALID” logic levels

Min Voltage Max Voltage
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AND

Digital Processing Elements

Some digital processing elements occur so frequently 
that we give them special names and symbols

A Y

I will only output
a „1‟ if all my
inputs are „1‟

A

B
Y OR

I will output a 
„1‟ if any of my
inputs are „1‟

A

B
Y

A Y

A

B
YXOR

I will only output a 
„1‟ if an odd number
of my inputs are „1‟

buffer inverter

I will output the
complement of

my input

I will copy and
restore my input

to my output
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AND

Digital Processing Elements

Some digital processing elements occur so frequently 
that we give them special names and symbols

A Y

A
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Y OR
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AND

Digital Processing Elements

Some digital processing elements occur so frequently 
that we give them special names and symbols

A Y

A

B
Y OR

A

B
Y

A Y

A

B
YXOR

buffer inverter

In honor of the richest
man in the world we will
henceforth refer to
digital processing
elements as “GATES”
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From What Do We Make Digital Devices?

• Recall our common thread 
from Lecture 2…

• A controllable switch is a 
common link of all computing 
technologies

• How do you control voltages 
with a switch?

• By creating and opening 
paths between higher and 
lower potentials 

Load



L08 – Transistors and Logic   37Comp 411

From What Do We Make Digital Devices?

• Recall our common thread 
from Lecture 2…

• A controllable switch is a 
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• How do you control voltages 
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• By creating and opening 
paths between higher and 
lower potentials 

Load

This symbol 
indicates a 
“low” or ground 
potential
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From What Do We Make Digital Devices?

• Recall our common thread 
from Lecture 2…

• A controllable switch is a 
common link of all computing 
technologies

• How do you control voltages 
with a switch?

• By creating and opening 
paths between higher and 
lower potentials 

Load

This symbol 
indicates a 
“low” or ground 
potential

This symbol 
indicates a “high” 
potential, or the 
voltage of the 
power supply
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N-Channel Field-Effect Transistors (NFETs)

D

G

S

D

G

S
+

+

- -
VGS

VDS 0

Operating regions:

cut-off:   
VGS < VTH

linear:
VGS VTH
VDS < VDsat

saturation:
VGS VTH
VDS VDsat

S D

VGS - VTH

0.8V

S D

S D“ “

IDS

VDS

VGS

linear saturation

When the gate 
voltage is high, the 
switch “closes” 
(connects). 
Good at pulling 
things “low”.



L08 – Transistors and Logic   40Comp 411

P-Channel Field-Effect Transistors (PFETs)

S

G

D

S

G

D

+
--

+

VGS

VDS  0

Operating regions:

cut-off:   
VGS > VTH

linear:
VGS  VTH
VDS > VDsat

saturation:
VGS  VTH
VDS  VDsat

S D

VGS - VTH

–0.8V

S D

S D“ “

-IDS

-VDS

-VGS

linearsaturation

When the gate 
voltage is low, the 
switch “closes” 
(connects). 
Good at pulling 
things “high”.



L08 – Transistors and Logic   41Comp 411

Finally… Using Transistors to 
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:
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when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:
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when VIN is near VDD so that VOUT = 0
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Finally… Using Transistors to 
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

pulldown: make this connection
when VIN is near VDD so that VOUT = 0

We‟ll use
PFETs here
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Finally… Using Transistors to 
Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

pulldown: make this connection
when VIN is near VDD so that VOUT = 0

We‟ll use
PFETs here

and, NFETs
here
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CMOS Inverter

Vin Vout

Vin

Vout
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CMOS Inverter

Vin Vout

Vin

Vout

“1” “0”

“0” “1”
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CMOS Inverter

Vin Vout

Vin

Vout

“1” “0”

“0” “1”
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CMOS Inverter

Vin Vout

Vin

Vout

only a narrow range
of input voltages 
result in “invalid” 
output values. 
(this diagram is 
greatly 
exaggerated)

Valid “1”

Valid “0”

Invalid

“1” “0”

“0” “1”
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CMOS Inverter

Vin Vout

Vin

Vout

A Y
inverter

only a narrow range
of input voltages 
result in “invalid” 
output values. 
(this diagram is 
greatly 
exaggerated)

Valid “1”

Valid “0”

Invalid

“1” “0”

“0” “1”
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CMOS Complements
What a nice
VOH you have...

Thanks.  It runs
in the family...

conducts when A is high conducts when A is low

A A



L08 – Transistors and Logic   51Comp 411

CMOS Complements
What a nice
VOH you have...

