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Floating-Point Arithmetic

if  ((A + A) - A == A) {
SelfDestruct()

}
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What is the problem?

Many numeric applications require numbers over a VERY 
large range. (e.g. nanoseconds to centuries)

Most scientific applications require real numbers (e.g. )

But so far we only have integers.

We *COULD* implement the fractions explicitly (e.g. ½, 
1023/102934)

We *COULD* use bigger integers

Floating point is a better answer for most applications.
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Recall Scientific Notation

• Let‟s start our discussion of floating point by recalling 
scientific notation from high school

• Numbers represented in parts:
42 = 4.200 x 101

1024 = 1.024 x 103

-0.0625 = -6.250 x 10-2

• Arithmetic is done in pieces

1024 1.024 x 103

- 42 - 0.042 x 103

982 0.982 x 103

9.820 x 102

Before adding, we must match the 
exponents, effectively “denormalizing” 
the smaller magnitude number

We then “normalize” the final result so there 
is one digit to the left of the decimal point 
and adjust the exponent accordingly.

Significant Digits
Exponent
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Multiplication in Scientific Notation

• Is straightforward:
– Multiply together the significant parts

– Add the exponents

– Normalize if required

• Examples:
1024 1.024       x   103

x 0.0625 6.250      x   10-2

64 6.400      x  101

42 4.200      x   101

x 0.0625 6.250      x   10-2

2.625                  26.250       x   10-1

2.625       x   100 (Normalized)

In multiplication, how 
far is the most you will 
ever normalize?

In addition?
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FP == “Binary” Scientific Notation

• IEEE single precision floating-point format

0x42280000 in hexadecimal

• Exponent: Unsigned “Bias 127” 8-bit integer
E = Exponent + 127   
Exponent = 10000100 (132) – 127 = 5

• Significand: Unsigned fixed binary point with “hidden-one”
Significand = “1”+ 0.01010000000000000000000 = 1.3125

• Putting it all together
N = -1S (1 + F ) x 2E-127 = -10 (1.3125) x  25 = 42

1 00 00 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

“F”
Significand (Mantissa) - 1

“E”
Exponent + 127

“S”
Sign
Bit
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Example Numbers

• One Sign = +, Exponent = 0, Significand = 1.0

-10 (1 .0) x 20 = 1
S = 0, E = 0 + 127, F = 1.0 – „1‟
0  01111111  00000000000000000000000
0x3f800000

• One-half Sign = +, Exponent = -1, Significand = 1.0 
-10 (1 .0) x 2-1 = ½
S = 0, E = -1 + 127, F = 1.0 – „1‟
0  01111110  00000000000000000000000
0x3f000000

• Minus Two Sign = -, Exponent = 1, Significand = 1.0
1  10000000  00000000000000000000000
0xc0000000
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Zeros

• How do you represent 0?
• Zero Sign = ?, Exponent = ?, Significand = ?

– Here‟s where the hidden “1” comes back to bite you
– Hint: Zero is small. What‟s the smallest number you 

can generate?
– E = Exponent + 127, Exponent = -127, Signficand = 1.0

10 (1.0) x 2-127 = 5.87747 x 10-39

• IEEE Convention 
– When E = 0 (Exponent = -127), we‟ll interpret numbers 

differently…
0 00000000 00000000000000000000000 = 0 not 1.0 x 2-127

1 00000000 00000000000000000000000 = -0 not -1.0 x 2-127

Yes, there are “2” zeros. Setting E=0 is also used to represent a few other small numbers 
besides 0. In all of these numbers there is no “hidden” one assumed in F, and they are called 
the “unnormalized numbers”. WARNING: If you rely these values you are skating on thin ice!
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Infinities

• IEEE floating point also reserves the largest possible 
exponent to represent “unrepresentable” large numbers

• Positive Infinity:  S = 0, E = 255, F = 0
0 11111111 00000000000000000000000 = +∞
0x7f800000

• Negative Infinity:  S = 1, E = 255, F = 0
1 11111111 00000000000000000000000 = -∞
0xff800000

• Other numbers with E = 255 (F ≠ 0) are used to 
represent exceptions or Not-A-Number (NAN)
√-1, -∞ x 42, 0/0, ∞/ ∞, log(-5)

• It does, however, attempt to handle a few special cases:
1/0 = + ∞, -1/0 = - ∞,  log(0) = - ∞
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denorm
gap

Low-End of the IEEE Spectrum

0 2 2 2-bias 1-bias 2-bias

normal numbers with hidden bit 

The gap between 0 and the next representable normalized number is much larger
than the gaps between nearby representable numbers.

