
L14 – Control & Execution 1Comp 411

Control & Execution

Finite State Machines for Control

MIPS Execution

L14 – Control & Execution 2Comp 411

Synchronous Systems

Latch
Combinational

logic
Latch

leading

edge

trailing

edge

On the leading edge of the clock, the input of a latch is

transferred to the output and held.

We must be sure the output of the combinational logic has

settled before the next leading clock edge.

Clock

data

L14 – Control & Execution 3Comp 411

Asynchronous Systems

Latch
Combinational

logic
Latch

data

valid

No clock!

The data carries a “valid” signal along with it

System goes at greatest possible speed.

Only “computes” when necessary.

Everything we look at in this class will be synchronous

L14 – Control & Execution 4Comp 411

Fetching Sequential Instructions

P

C

4

Read Address

Instruction

Instruction

Memory

How about branch?

latch

+

L14 – Control & Execution 5Comp 411

Datapath for R-type Instructions

Read Reg. 1 (rs)
5

5

5

32

Read Reg. 2 (rt)

Write Reg. (rd)

Write Data

data 1

data 2

3

ALU Operation

Inst Bits 25-21

Inst Bits 20-16

Inst Bits 15-11

RegWrite

32

32

L14 – Control & Execution 6Comp 411

MUX Blocks

0
1
2
3
4
5
6
7

Out

2 1 0

Select

In
p
u
t

8

3

Select

In Out

The select signal determines which of the inputs is connected

to the output

L14 – Control & Execution 7Comp 411

Inside there is a 32 way MUX per bit

Register 0

Register 1

Register 2

Register 3

Register 4

Register ...

Register 30

Register 31

32 to1 MUX

Read Reg 1

Data 1

For EACH bit in the 32 bit register

LOT‟S OF

CONNECTIONS!

And this is just one port!

Remember, we have

data1 and data2 coming

out of the register file!

5

L14 – Control & Execution 8Comp 411

Our Register File has 3 ports

Read Reg. 1
5

5

5

32

Read Reg. 2

Write Reg.

Write Data

data 1

data 2

Inst Bits 25-21

Inst Bits 20-16

Inst Bits 15-11

RegWrite

32

32

2 Read Ports

1 Write Port

REALLY LOTS OF CONNECTIONS!

This is one reason we have only a

small number of registers

What‟s another reason?

L14 – Control & Execution 9Comp 411

Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and

determine what OPERATION to send to the ALU.

5

ALU Control

32

32

Map to ALU op

OPCODE bits

from instruction

L14 – Control & Execution 10Comp 411

Remember our ALU?

That’s
a lot of
stuff

Flags
V,C

A B

R

Bidirectional
Shifter

BooleanAdd/Sub
Sub

Bool

Shft

Math

1 0

1 0 …

N
Flag

Z
Flag

L14 – Control & Execution 11Comp 411

Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and

determine what OPERATION to send to the ALU.

5

ALU Control

32

32

Map to ALU op

OPCODE bits

from instruction

L14 – Control & Execution 12Comp 411

We can get 1 bit out with a MUX

0
1
2
3
4
5
6
7

Out

2 1 0

Select

In
p
u
t

Put the INPUT HERE

Wire these to HIGH or LOW

depending on the value you

want OUT for that INPUT

For example, 3 input AND has

INPUT 7 wired HIGH and all the

others wired LOW.

L14 – Control & Execution 13Comp 411

Or use a ROM

Read-Only Memory
M-bit Address N-bit Result

L14 – Control & Execution 14Comp 411

Or use sum-of-products

AND layer

M-bit Input

OR layer

N-bit OutputProduct Terms

Think of the SUM of PRODUCTS form.

The AND layer generates the products of various input bits

The OR layer combines the products into various outputs

You could also use two NAND layers instead

Could be implemented using Boolean gates, or also using a “programmable logic

array” (PLA) [similar to a PROM, but both the AND and the OR parts are

programmable].

L14 – Control & Execution 15Comp 411

Finite State Machines

•A set of STATES

•A set of INPUTS

•A set of OUTPUTS

•A function to map the STATE and the INPUT into the next
STATE and an OUTPUT

Remember automata?

