
L11 – Floating Point 1Comp 411

Floating-Point Arithmetic

if ((A + A) - A == A) {
SelfDestruct()

}

L11 – Floating Point 2Comp 411

What is the problem?

Many numeric applications require numbers over a VERY
large range. (e.g. nanoseconds to centuries)

Most scientific applications require real numbers (e.g.)

But so far we only have integers.

We *COULD* implement the fractions explicitly (e.g. ½,
1023/102934)

We *COULD* use bigger integers

Floating point is a better answer for most applications.

L11 – Floating Point 3Comp 411

Recall Scientific Notation

• Let‟s start our discussion of floating point by recalling
scientific notation from high school

• Numbers represented in parts:
42 = 4.200 x 101

1024 = 1.024 x 103

-0.0625 = -6.250 x 10-2

• Arithmetic is done in pieces

1024 1.024 x 103

- 42 - 0.042 x 103

982 0.982 x 103

9.820 x 102

Before adding, we must match the
exponents, effectively “denormalizing”
the smaller magnitude number

We then “normalize” the final result so there
is one digit to the left of the decimal point
and adjust the exponent accordingly.

Significant Digits
Exponent

L11 – Floating Point 4Comp 411

Multiplication in Scientific Notation

• Is straightforward:
– Multiply together the significant parts

– Add the exponents

– Normalize if required

• Examples:
1024 1.024 x 103

x 0.0625 6.250 x 10-2

64 6.400 x 101

42 4.200 x 101

x 0.0625 6.250 x 10-2

2.625 26.250 x 10-1

2.625 x 100 (Normalized)

In multiplication, how
far is the most you will
ever normalize?

In addition?

L11 – Floating Point 5Comp 411

FP == “Binary” Scientific Notation

• IEEE single precision floating-point format

0x42280000 in hexadecimal

• Exponent: Unsigned “Bias 127” 8-bit integer
E = Exponent + 127
Exponent = 10000100 (132) – 127 = 5

• Significand: Unsigned fixed binary point with “hidden-one”
Significand = “1”+ 0.01010000000000000000000 = 1.3125

• Putting it all together
N = -1S (1 + F) x 2E-127 = -10 (1.3125) x 25 = 42

1 00 00 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

“F”
Significand (Mantissa) - 1

“E”
Exponent + 127

“S”
Sign
Bit

L11 – Floating Point 6Comp 411

Example Numbers

• One Sign = +, Exponent = 0, Significand = 1.0

-10 (1 .0) x 20 = 1
S = 0, E = 0 + 127, F = 1.0 – „1‟
0 01111111 00000000000000000000000
0x3f800000

• One-half Sign = +, Exponent = -1, Significand = 1.0
-10 (1 .0) x 2-1 = ½
S = 0, E = -1 + 127, F = 1.0 – „1‟
0 01111110 00000000000000000000000
0x3f000000

• Minus Two Sign = -, Exponent = 1, Significand = 1.0
1 10000000 00000000000000000000000
0xc0000000

L11 – Floating Point 7Comp 411

Zeros

• How do you represent 0?
• Zero Sign = ?, Exponent = ?, Significand = ?

– Here‟s where the hidden “1” comes back to bite you
– Hint: Zero is small. What‟s the smallest number you

can generate?
– E = Exponent + 127, Exponent = -127, Signficand = 1.0

10 (1.0) x 2-127 = 5.87747 x 10-39

• IEEE Convention
– When E = 0 (Exponent = -127), we‟ll interpret numbers

differently…
0 00000000 00000000000000000000000 = 0 not 1.0 x 2-127

1 00000000 00000000000000000000000 = -0 not -1.0 x 2-127

Yes, there are “2” zeros. Setting E=0 is also used to represent a few other small numbers
besides 0. In all of these numbers there is no “hidden” one assumed in F, and they are called
the “unnormalized numbers”. WARNING: If you rely these values you are skating on thin ice!

L11 – Floating Point 8Comp 411

Infinities

• IEEE floating point also reserves the largest possible
exponent to represent “unrepresentable” large numbers

• Positive Infinity: S = 0, E = 255, F = 0
0 11111111 00000000000000000000000 = +∞
0x7f800000

• Negative Infinity: S = 1, E = 255, F = 0
1 11111111 00000000000000000000000 = -∞
0xff800000

• Other numbers with E = 255 (F ≠ 0) are used to
represent exceptions or Not-A-Number (NAN)
√-1, -∞ x 42, 0/0, ∞/ ∞, log(-5)

• It does, however, attempt to handle a few special cases:
1/0 = + ∞, -1/0 = - ∞, log(0) = - ∞

L11 – Floating Point 9Comp 411

denorm
gap

Low-End of the IEEE Spectrum

0 2 2 2-bias 1-bias 2-bias

normal numbers with hidden bit

The gap between 0 and the next representable normalized number is much larger
than the gaps between nearby representable numbers.

