
L13 – Memory 1Comp 411

Memory, Latches, & Registers

1) Structured Logic Arrays
2) Memory Arrays
3) Transparent Latches

4) How to save
a few bucks
at toll booths

5) Edge-triggered Registers

L13 – Memory 2Comp 411

General Table Lookup Synthesis

MUX
Logic

A B

Fn(A,B)

Generalizing:
Remember from a few lectures ago that, in theory, we can build any
1-output combinational logic block with multiplexers.

For an N-input function we need a _____ input multiplexer.

BIG Multiplexers? How about 10-input function? 20-input?

AB Fn(A,B)

00 0

01 1

10 1

11 0

L13 – Memory 3Comp 411

General Table Lookup Synthesis

MUX
Logic

A B

Fn(A,B)

Generalizing:
Remember from a few lectures ago that, in theory, we can build any
1-output combinational logic block with multiplexers.

For an N-input function we need a _____ input multiplexer.

BIG Multiplexers? How about 10-input function? 20-input?

AB Fn(A,B)

00 0

01 1

10 1

11 0

2N

L13 – Memory 4Comp 411

A Mux’s Guts

Hmmm, by sharing the decoder part of the logic MUXs could be
adapted to make lookup tables with any number of outputs

I
00

I
01

I
10

I
11

A

B

A

B

A

B

A

B

Y

Decoder Selector Multiplexers
can be partitioned
into two sections.

A DECODER that
identifies the

desired input,and

a SELECTOR that
enables that input
onto the output.

A decoder
generates
all possible

product
terms for
a set of
inputs

0

1

2

3

L13 – Memory 5Comp 411

A New Combinational Device

k

D1
D2

DN

DECODER:

k SELECT inputs,

N = 2k DATA OUTPUTs.

Selected Dj HIGH;
all others LOW.

NOW, we are well on our way to building a general
purpose table-lookup device.

We can build a 2-dimensional ARRAY of decoders and
selectors as follows ...

Have I
mentioned
that HIGH

is a synonym
for „1‟ and

LOW means
the same

as „0‟

L13 – Memory 6Comp 411

Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

Made from PREWIRED connections , and CONFIGURABLE
connections that can be either connected or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector

L13 – Memory 7Comp 411

Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

These are just
“DeMorgan”ized

NOR gates

Made from PREWIRED connections , and CONFIGURABLE
connections that can be either connected or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector

L13 – Memory 8Comp 411

Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

There‟s an
extra level

of inversion
that isn‟t
necessary

in the logic.
However,

it reduces
the capacitive

load on the
module driving

this one.

These are just
“DeMorgan”ized

NOR gates

Made from PREWIRED connections , and CONFIGURABLE
connections that can be either connected or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector

L13 – Memory 9Comp 411

Shared Decoding Logic

0 2 3 4 5 6 71

A
B
Cin

S

Cout

There‟s an
extra level

of inversion
that isn‟t
necessary

in the logic.
However,

it reduces
the capacitive

load on the
module driving

this one.

These are just
“DeMorgan”ized

NOR gates

Made from PREWIRED connections , and CONFIGURABLE
connections that can be either connected or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector

This ROM stores 16 bits
in 8 words of 2 bits.

L13 – Memory 10Comp 411

Logic According to ROMs

ROMs ignore the structure of combinational functions ...
• Size, layout, and design are independent of function
• Any Truth table can be “programmed” by

minor reconfiguration:

- Metal layer (masked ROMs)
- Fuses (Field-programmable PROMs)
- Charge on floating gates (EPROMs)
... etc.

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...

... for an N-input boolean function, size = __________

L13 – Memory 11Comp 411

Logic According to ROMs

ROMs ignore the structure of combinational functions ...
• Size, layout, and design are independent of function
• Any Truth table can be “programmed” by

minor reconfiguration:

- Metal layer (masked ROMs)
- Fuses (Field-programmable PROMs)
- Charge on floating gates (EPROMs)
... etc.