L14 – Control & Execution 16Comp 411

Traffic Light Controller

L14 – Control & Execution 17Comp 411

Controller State Table

State NScar EWcar Next NSlight EWlight

NSgreen 0 0 NSgreen 1 0

NSgreen 0 1 EWgreen 0 1

NSgreen 1 0 NSgreen 1 0

NSgreen 1 1 EWgreen 0 1

EWgreen 0 0 EWgreen 0 1

EWgreen 0 1 EWgreen 0 1

EWgreen 1 0 NSgreen 1 0

EWgreen 1 1 NSgreen 1 0

Inputs Outputs

L14 – Control & Execution 18Comp 411

Implementing an FSM

L14 – Control & Execution 19Comp 411

FSM Example: Recognizing Numbers

Recognize the regular expression for floating point numbers

[\t]* [-+]?[0-9]*(. [0-9]*)? (e[-+]?[0–9]+)?

Examples:

+123.456e23

.456

1.5e-10

-123

“a” matches itself

“[abc]” matches one of a, b, or c

“[a-z]” matches one of a, b, c, d, ..., x, y, or z

“0*” matches zero or more 0‟s (“”, “0”, “00”, “0000”)

“Z?” matches zero or 1 Z‟s

L14 – Control & Execution 20Comp 411

FSM Diagram

start

„ ‟

sign

„+‟ „-‟

whole

„0‟ – „9‟

„0‟ – „9‟

frac

„.‟

„.‟„.‟ „0‟ – „9‟

exp

„e‟

„e‟

„0‟ – „9‟

done„ ‟

„ ‟

„ ‟

L14 – Control & Execution 21Comp 411

FSM Table

IN : STATE  NEW STATE

„ ‟ : start  start

„0‟ | „1‟ | ... | „9‟ : start  whole

„+‟ | „-‟ : start  sign

„.‟ : start  frac

„0‟ | „1‟ | ... | „9‟ : sign  whole

„.‟ : sign  frac

„0‟ | „1‟ | ... | „9‟ : whole  whole

„.‟ : whole  frac

„ ‟ : whole  done

„e‟ : whole  exp

„e‟ : frac  exp

„0‟ | „1‟ | ... | „9‟ : frac  frac

„ ‟ : frac  done

„0‟ | „1‟ | ... | „9‟ : exp  exp

„ ‟ : exp  done

STATE ASSIGNMENTS

start = 0 = 000

sign = 1 = 001

whole = 2 = 010

frac = 3 = 011

exp = 4 = 100

done = 5 = 101

error = 6 = 110

L14 – Control & Execution 22Comp 411

FSM Implementation

ROM or PLA

or comb. logic

state
3

7
char in

error

ok

3

Our ROM has:

•10 inputs

•5 outputs

L14 – Control & Execution 23Comp 411

FSM Summary

With JUST a register and some logic, we can implement
complicated sequential functions like recognizing a FP
number.

This is useful in its own right for compilers, input routines,
etc.

The reason we’re looking at it here is to see how designers
implement the complicated sequences of events required
to implement instructions

Think of the OP-CODE as playing the role of the input
character in the recognizer. The character AND the state
determine the next state (and action).

L14 – Control & Execution 24Comp 411

Five Execution Steps
1. Instruction Fetch

2. Instruction Decode and Register Fetch

3. Execution, Memory Address Computation, or Branch
Completion

4. Memory Access or R-type instruction completion

5. Memory Read Completion

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

An FSM looks at the op-code to determine how many...

L14 – Control & Execution 25Comp 411

Use PC to get instruction and put it in the Instruction Register.

Increment the PC by 4 and put the result back in the PC.

Can be described succinctly using RTL "Register-Transfer
Language"

IR = Memory[PC]; IR is “Instruction Register”
PC = PC + 4;

Step 1: Instruction Fetch

L14 – Control & Execution 26Comp 411

Read registers rs and rt in case we need them

Compute the branch address in case the instruction is a
branch

RTL:

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0]) << 2);

We aren't setting any control lines based on the instruction
type (we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

L14 – Control & Execution 27Comp 411

ALU is performing one of three functions, based on
instruction type

Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

R-type:
ALUOut = A op B;

Branch:
if (A==B) PC = ALUOut;

Step 3 (instruction dependent)

L14 – Control & Execution 28Comp 411

Loads and stores access memory

MDR = Memory[ALUOut]; MDR is Memory Data Register
or

Memory[ALUOut] = B;

R-type instructions finish

Reg[IR[15-11]] = ALUOut;

Step 4 (R-type or memory-access)

L14 – Control & Execution 29Comp 411

Reg[IR[20-16]]= MDR;

Step 5 Memory Read Completion

L14 – Control & Execution 30Comp 411

Summary:

Step name

Action for R-type

instructions

Action for memory-reference

instructions

Action for

branches

Action for

jumps

Instruction fetch IR = Memory[PC]

PC = PC + 4

Instruction A = Reg [IR[25-21]]

decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II

computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)

jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]

completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

