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Control & Execution

Finite State Machines for Control

MIPS Execution
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Synchronous Systems

Latch
Combinational

logic
Latch

leading

edge

trailing

edge

On the leading edge of the clock, the input of a latch is 

transferred to the output and held.

We must be sure the output of the combinational logic has 

settled before the next leading clock edge.

Clock

data
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Asynchronous Systems

Latch
Combinational

logic
Latch

data

valid

No clock!

The data carries a “valid” signal along with it

System goes at greatest possible speed.

Only “computes” when necessary.

Everything we look at in this class will be synchronous
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Fetching Sequential Instructions

P

C

4

Read Address

Instruction

Instruction

Memory

How about branch?

latch

+
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Datapath for R-type Instructions

Read Reg. 1 (rs)
5

5

5

32

Read Reg. 2 (rt)

Write Reg. (rd)

Write Data

data 1

data 2

3

ALU Operation

Inst Bits 25-21

Inst Bits 20-16

Inst Bits 15-11

RegWrite

32

32
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MUX Blocks

0
1
2
3
4
5
6
7

Out

2 1 0

Select

In
p
u
t

8

3

Select

In Out

The select signal determines which of the inputs is connected

to the output
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Inside there is a 32 way MUX per bit

Register 0

Register 1

Register 2

Register 3

Register 4

Register ...

Register 30

Register 31

32 to1 MUX

Read Reg 1

Data 1

For EACH bit in the 32 bit register

LOT‟S OF 

CONNECTIONS!

And this is just one port!  

Remember, we have 

data1 and data2 coming 

out of the register file!

5
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Our Register File has 3 ports

Read Reg. 1
5

5

5

32

Read Reg. 2

Write Reg.

Write Data

data 1

data 2

Inst Bits 25-21

Inst Bits 20-16

Inst Bits 15-11

RegWrite

32

32

2 Read Ports

1 Write Port

REALLY LOTS OF CONNECTIONS!

This is one reason we have only a 

small number of registers

What‟s another reason?
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Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and 

determine what OPERATION to send to the ALU.

5

ALU Control

32

32

Map to ALU op

OPCODE bits

from instruction
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Remember our ALU?

That’s 
a lot of 
stuff

Flags
V,C

A B

R

Bidirectional
Shifter

BooleanAdd/Sub
Sub

Bool

Shft

Math

1     0

1     0 …

N
Flag

Z
Flag
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Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and 

determine what OPERATION to send to the ALU.

5

ALU Control

32

32

Map to ALU op

OPCODE bits

from instruction
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We can get 1 bit out with a MUX

0
1
2
3
4
5
6
7

Out

2 1 0

Select

In
p
u
t

Put the INPUT HERE

Wire these to HIGH or LOW 

depending on the value you 

want OUT for that INPUT

For example, 3 input AND has 

INPUT 7 wired HIGH and all the 

others wired LOW.
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Or use a ROM

Read-Only Memory
M-bit Address N-bit Result
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Or use sum-of-products

AND layer

M-bit Input

OR layer

N-bit OutputProduct Terms

Think of the SUM of PRODUCTS form.

The AND layer generates the products of various input bits

The OR layer combines the products into various outputs

You could also use two NAND layers instead

Could be implemented using Boolean gates, or also using a “programmable logic 

array” (PLA) [similar to a PROM, but both the AND and the OR parts are 

programmable].
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Finite State Machines

•A set of STATES

•A set of INPUTS

•A set of OUTPUTS

•A function to map the STATE and the INPUT into the next 
STATE and an OUTPUT

Remember automata?
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Traffic Light Controller
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Controller State Table

State NScar EWcar Next NSlight EWlight

NSgreen 0 0 NSgreen 1 0

NSgreen 0 1 EWgreen 0 1

NSgreen 1 0 NSgreen 1 0

NSgreen 1 1 EWgreen 0 1

EWgreen 0 0 EWgreen 0 1

EWgreen 0 1 EWgreen 0 1

EWgreen 1 0 NSgreen 1 0

EWgreen 1 1 NSgreen 1 0

Inputs Outputs
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Implementing an FSM
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FSM Example:  Recognizing Numbers

Recognize the regular expression for floating point numbers

[ \t]* [-+]?[0-9]*(. [0-9]*)? (e[-+]?[0–9]+)?