Thanks.  It runs
in the family...

conducts when A is high conducts when A is low

conducts when A is high
and B is high:  A.B

A

B
A B

conducts when A is low
or B is low: A+B = A.B

A A

Series N connections:

Parallel P connections:
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CMOS Complements
What a nice
VOH you have...

Thanks.  It runs
in the family...

conducts when A is high conducts when A is low

conducts when A is high
and B is high:  A.B

A

B
A B

conducts when A is low
or B is low: A+B = A.B

conducts when A is high
or B is high:  A+B

A

B
A B

conducts when A is low
and B is low: A.B = A+B

A A

Series N connections:

Parallel N connections:

Parallel P connections:

Series P connections:
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A Two Input Logic Gate

What function does
this gate compute?

A   B     C

0   0
0   1
1   0
1   1

A

B

C
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Here‟s Another…

What function does
this gate compute?

A   B     C

0   0
0   1
1   0
1   1

A

B

C
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CMOS Gates Like to Invert

OBSERVATION: CMOS gates tend to be 
inverting!

Precisely, one or more “0” inputs are 
necessary to generate a “1” output, and 
one or more “1” inputs are necessary to 
generate a “0” output. Why?

A

B

C
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General CMOS Gate Recipe

Step 1.  Figure out pulldown network that 
does what you want (i.e the set of 
conditions where the output is „0‟)

e.g., F = A*(B+C)

A

B C
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General CMOS Gate Recipe

Step 1.  Figure out pulldown network that 
does what you want (i.e the set of 
conditions where the output is „0‟)

e.g., F = A*(B+C)

A

B C

Step 2.  Walk the hierarchy replacing nfets 
with pfets, series subnets with parallel 
subnets, and parallel subnets with series 
subnets

A
B

C
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General CMOS Gate Recipe

Step 1.  Figure out pulldown network that 
does what you want (i.e the set of 
conditions where the output is „0‟)

e.g., F = A*(B+C)

A

B C

Step 2.  Walk the hierarchy replacing nfets 
with pfets, series subnets with parallel 
subnets, and parallel subnets with series 
subnets

A
B

C

Step 3.  Combine pfet pullup network 
from Step 2 with nfet pulldown
network from Step 1 to form fully-
complementary CMOS gate.

But isn‟t it
hard to wire
it all up?

A
B

C

A

B C
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network



L08 – Transistors and Logic   64Comp 411

One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

B C
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

B C

Step 3: Combine and Verify

A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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One Last Exercise

Lets construct a gate to compute:

F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
network

Vdd
A

B C

Step 3: Combine and Verify

A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1
1
1
0
0
0
0
0
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Now We‟re Ready to Design Stuff!

We need to start somewhere -- usually it‟s the functional 
specification

A

B YIf C is 1 then
copy B to Y,

otherwise copy
A to YC

If you are like most engineers you’d rather 
see a table, or formula than parse a logic 
puzzle. The fact is, any combinational 
function can be expressed as a table. 

These “truth tables” are a concise 
description of the combinational system’s 
function. Conversely, any computation 
performed by a combinational system can 
expressed as a truth table.

Argh… I’m tired of word games
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Now We‟re Ready to Design Stuff!

We need to start somewhere -- usually it‟s the functional 
specification

A

B YIf C is 1 then
copy B to Y,

otherwise copy
A to YC

If you are like most engineers you’d rather 
see a table, or formula than parse a logic 
puzzle. The fact is, any combinational 
function can be expressed as a table. 

These “truth tables” are a concise 
description of the combinational system’s 
function. Conversely, any computation 
performed by a combinational system can 
expressed as a truth table.

Argh… I’m tired of word games

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table
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Where Do We Start?

We have a bag of gates.

We want to 
build a computer.
What do we do?
Did I mention we
have gates?

We need
… a systematic approach for designing logic

A

B
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A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)

… 2 inputs have 4 possible values

How many possible patterns for 4 outputs are there? ___

AB Y

00 0

01 0

10 0

11 1

AND
AB Y

00 0

01 1

10 1

11 1

OR
AB Y

00 1

01 1

10 1

11 0

NAND
AB Y

00 1

01 0

10 0

11 0

NOR
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A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)

… 2 inputs have 4 possible values

How many possible patterns for 4 outputs are there? ___

AB Y

00 0

01 0

10 0

11 1

AND
AB Y

00 0

01 1

10 1

11 1

OR
AB Y

00 1

01 1

10 1

11 0

NAND
AB Y

00 1

01 0

10 0

11 0

NOR

24
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A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)