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...

... for an N-input boolean function, size = __________2N x #outputs

L13 – Memory 12Comp 411

Analog Storage: Using Capacitors

We‟ve chosen to encode information using voltages and we know
from physics that we can “store” a voltage as “charge” on a
capacitor:

bit line

N-channel
FET serves

as an
access
switch

VREF

Pros:
w compact!
Cons:
w it leaks!  refresh
w complex interface
w reading a bit, destroys it

(you have to rewrite the value after each read)

w it‟s NOT a digital circuit
To write:

Drive bit line, turn on access fet,
force storage cap to new voltage

To read:
precharge bit line, turn on access fet,
detect (small) change in bit line voltage

word line

This storage circuit is the
basis for commodity DRAMs

L13 – Memory 13Comp 411

DRAM Organization

L13 – Memory 14Comp 411

DRAM Errors

Cosmic Ray Flux vs Particle Energy (link)

•Typical RAM cell stores about 75 fC
(femtocoulombs) of charge.

•That‟s about ½ million electrons

•Or at 3 Volts about 1.5 MeV
(megaelectron volts)

•Sounds like a lot!

•Until you consider other sources.

•Google reports that error rates are
100‟s to 1000‟s of times higher
than thought. Over 3700 errors per
DIMM per year.

http://en.wikipedia.org/wiki/Cosmic_ray

L13 – Memory 15Comp 411

Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element
(called a latch) using a MUX and FEEDBACK:

0

1

A

L13 – Memory 16Comp 411

Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element
(called a latch) using a MUX and FEEDBACK:

0

1

A

L13 – Memory 17Comp 411

Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element
(called a latch) using a MUX and FEEDBACK:

0

1

A

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.

L13 – Memory 18Comp 411

Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element
(called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

A

D

G

Q

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.

L13 – Memory 19Comp 411

Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element
(called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

“state” signal
appears as both
input and output

A

D

G

Q

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.

L13 – Memory 20Comp 411

Y

S

B

A “Digital” Storage Element

It‟s also easy to build a settable DIGITAL storage element
(called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

Q follows D

Q stable

“state” signal
appears as both
input and output

A

D

G

Q

Here‟s a feedback path,
so it‟s no longer a
combinational circuit.

L13 – Memory 21Comp 411

Looking Under the Covers

Let‟s take a quick look at the equivalent circuit for our MUX
when the gate is LOW (the feedback path is active)

D
G=0

QQ

G=0

D

0

1

1

1
Q

This storage circuit is the
basis for commodity SRAMs

Advantages:
1) Maintains remembered state for as

long as power is applied.
2) State is DIGITAL

Disadvantage:
1) Requires more transistors

L13 – Memory 22Comp 411

Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage
indefinitely. Our logic gates are built to restore marginal
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable
storage element

L13 – Memory 23Comp 411

Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage
indefinitely. Our logic gates are built to restore marginal
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable
storage element

Waveform for
inverter pair

VIN

VOUT

L13 – Memory 24Comp 411

Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage
indefinitely. Our logic gates are built to restore marginal
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable
storage element

Feedback constraint:
VIN = VOUT

Waveform for
inverter pair

VIN

VOUT

L13 – Memory 25Comp 411

Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage
indefinitely. Our logic gates are built to restore marginal
signal levels, so noise shouldn‟t be a problem!

VIN
VOUT

Result: a bistable
storage element

Feedback constraint:
VIN = VOUT

Waveform for
inverter pair

VIN

VOUT Three solutions:
w two end-points are stable
w middle point is unstable

Not affected
by noise

We‟ll get back to this!

L13 – Memory 26Comp 411

Static D Latch

G

D Q

D

G

Q stable

Q follows D

Positive latch

Q

“static” means latch will hold data (i.e., value of Q) while G is inactive,
however long that may be.

G

D Q

Negative latch

Q

G

D

1

0

What is the
difference?