Examples:

+123.456e23

.456

1.5e-10

-123

“a” matches itself

“[abc]” matches one of a, b, or c

“[a-z]” matches one of a, b, c, d, ..., x, y, or z

“0*” matches zero or more 0‟s (“”, “0”, “00”, “0000”)

“Z?” matches zero or 1 Z‟s
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FSM Diagram

start

„ ‟

sign

„+‟ „-‟

whole

„0‟ – „9‟

„0‟ – „9‟

frac

„.‟

„.‟„.‟ „0‟ – „9‟

exp

„e‟

„e‟

„0‟ – „9‟

done„ ‟

„ ‟

„ ‟
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FSM Table

IN : STATE  NEW STATE

„ ‟ : start  start

„0‟ | „1‟ | ... | „9‟ : start  whole

„+‟ | „-‟ : start  sign

„.‟ : start  frac

„0‟ | „1‟ | ... | „9‟ : sign  whole

„.‟ : sign  frac

„0‟ | „1‟ | ... | „9‟ : whole  whole

„.‟ : whole  frac

„ ‟ : whole  done

„e‟ : whole  exp

„e‟ : frac  exp

„0‟ | „1‟ | ... | „9‟ : frac  frac

„ ‟ : frac  done

„0‟ | „1‟ | ... | „9‟ : exp  exp

„ ‟ : exp  done

STATE ASSIGNMENTS

start = 0 = 000

sign  = 1 = 001

whole = 2 = 010

frac  = 3 = 011

exp   = 4 = 100

done  = 5 = 101

error = 6 = 110
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FSM Implementation

ROM or PLA

or comb. logic

state
3

7
char in

error

ok

3

Our ROM has:

•10 inputs

•5 outputs
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FSM Summary

With JUST a register and some logic, we can implement 
complicated sequential functions like recognizing a FP 
number.

This is useful in its own right for compilers, input routines, 
etc.

The reason we’re looking at it here is to see how designers 
implement the complicated sequences of events required 
to implement instructions

Think of the OP-CODE as playing the role of the input 
character in the recognizer. The character AND the state 
determine the next state (and action).
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Five Execution Steps
1. Instruction Fetch

2. Instruction Decode and Register Fetch

3. Execution, Memory Address Computation, or Branch 
Completion

4. Memory Access or R-type instruction completion

5. Memory Read Completion

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

An FSM looks at the op-code to determine how many...
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Use PC to get instruction and put it in the Instruction Register.

Increment the PC by 4 and put the result back in the PC.

Can be described succinctly using RTL "Register-Transfer 
Language"

IR = Memory[PC]; IR is “Instruction Register”
PC = PC + 4;

Step 1:  Instruction Fetch
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Read registers rs and rt in case we need them

Compute the branch address in case the instruction is a 
branch

RTL:

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0]) << 2);

We aren't setting any control lines based on the instruction 
type (we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch
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ALU is performing one of three functions, based on 
instruction type

Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

R-type:
ALUOut = A op B;

Branch:
if (A==B) PC = ALUOut;

Step 3 (instruction dependent)
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Loads and stores access memory

MDR = Memory[ALUOut]; MDR is Memory Data Register
or

Memory[ALUOut] = B;

R-type instructions finish

Reg[IR[15-11]] = ALUOut;

Step 4 (R-type or memory-access)
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Reg[IR[20-16]]= MDR;

Step 5 Memory Read Completion
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Summary:

Step name

Action for R-type 

instructions

Action for memory-reference 

instructions

Action for 

branches

Action for       

jumps

Instruction fetch IR = Memory[PC]

PC = PC + 4

Instruction A = Reg [IR[25-21]]

decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II

computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)

jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]

completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR


