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Memory, Latches, & Registers

1) Structured Logic Arrays
2) Memory Arrays
3) Transparent Latches

4) How to save
a few bucks
at toll booths

5) Edge-triggered Registers
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General Table Lookup Synthesis

MUX
Logic

A B

Fn(A,B)

Generalizing:
Remember from a few lectures ago that, in theory, we can build any 
1-output combinational logic block with multiplexers.

For an N-input function we need a _____ input multiplexer.

BIG Multiplexers?  How about 10-input function?  20-input?

AB Fn(A,B) 

00 0 

01 1 

10 1 

11 0 
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A Mux’s Guts

Hmmm, by sharing the decoder part of the logic MUXs could be 
adapted to make lookup tables with any number of outputs

I
00

I
01

I
10

I
11

A

B

A

B

A

B

A

B

Y

Decoder Selector Multiplexers
can be partitioned
into two sections.

A DECODER that
identifies the

desired input,and

a SELECTOR that 
enables that input
onto the output.

A decoder
generates
all possible

product
terms for
a set of
inputs

0

1

2

3
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A New Combinational Device

k

D1
D2

DN

DECODER:

k SELECT inputs, 

N = 2k DATA OUTPUTs.

Selected Dj HIGH; 
all others LOW.

NOW, we are well on our way to building a general 
purpose table-lookup device. 

We can build a 2-dimensional ARRAY of decoders and 
selectors as follows ...

Have I
mentioned
that HIGH

is a synonym
for „1‟ and

LOW means
the same

as „0‟
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Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

Made from PREWIRED connections    , and CONFIGURABLE
connections that can be either connected      or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector
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Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

There‟s an
extra level

of inversion
that isn‟t
necessary

in the logic.
However,

it reduces
the capacitive

load on the
module driving

this one.

These are just
“DeMorgan”ized

NOR gates

Made from PREWIRED connections    , and CONFIGURABLE
connections that can be either connected      or not connected
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Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

There‟s an
extra level

of inversion
that isn‟t
necessary

in the logic.
However,

it reduces
the capacitive

load on the
module driving

this one.

These are just
“DeMorgan”ized

NOR gates

Made from PREWIRED connections    , and CONFIGURABLE
connections that can be either connected      or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector

This ROM stores 16 bits
in 8 words of  2 bits.
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Logic According to ROMs

ROMs ignore the structure of combinational functions ...
• Size, layout, and design are independent of function
• Any Truth table can be “programmed” by

minor reconfiguration:

- Metal layer (masked ROMs)
- Fuses (Field-programmable PROMs)
- Charge on floating gates (EPROMs)
... etc.

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...

... for an N-input boolean function, size = __________
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Logic According to ROMs

ROMs ignore the structure of combinational functions ...
• Size, layout, and design are independent of function
• Any Truth table can be “programmed” by

minor reconfiguration:

- Metal layer (masked ROMs)
- Fuses (Field-programmable PROMs)
- Charge on floating gates (EPROMs)
... etc.

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...

... for an N-input boolean function, size = __________2N x #outputs
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Analog Storage: Using Capacitors

We‟ve chosen to encode information using voltages and we know 
from physics that we can “store” a voltage as “charge” on a 
capacitor:

bit line

N-channel 
FET serves

as an 
access 
switch

VREF

Pros:
w compact!
Cons:
w it leaks!  refresh
w complex interface
w reading a bit, destroys it

(you have to rewrite the value after each read)

w it‟s NOT a digital circuit
To write:

Drive bit line, turn on access fet,
force storage cap to new voltage

To read:
precharge bit line, turn on access fet,
detect (small) change in bit line voltage

word line

This storage circuit is the 
basis for commodity DRAMs



L13 – Memory   13Comp 411

DRAM Organization
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DRAM Errors

Cosmic Ray Flux vs Particle Energy (link)

•Typical RAM cell stores about 75 fC 
(femtocoulombs) of charge.

•That‟s about ½ million electrons

•Or at 3 Volts about 1.5 MeV 
(megaelectron volts)

•Sounds like a lot!

•Until you consider other sources.

