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Arithmetic Circuits

01011

+00101

10000

Didn’t I learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to
be...

Finally; time to 
build some 

serious 
functional 

blocks We’ll need 
a lot of 
boxes
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Review: 2’s Complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s-complement representation for signed integers, the 
same binary addition procedure will work for adding both signed and 
unsigned numbers.

By moving the implicit “binary” point, we can represent fractions too:
1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = –

2.625

“sign bit” “binary” point
Range: – 2N-1 to  2N-1 – 1
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Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A:  1101

B:+ 0101

10010
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Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A:  1101

B:+ 0101

10010

1011
Carries from

previous column
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Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A:  1101

B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit 
numbers produces 
an (N+1)-bit result
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Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A:  1101

B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit 
numbers produces 
an (N+1)-bit result

Let’s start by building a block that adds one column:

A       B
CO          CI

S
FA
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Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A:  1101

B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit 
numbers produces 
an (N+1)-bit result

Then we can cascade them to add two numbers of any size…

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A3  B3          A2  B2         A1   B1          A0 B0

S4       S3                 S2                S1                S0

Let’s start by building a block that adds one column:

A       B
CO          CI

S
FA
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Designing a “Full Adder”: From Last Time

1) Start with a truth table:

2) Write down eqns for the
“1” outputs

Co = CiAB + CiAB + CiAB + CiAB
S = CiAB + CiAB + CiAB + CiAB

3)Simplifing a bit

Co = Ci(A + B) + AB
S = Ci  A  B

Ci A B Co S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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Designing a “Full Adder”: From Last Time

1) Start with a truth table:

2) Write down eqns for the
“1” outputs

Co = CiAB + CiAB + CiAB + CiAB
S = CiAB + CiAB + CiAB + CiAB

3)Simplifing a bit

Co = Ci(A + B) + AB
S = Ci  A  B

Ci A B Co S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
 

 

Co = Ci(A  B) + AB

S = Ci  (A  B)
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For Those Who Prefer Logic Diagrams …

• A little tricky, but only 
5 gates/bit

CI

A B

S

CO

Co = Ci(A  B) + AB

S = Ci  (A  B)
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For Those Who Prefer Logic Diagrams …

• A little tricky, but only 
5 gates/bit

CI

A B

S

CO

Co = Ci(A  B) + AB

S = Ci  (A  B)

“Sum”
Logic
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For Those Who Prefer Logic Diagrams …

• A little tricky, but only 
5 gates/bit

CI

A B

S

CO

Co = Ci(A  B) + AB

S = Ci  (A  B)

“Sum”
Logic

“Carry”
Logic



L9 – Arithmetic Circuits   13Comp 411

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1
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Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

B
0

B B
1

B
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Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

But what about 
the “+1”?

So let’s build an arithmetic unit that does both addition and subtraction.  
Operation selected by control input:

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A3                 A2                A1                A0

S4       S3                 S0                S1                S0

B3                 B2                B1                B0

Subtract

~ = bit-wise complement

B
0

B B
1

B
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Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

But what about 
the “+1”?

So let’s build an arithmetic unit that does both addition and subtraction.  
Operation selected by control input:

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A3                 A2                A1                A0

S4       S3                 S0                S1                S0

B3                 B2                B1                B0

Subtract

~ = bit-wise complement

B
0

B B
1

B
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:



L9 – Arithmetic Circuits   18Comp 411

Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

Z (zero): result is = 0                  big NOR gate
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates that add in the most 
significant position produced a carry, e.g.,
“1 + (-1)”                                      from last FA
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

V (overflow): indicates that the answer has 
too many bits to be represented correctly by 
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates that add in the most 
significant position produced a carry, e.g.,
“1 + (-1)”                                      from last FA
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

V (overflow): indicates that the answer has 
too many bits to be represented correctly by 
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates that add in the most 
significant position produced a carry, e.g.,
“1 + (-1)”                                      from last FA

N
1i

B
1i

AN
1i

B
1i

AV






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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

V (overflow): indicates that the answer has 
too many bits to be represented correctly by 
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates that add in the most 
significant position produced a carry, e.g.,
“1 + (-1)”                                      from last FA

N
1i

B
1i

AN
1i

B
1i

AV







1i
CI

1i
COV







-or-
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit:

To compare A and B,
perform A–B and use
condition codes:

Signed comparison:
LT NV

LE Z+(NV)

EQ Z

NE ~Z

GE ~(NV)

GT ~(Z+(NV))

Unsigned comparison:
LTU C

LEU C+Z

GEU ~C

GTU ~(C+Z)

V (overflow): indicates that the answer has 
too many bits to be represented correctly by 
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates that add in the most 
significant position produced a carry, e.g.,
“1 + (-1)”                                      from last FA

N
1i

B
1i

AN
1i

B
1i

AV







1i
CI

1i
COV







-or-
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TPD of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when 
adding 11…111 to 00…001.

