
L9 – Arithmetic Circuits 1Comp 411

Arithmetic Circuits

01011

+00101

10000

Didn’t I learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to
be...

Finally; time to
build some

serious
functional

blocks We’ll need
a lot of
boxes

L9 – Arithmetic Circuits 2Comp 411

Review: 2’s Complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s-complement representation for signed integers, the
same binary addition procedure will work for adding both signed and
unsigned numbers.

By moving the implicit “binary” point, we can represent fractions too:
1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = –

2.625

“sign bit” “binary” point
Range: – 2N-1 to 2N-1 – 1

L9 – Arithmetic Circuits 3Comp 411

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101

B:+ 0101

10010

L9 – Arithmetic Circuits 4Comp 411

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101

B:+ 0101

10010

1011
Carries from

previous column

L9 – Arithmetic Circuits 5Comp 411

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101

B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit
numbers produces
an (N+1)-bit result

L9 – Arithmetic Circuits 6Comp 411

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101

B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit
numbers produces
an (N+1)-bit result

Let’s start by building a block that adds one column:

A B
CO CI

S
FA

L9 – Arithmetic Circuits 7Comp 411

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101

B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit
numbers produces
an (N+1)-bit result

Then we can cascade them to add two numbers of any size…

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

A3 B3 A2 B2 A1 B1 A0 B0

S4 S3 S2 S1 S0

Let’s start by building a block that adds one column:

A B
CO CI

S
FA

L9 – Arithmetic Circuits 8Comp 411

Designing a “Full Adder”: From Last Time

1) Start with a truth table:

2) Write down eqns for the
“1” outputs

Co = CiAB + CiAB + CiAB + CiAB
S = CiAB + CiAB + CiAB + CiAB

3)Simplifing a bit

Co = Ci(A + B) + AB
S = Ci  A  B

Ci A B Co S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

L9 – Arithmetic Circuits 9Comp 411

Designing a “Full Adder”: From Last Time

1) Start with a truth table:

2) Write down eqns for the
“1” outputs

Co = CiAB + CiAB + CiAB + CiAB
S = CiAB + CiAB + CiAB + CiAB

3)Simplifing a bit

Co = Ci(A + B) + AB
S = Ci  A  B

Ci A B Co S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Co = Ci(A  B) + AB

S = Ci  (A  B)

L9 – Arithmetic Circuits 10Comp 411

For Those Who Prefer Logic Diagrams …

• A little tricky, but only
5 gates/bit

CI

A B

S

CO

Co = Ci(A  B) + AB

S = Ci  (A  B)

L9 – Arithmetic Circuits 11Comp 411

For Those Who Prefer Logic Diagrams …

• A little tricky, but only
5 gates/bit

CI

A B

S

CO

Co = Ci(A  B) + AB

S = Ci  (A  B)

“Sum”
Logic

L9 – Arithmetic Circuits 12Comp 411

For Those Who Prefer Logic Diagrams …

• A little tricky, but only
5 gates/bit

CI

A B

S

CO

Co = Ci(A  B) + AB

S = Ci  (A  B)

“Sum”
Logic

“Carry”
Logic

L9 – Arithmetic Circuits 13Comp 411

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

L9 – Arithmetic Circuits 14Comp 411

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

B
0

B B
1

B

L9 – Arithmetic Circuits 15Comp 411

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

But what about
the “+1”?

So let’s build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

A3 A2 A1 A0

S4 S3 S0 S1 S0

B3 B2 B1 B0

Subtract

~ = bit-wise complement

B
0

B B
1

B

L9 – Arithmetic Circuits 16Comp 411

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

But what about
the “+1”?

So let’s build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

A3 A2 A1 A0

S4 S3 S0 S1 S0

B3 B2 B1 B0

Subtract

~ = bit-wise complement

B
0

B B
1

B

L9 – Arithmetic Circuits 17Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

L9 – Arithmetic Circuits 18Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

Z (zero): result is = 0 big NOR gate

L9 – Arithmetic Circuits 19Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

L9 – Arithmetic Circuits 20Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
significant position produced a carry, e.g.,
“1 + (-1)” from last FA

L9 – Arithmetic Circuits 21Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

V (overflow): indicates that the answer has
too many bits to be represented correctly by
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
significant position produced a carry, e.g.,
“1 + (-1)” from last FA

L9 – Arithmetic Circuits 22Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

V (overflow): indicates that the answer has
too many bits to be represented correctly by
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
significant position produced a carry, e.g.,
“1 + (-1)” from last FA

N
1i

B
1i

AN
1i

B
1i

AV







L9 – Arithmetic Circuits 23Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

V (overflow): indicates that the answer has
too many bits to be represented correctly by
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
significant position produced a carry, e.g.,
“1 + (-1)” from last FA