IEEE standard uses denormalized numbers to fill in the gap, making the
distances between numbers near 0 more alike.

0 2 2 2-bias 1-bias 2-bias

p bits of
precision

p-1
bits of

precision

NOTE:  Zero is represented using 0 for the exponent and 0 for the mantissa.
Either, +0 or -0 can be represented, based on the sign bit.

Denormalized numbers have a hidden “0” and a fixed exponent of -126 

X = (-1)   2       (0.F)
S -126
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Floating point AIN’T NATURAL

It is CRUCIAL for computer scientists to know that Floating Point 
arithmetic is NOT the arithmetic you learned since childhood

1.0 is NOT EQUAL to 10*0.1 (Why?)
1.0 * 10.0 == 10.0

0.1 * 10.0 != 1.0

0.1 decimal == 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + … ==
0.0 0011 0011 0011 0011 0011 …

In decimal 1/3 is a repeating fraction 0.333333…

If you quit at some fixed number of digits, then 3 * 1/3 != 1

Floating Point arithmetic IS NOT associative
x + (y + z) is not necessarily equal to (x + y) + z 

Addition may not even result in a change
(x + 1) MAY == x 
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Floating Point Disasters

• Scud Missiles get through, 28 die
– In 1991, during the 1st Gulf War, a Patriot missile defense system let a Scud get 

through, hit a barracks, and kill 28 people. The problem was due to a floating-
point error when taking the difference of a converted & scaled integer. (Source: 
Robert Skeel, "Round-off error cripples Patriot Missile", SIAM News, July 1992.)

• $7B Rocket crashes (Ariane 5)
– When the first ESA Ariane 5 was launched on June 4, 1996, it lasted only 39 

seconds, then the rocket veered off course and self-destructed. An inertial 
system, produced an floating-point exception while trying to convert a 64-bit 
floating-point number to an integer. Ironically, the same code was used in the 
Ariane 4, but the larger values were never generated 
(http://www.around.com/ariane.html).

• Intel Ships and Denies Bugs
– In 1994, Intel shipped its first Pentium processors with a floating-point divide 

bug. The bug was due to bad look-up tables used in to speed up quotient 
calculations. After months of denials, Intel adopted a no-questions replacement 
policy, costing $300M. (http://www.intel.com/support/processors/pentium/fdiv/)

http://www.around.com/ariane.html
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Floating-Point Multiplication

S E F S E F

×
24 by 24

round

Small
ADDER

Mux
(Shift Right by 1)

ControlSubtract 127

Subtract 1

S E F

Step 1:
Multiply significands
Add exponents

ER = E1 + E2 -127

ExponentR + 127 =
Exponent1 + 127 

+ Exponent2 + 127
– 127

Step 2:
Normalize result
(Result of 

[1,2) *[1.2) = [1,4)
at most we shift
right one bit, and
fix exponent
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Floating-Point Addition
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MIPS Floating Point

Floating point “Co-processor”

32 Floating point registers
separate from 32 general purpose registers

32 bits wide each.

use an even-odd pair for double precision

add.d fd, fs, ft # fd = fs + ft in double precision

add.s fd, fs, ft # fd = fs + ft in single precision

sub.d, sub.s, mul.d, mul.s, div.d, div.s, abs.d, abs.s

l.d fd, address # load a double from address

l.s, s.d, s.s

Conversion instructions

Compare instructions

Branch (bc1t, bc1f)
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Chapter Three Summary

Computer arithmetic is constrained by limited precision

Bit patterns have no inherent meaning but standards do 
exist
two‟s complement

IEEE 754 floating point

Computer instructions determine “meaning” of  the bit 
patterns

Performance and accuracy are important so there are many 
complexities in real machines (i.e., algorithms and 
implementation).

Accurate numerical computing requires methods quite 
different from those of the math you learned in grade 
school.