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR    (N)

CI to CO CIN-1 to SN-1

(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

An-1 Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

Sn-1 Sn-2 S2 S1 S0

A       B
CO          CI

S
FA

A       B
CO          CI

S
FAC

…

CI

A B

S

CO
A,B to CO
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TPD of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when 
adding 11…111 to 00…001.

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR    (N)

CI to CO CIN-1 to SN-1

(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

A       B
CO          CI

S
FA

An-1 Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

Sn-1 Sn-2 S2 S1 S0

A       B
CO          CI

S
FA

A       B
CO          CI

S
FAC

…

CI

A B

S

CO
A,B to CO
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Faster Carry Logic

• Carry-Lookahead Adders (CLA)

• Carry-Skip Adders

• Carry-Select Adders
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Adder Summary

Adding is not only common, but it is also tends to be one of the most 
time-critical of operations. As a result, a wide range of adder 
architectures have been developed that allow a designer to tradeoff 
complexity (in terms of the number of gates) for performance.

Ripple
Carry

Carry
Skip

Carry
Select

Carry
Lookahead

Smaller / Slower Bigger / Faster

Add

A B

S

Add/Sub

A B

S

sub

At this point we’ll define a high-level 
functional unit for an adder, and 
specify the details of the 
implementation as necessary.
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Shifting Logic

Shifting is a common operation that 

is applied to groups of bits. Shifting 
can be used for alignment, as well as 
for arithmetic operations.

X << 1   is approx the same as  2*X

X >> 1   can be the same as  X/2

For example:

X = 2010 = 000101002

Left Shift:
(X << 1) = 001010002 = 4010

Right Shift:
(X >> 1) = 000010102 = 1010

Signed or “Arithmetic” Right Shift:
(-X >> 1) = (111011002 >> 1) = 111101102 = -1010

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1
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Boolean Operations

It will also be useful to perform logical operations on groups of bits. 
Which ones?
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Boolean Operations

It will also be useful to perform logical operations on groups of bits. 
Which ones?

ANDing is useful for “masking” off groups of bits.
ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits)
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Boolean Operations

It will also be useful to perform logical operations on groups of bits. 
Which ones?

ANDing is useful for “masking” off groups of bits.
ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex.  10101110 & 00001111 = 00001110  (0’s clear first 4 bits)
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Boolean Operations

It will also be useful to perform logical operations on groups of bits. 
Which ones?

ANDing is useful for “masking” off groups of bits.
ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex.  10101110 & 00001111 = 00001110  (0’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex.  10101110 | 00001111 = 10101111  (1’s set last 4 bits)
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Boolean Operations

It will also be useful to perform logical operations on groups of bits. 
Which ones?

ANDing is useful for “masking” off groups of bits.
ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex.  10101110 & 00001111 = 00001110  (0’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex.  10101110 | 00001111 = 10101111  (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex.  10101110 ^ 00001111 = 10100001  (1’s complement last 4 bits)



L9 – Arithmetic Circuits   35Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits. 
Which ones?

ANDing is useful for “masking” off groups of bits.
ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex.  10101110 & 00001111 = 00001110  (0’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex.  10101110 | 00001111 = 10101111  (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex.  10101110 ^ 00001111 = 10100001  (1’s complement last 4 bits)

NORing is useful.. Uhm, because John Hennessy says it is!
ex.  10101110 # 00001111 = 01010000  (0’s complement, 1’s clear)
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Boolean Unit

It is simple to build up a Boolean unit using primitive gates 
and a mux to select the function.

Since there is no interconnection
between bits, this unit can
be simply replicated at each
position. The cost is about
7 gates per bit. One for 
each primitive function,
and approx 3 for the 
4-input mux.

This is a straightforward, but not too elegant of a design.

Ai Bi

Qi

Bool

00      01       10       11
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Boolean Unit

It is simple to build up a Boolean unit using primitive gates 
and a mux to select the function.

Since there is no interconnection
between bits, this unit can
be simply replicated at each
position. The cost is about
7 gates per bit. One for 
each primitive function,
and approx 3 for the 
4-input mux.

This is a straightforward, but not too elegant of a design.

Ai Bi

Qi

Bool

00      01       10       11

This logic 
block is 
repeated 
for each bit 
(i.e. 32 
times)
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An ALU, at Last

Now we’re ready for a big one! An Arithmetic Logic Unit.

That’s 
a lot of 
stuff

Flags
V,C

A B

R

Bidirectional
Shifter

BooleanAdd/Sub
Sub

Bool

Shft

Math

1     0

1     0 …

N
Flag

Z
Flag