N
1i

B
1i

AN
1i

B
1i

AV







1i
CI

1i
COV







-or-

L9 – Arithmetic Circuits 24Comp 411

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit:

To compare A and B,
perform A–B and use
condition codes:

Signed comparison:
LT NV

LE Z+(NV)

EQ Z

NE ~Z

GE ~(NV)

GT ~(Z+(NV))

Unsigned comparison:
LTU C

LEU C+Z

GEU ~C

GTU ~(C+Z)

V (overflow): indicates that the answer has
too many bits to be represented correctly by
the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
significant position produced a carry, e.g.,
“1 + (-1)” from last FA

N
1i

B
1i

AN
1i

B
1i

AV







1i
CI

1i
COV







-or-

L9 – Arithmetic Circuits 25Comp 411

TPD of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when
adding 11…111 to 00…001.

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR  (N)

CI to CO CIN-1 to SN-1

(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

An-1 Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

Sn-1 Sn-2 S2 S1 S0

A B
CO CI

S
FA

A B
CO CI

S
FAC

…

CI

A B

S

CO
A,B to CO

L9 – Arithmetic Circuits 26Comp 411

TPD of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when
adding 11…111 to 00…001.

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR  (N)

CI to CO CIN-1 to SN-1

(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

A B
CO CI

S
FA

A B
CO CI

S
FA

A B
CO CI

S
FA

An-1 Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

Sn-1 Sn-2 S2 S1 S0

A B
CO CI

S
FA

A B
CO CI

S
FAC

…

CI

A B

S

CO
A,B to CO

L9 – Arithmetic Circuits 27Comp 411

Faster Carry Logic

• Carry-Lookahead Adders (CLA)

• Carry-Skip Adders

• Carry-Select Adders

L9 – Arithmetic Circuits 28Comp 411

Adder Summary

Adding is not only common, but it is also tends to be one of the most
time-critical of operations. As a result, a wide range of adder
architectures have been developed that allow a designer to tradeoff
complexity (in terms of the number of gates) for performance.

Ripple
Carry

Carry
Skip

Carry
Select

Carry
Lookahead

Smaller / Slower Bigger / Faster

Add

A B

S

Add/Sub

A B

S

sub

At this point we’ll define a high-level
functional unit for an adder, and
specify the details of the
implementation as necessary.

L9 – Arithmetic Circuits 29Comp 411

Shifting Logic

Shifting is a common operation that

is applied to groups of bits. Shifting
can be used for alignment, as well as
for arithmetic operations.

X << 1 is approx the same as 2*X

X >> 1 can be the same as X/2

For example:

X = 2010 = 000101002

Left Shift:
(X << 1) = 001010002 = 4010

Right Shift:
(X >> 1) = 000010102 = 1010

Signed or “Arithmetic” Right Shift:
(-X >> 1) = (111011002 >> 1) = 111101102 = -1010

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

L9 – Arithmetic Circuits 30Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

L9 – Arithmetic Circuits 31Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

L9 – Arithmetic Circuits 32Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = 00001110 (0’s clear first 4 bits)

L9 – Arithmetic Circuits 33Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = 00001110 (0’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

L9 – Arithmetic Circuits 34Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = 00001110 (0’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex. 10101110 ^ 00001111 = 10100001 (1’s complement last 4 bits)

L9 – Arithmetic Circuits 35Comp 411

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = 00001110 (0’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex. 10101110 ^ 00001111 = 10100001 (1’s complement last 4 bits)

NORing is useful.. Uhm, because John Hennessy says it is!
ex. 10101110 # 00001111 = 01010000 (0’s complement, 1’s clear)

L9 – Arithmetic Circuits 36Comp 411

Boolean Unit

It is simple to build up a Boolean unit using primitive gates
and a mux to select the function.

Since there is no interconnection
between bits, this unit can
be simply replicated at each
position. The cost is about
7 gates per bit. One for
each primitive function,
and approx 3 for the
4-input mux.

This is a straightforward, but not too elegant of a design.

Ai Bi

Qi

Bool

00 01 10 11

L9 – Arithmetic Circuits 37Comp 411

Boolean Unit

It is simple to build up a Boolean unit using primitive gates
and a mux to select the function.

Since there is no interconnection
between bits, this unit can
be simply replicated at each
position. The cost is about
7 gates per bit. One for
each primitive function,
and approx 3 for the
4-input mux.

This is a straightforward, but not too elegant of a design.

Ai Bi

Qi

Bool

00 01 10 11

This logic
block is
repeated
for each bit
(i.e. 32
times)

L9 – Arithmetic Circuits 38Comp 411

An ALU, at Last

Now we’re ready for a big one! An Arithmetic Logic Unit.

That’s
a lot of
stuff

Flags
V,C

A B

R

Bidirectional
Shifter

BooleanAdd/Sub
Sub

Bool

Shft

Math

1 0

1 0 …

N
Flag

Z
Flag