… 2 inputs have 4 possible values

How many possible patterns for 4 outputs are there? ___

AB Y

00 0

01 0

10 0

11 1

AND
AB Y

00 0

01 1

10 1

11 1

OR
AB Y

00 1

01 1

10 1

11 0

NAND
AB Y

00 1

01 0

10 0

11 0

NOR

24

Generalizing, there are 2  , N-input gates!
2N
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There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?
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>
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X 
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„B‟ 

 

 

 

A

<=
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N 

O 

T 

„A‟ 

 

 

 

B

<=

A 

 

 

N 

A 

N 

D 

 

 

 

O 

N 

E 

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
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There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?
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Nope. After all, we describe them all using AND, OR, and NOT.
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There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

Do we need all of these gates?
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Nope. After all, we describe them all using AND, OR, and NOT.

How many of 
these gates 
can be 
implemented 
using a single 
CMOS gate?
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There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly
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There Are Only So Many Gates

There are only 16 possible 2-input gates
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There Are Only So Many Gates

There are only 16 possible 2-input gates
… some we know already, others are just silly
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We Can Make Most Gates Out of Others

How many different gates do we really need?

AB Y

00 0

01 1

10 0

11 0

B>A

A

B
y

AB Y 

00 0 

01 1 

10 1 

11 0 
 

XOR

A
B

Y

A
B

Y
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One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs
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One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

=

=

=
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One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

=

=

=

=

=

=
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Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A1

A3 A4 AN

A2

A

B
C

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1

tpd = O( ___ ) -- WORST CASE.

output = 1
iff number of 1s
input is ODD
(“ODD PARITY”)

Can we compute N-input XOR faster?
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Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A1

A3 A4 AN

A2

A

B
C

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1

tpd = O( ___ ) -- WORST CASE.

output = 1
iff number of 1s
input is ODD
(“ODD PARITY”)

Can we compute N-input XOR faster?

N
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I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.
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I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

21
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I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

2122
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I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

2122
2

log2N
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I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

log N

2122
2

log2N
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I Think That I Shall Never See
a Gate Lovely as a ...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

log N

log N

2122
2

log2N
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Here‟s a Design Approach

1) Write out our functional spec as a 
truth table

2) Write down a Boolean expression for 
every „1‟ in the output

3) Wire up the gates, call it a day, and 
go home!

This approach will always give us logic 
expressions in a particular form: 

SUM-OF-PRODUCTS

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

CBAACBBACABCY 
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Here‟s a Design Approach

1) Write out our functional spec as a 
truth table

2) Write down a Boolean expression for 
every „1‟ in the output

3) Wire up the gates, call it a day, and 
go home!

This approach will always give us logic 
expressions in a particular form: 

SUM-OF-PRODUCTS

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

-it‟s systematic!
-it works!
-it‟s easy!
-we get to go home!

CBAACBBACABCY 
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Straightforward Synthesis

We can implement 

SUM-OF-PRODUCTS

with just three levels of

logic.

INVERTERS/AND/OR

A
B
C

A
B
C

A
B
C

A
B
C

Y
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Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y

“Pushing Bubbles”
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Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 

AB=A+B “Pushing Bubbles”
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AB=A+B
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AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR
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AB=A+B

Useful Gate Structures

NAND-NAND
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AB=A+B

Useful Gate Structures

NAND-NAND

NOR-NOR

C

A

B

Y

C

A

B
Y



C

A

B

Y

zyxxyz 



C

A

B

Y

yxyx 

C

A

B

Y

C

A

B

Y

AB=A+B “Pushing Bubbles”

DeMorgan‟s Laws
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An Interesting 3-Input Gate

Based on C, select the A or B input to be 
copied to the output Y.

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B

C

A

Y

A

B

C

0

1

schematic

Gate
symbol
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MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)
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Y
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A 4-input Mux
(implemented as
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MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

0
1
0
1S

0
1
0
1S

A2

B2

A3

B3

Y0

S

0
1
0
1S

0
1
0
1S

A0

B0

A1

B1
Y1

Y2

Y3

A 4-bit wide Mux

A
B
C
D
S

0
1
2
3

Y
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MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

0
1
0
1S

0
1
0
1S

A2

B2

A3

B3

Y0

S

0
1
0
1S

0
1
0
1S

A0

B0

A1

B1
Y1

Y2

Y3

A 4-bit wide Mux

A
B
C
D
S

0
1
2
3

Y
A0-3

B0-3

S

Y0-3
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Mux Logic Synthesis

Consider implementation of some arbitrary 
Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

A B Cin Cout 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
 

 

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout
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Mux Logic Synthesis

Consider implementation of some arbitrary 
Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

A B Cin Cout 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
 

 

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1