•Google reports that error rates are 
100‟s to 1000‟s of times higher 
than thought. Over 3700 errors per 
DIMM per year.

http://en.wikipedia.org/wiki/Cosmic_ray
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Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element 
(called a latch) using a MUX and FEEDBACK:

0

1

A
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Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element 
(called a latch) using a MUX and FEEDBACK:

0

1

A

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.
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Y
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A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element 
(called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

A

D

G

Q

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.
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A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element 
(called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

“state” signal
appears as both
input and output

A

D

G

Q

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.
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Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element 
(called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

Q follows D

Q stable

“state” signal
appears as both
input and output

A

D

G

Q

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.
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Looking Under the Covers

Let‟s take a quick look at the equivalent circuit for our MUX 
when the gate is LOW (the feedback path is active)

D
G=0

QQ

G=0

D

0

1

1

1
Q

This storage circuit is the 
basis for commodity SRAMs

Advantages: 
1) Maintains remembered state for as

long as power is applied.
2) State is DIGITAL

Disadvantage:
1) Requires more transistors
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Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage 
indefinitely.  Our logic gates are built to restore marginal 
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable 
storage element
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BIG IDEA: use positive feedback to maintain storage 
indefinitely.  Our logic gates are built to restore marginal 
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable 
storage element

Waveform for 
inverter pair

VIN

VOUT
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Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage 
indefinitely.  Our logic gates are built to restore marginal 
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable 
storage element

Feedback constraint:
VIN = VOUT

Waveform for 
inverter pair
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VOUT
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Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage 
indefinitely.  Our logic gates are built to restore marginal 
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable 
storage element

Feedback constraint:
VIN = VOUT

Waveform for 
inverter pair

VIN

VOUT Three solutions:
w two end-points are stable
w middle point is unstable

Not affected
by noise

We‟ll get back to this!
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Static D Latch

G

D Q

D

G

Q stable

Q follows D

Positive latch

Q

“static” means latch will hold data (i.e., value of Q) while G is inactive, 
however long that may be. 

G

D Q

Negative latch

Q

G

D

1

0

What is the
difference?
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A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential 
devices are valid and stable during periods when they may influence state 
changes. This is assured with additional timing specifications.

G

D
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A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential 
devices are valid and stable during periods when they may influence state 
changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data
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A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential 
devices are valid and stable during periods when they may influence state 
changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data

>tSETUP

tSETUP: setup time
guarantee that D value has propagated through feedback path 
before latch closes
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A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential 
devices are valid and stable during periods when they may influence state 
changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data

>tSETUP

tSETUP: setup time
guarantee that D value has propagated through feedback path 
before latch closes

>tHOLD

tHOLD: hold time
guarantee latch is closed and Q is stable before allowing D to 
change
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Flakey Control Systems

Here‟s a strategy 
for saving 2 bucks 
the next time you 
find yourself at a 
toll booth!



L13 – Memory   32Comp 411

Flakey Control Systems

Here‟s a strategy 
for saving 2 bucks 
the next time you 
find yourself at a 
toll booth!



L13 – Memory   33Comp 411

Flakey Control Systems

Here‟s a strategy 
for saving 2 bucks 
the next time you 
find yourself at a 
toll booth!
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Flakey Control Systems

WARNING:
Professional Drivers Used!

DON‟T try this
At home!

Here‟s a strategy 
for saving 2 bucks 
the next time you 
find yourself at a 
toll booth!
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Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.
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Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.
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Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

KEY: At no time is there an open 
path through both gates…



L13 – Memory   51Comp 411

G

D Q

G

D Q

Edge-triggered Flip Flop
logical “escapement”

D QD

CLK

Q D

CLK

Q
master slave

Observations:
w only one latch “transparent” at any time:
w master closed when slave is open (CLK is high)
w slave closed when master is open (CLK is low)
 no combinational path through flip flop

w Q only changes shortly after 0 1 transition of 
CLK, so flip flop appears to be “triggered” by rising 
edge of CLK

Transitions mark 
instants, not 

intervals



L13 – Memory   52Comp 411

Flip Flop Waveforms

G

D Q

G

D Q D QD

CLK

Q D

CLK

Q
master slave

D

CLK

Q

master closed
slave open

slave closed
master open
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Two Issues

G

D Q

G

D QD Q
master slave

CLK

• Must allow time for the input‟s value to propagate to the 
Master‟s output while CLK is LOW.

• This is called “SET-UP” time

• Must keep the input stable, just after CLK transitions to 
HIGH. This is insurance in case the SLAVE‟s gate opens just 
before the MASTER‟s gate closes.

• This is called “HOLD-TIME”

• Can be zero (or even negative!)

• Assuring “set-up” and “hold” times is what limits a 
computer‟s performance
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Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
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Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q

tPD: maximum propagation delay, CLK Q
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Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK Q
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Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes
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Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to change
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Summary

• Regular Arrays can be used to implement arbitrary logic functions 
• ROMs decode every input combination (fixed-AND array) 

and compute the output for it (customized-OR array) 
• PLAs decode an minimal set of input combinations 

(both AND and OR arrays customized)
• Memories

• ROMs are HARDWIRED memories
• RAMs include storage elements at each WORD-line

and BIT-line intersection
• dynamic memory: compact, only reliable short-term
• static memory: controlled use of positive feedback

• Level-sensitive D-latches for static storage
• Dynamic discipline (setup and hold times)