L13 – Memory 27Comp 411

A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential
devices are valid and stable during periods when they may influence state
changes. This is assured with additional timing specifications.

G

D

L13 – Memory 28Comp 411

A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential
devices are valid and stable during periods when they may influence state
changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data

L13 – Memory 29Comp 411

A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential
devices are valid and stable during periods when they may influence state
changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data

>tSETUP

tSETUP: setup time
guarantee that D value has propagated through feedback path
before latch closes

L13 – Memory 30Comp 411

A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential
devices are valid and stable during periods when they may influence state
changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data

>tSETUP

tSETUP: setup time
guarantee that D value has propagated through feedback path
before latch closes

>tHOLD

tHOLD: hold time
guarantee latch is closed and Q is stable before allowing D to
change

L13 – Memory 31Comp 411

Flakey Control Systems

Here‟s a strategy
for saving 2 bucks
the next time you
find yourself at a
toll booth!

L13 – Memory 32Comp 411

Flakey Control Systems

Here‟s a strategy
for saving 2 bucks
the next time you
find yourself at a
toll booth!

L13 – Memory 33Comp 411

Flakey Control Systems

Here‟s a strategy
for saving 2 bucks
the next time you
find yourself at a
toll booth!

L13 – Memory 34Comp 411

Flakey Control Systems

WARNING:
Professional Drivers Used!

DON‟T try this
At home!

Here‟s a strategy
for saving 2 bucks
the next time you
find yourself at a
toll booth!

L13 – Memory 35Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 36Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 37Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 38Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 39Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 40Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 41Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 42Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 43Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 44Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 45Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 46Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 47Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 48Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 49Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

L13 – Memory 50Comp 411

Escapement Strategy

The Solution:
Add two gates
and only open
one at a time.

KEY: At no time is there an open
path through both gates…

L13 – Memory 51Comp 411

G

D Q

G

D Q

Edge-triggered Flip Flop
logical “escapement”

D QD

CLK

Q D

CLK

Q
master slave

Observations:
w only one latch “transparent” at any time:
w master closed when slave is open (CLK is high)
w slave closed when master is open (CLK is low)
 no combinational path through flip flop

w Q only changes shortly after 0 1 transition of
CLK, so flip flop appears to be “triggered” by rising
edge of CLK

Transitions mark
instants, not

intervals

L13 – Memory 52Comp 411

Flip Flop Waveforms

G

D Q

G

D Q D QD

CLK

Q D

CLK

Q
master slave

D

CLK

Q

master closed
slave open

slave closed
master open

L13 – Memory 53Comp 411

Two Issues

G

D Q

G

D QD Q
master slave

CLK

• Must allow time for the input‟s value to propagate to the
Master‟s output while CLK is LOW.

• This is called “SET-UP” time

• Must keep the input stable, just after CLK transitions to
HIGH. This is insurance in case the SLAVE‟s gate opens just
before the MASTER‟s gate closes.

• This is called “HOLD-TIME”

• Can be zero (or even negative!)

• Assuring “set-up” and “hold” times is what limits a
computer‟s performance

L13 – Memory 54Comp 411

Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q

L13 – Memory 55Comp 411

Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q

tPD: maximum propagation delay, CLK Q

L13 – Memory 56Comp 411

Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK Q

L13 – Memory 57Comp 411

Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

L13 – Memory 58Comp 411

Flip-Flop Timing Specs

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to change

L13 – Memory 59Comp 411

Summary

• Regular Arrays can be used to implement arbitrary logic functions
• ROMs decode every input combination (fixed-AND array)

and compute the output for it (customized-OR array)
• PLAs decode an minimal set of input combinations

(both AND and OR arrays customized)
• Memories

• ROMs are HARDWIRED memories
• RAMs include storage elements at each WORD-line

and BIT-line intersection
• dynamic memory: compact, only reliable short-term
• static memory: controlled use of positive feedback

• Level-sensitive D-latches for static storage
• Dynamic discipline (setup and hold times)