IEEE standard uses denormalized numbers to fill in the gap, making the
distances between numbers near 0 more alike.

0 2 2 2-bias 1-bias 2-bias

p bits of
precision

p-1
bits of

precision

NOTE: Zero is represented using 0 for the exponent and 0 for the mantissa.
Either, +0 or -0 can be represented, based on the sign bit.

Denormalized numbers have a hidden “0” and a fixed exponent of -126

X = (-1) 2 (0.F)
S -126

L11 – Floating Point 10Comp 411

Floating point AIN’T NATURAL

It is CRUCIAL for computer scientists to know that Floating Point
arithmetic is NOT the arithmetic you learned since childhood

1.0 is NOT EQUAL to 10*0.1 (Why?)
1.0 * 10.0 == 10.0

0.1 * 10.0 != 1.0

0.1 decimal == 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + … ==
0.0 0011 0011 0011 0011 0011 …

In decimal 1/3 is a repeating fraction 0.333333…

If you quit at some fixed number of digits, then 3 * 1/3 != 1

Floating Point arithmetic IS NOT associative
x + (y + z) is not necessarily equal to (x + y) + z

Addition may not even result in a change
(x + 1) MAY == x

L11 – Floating Point 11Comp 411

Floating Point Disasters

• Scud Missiles get through, 28 die
– In 1991, during the 1st Gulf War, a Patriot missile defense system let a Scud get

through, hit a barracks, and kill 28 people. The problem was due to a floating-
point error when taking the difference of a converted & scaled integer. (Source:
Robert Skeel, "Round-off error cripples Patriot Missile", SIAM News, July 1992.)

• $7B Rocket crashes (Ariane 5)
– When the first ESA Ariane 5 was launched on June 4, 1996, it lasted only 39

seconds, then the rocket veered off course and self-destructed. An inertial
system, produced an floating-point exception while trying to convert a 64-bit
floating-point number to an integer. Ironically, the same code was used in the
Ariane 4, but the larger values were never generated
(http://www.around.com/ariane.html).

• Intel Ships and Denies Bugs
– In 1994, Intel shipped its first Pentium processors with a floating-point divide

bug. The bug was due to bad look-up tables used in to speed up quotient
calculations. After months of denials, Intel adopted a no-questions replacement
policy, costing $300M. (http://www.intel.com/support/processors/pentium/fdiv/)

http://www.around.com/ariane.html

L11 – Floating Point 12Comp 411

Floating-Point Multiplication

S E F S E F

×
24 by 24

round

Small
ADDER

Mux
(Shift Right by 1)

ControlSubtract 127

Subtract 1

S E F

Step 1:
Multiply significands
Add exponents

ER = E1 + E2 -127

ExponentR + 127 =
Exponent1 + 127

+ Exponent2 + 127
– 127

Step 2:
Normalize result
(Result of

[1,2) *[1.2) = [1,4)
at most we shift
right one bit, and
fix exponent

L11 – Floating Point 13Comp 411

Floating-Point Addition

L11 – Floating Point 14Comp 411

MIPS Floating Point

Floating point “Co-processor”

32 Floating point registers
separate from 32 general purpose registers

32 bits wide each.

use an even-odd pair for double precision

add.d fd, fs, ft # fd = fs + ft in double precision

add.s fd, fs, ft # fd = fs + ft in single precision

sub.d, sub.s, mul.d, mul.s, div.d, div.s, abs.d, abs.s

l.d fd, address # load a double from address

l.s, s.d, s.s

Conversion instructions

Compare instructions

Branch (bc1t, bc1f)

L11 – Floating Point 15Comp 411

Chapter Three Summary

Computer arithmetic is constrained by limited precision

Bit patterns have no inherent meaning but standards do
exist
two‟s complement

IEEE 754 floating point

Computer instructions determine “meaning” of the bit
patterns

Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and
implementation).

Accurate numerical computing requires methods quite
different from those of the math you learned in grade
school.

