
L17 – Pipeline Issues & Memory  1Comp 411 

CPU Pipelining Issues

This pipe stuff makes
my head hurt!

What have you been 
beating your head 

against?



L17 – Pipeline Issues & Memory  2Comp 411 

Pipelining

Improve performance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline.  Do we 

achieve this?

Instruction


fetch
Reg ALU

Data


access
Reg

8 ns
Instruction


fetch
Reg ALU

Data


access
Reg

8 ns
Instruction


fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program


execution


order


(in instructions)

Instruction


fetch
Reg ALU

Data


access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction


fetch
Reg ALU

Data


access
Reg

2 ns
Instruction


fetch
Reg ALU

Data


access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns




Program


execution


order


(in instructions)



L17 – Pipeline Issues & Memory  3Comp 411 

Pipelining

What makes it easy
all instructions are the same length

just a few instruction formats

memory operands appear only in loads and stores

What makes it hard?
structural hazards:   suppose we had only one memory

control hazards:  need to worry about branch instructions

data hazards:  an instruction depends on a previous instruction

Individual Instructions still take the same number of cycles

But we’ve improved the through-put by increasing the 
number of simultaneously executing instructions



L17 – Pipeline Issues & Memory  4Comp 411 

Structural Hazards

Inst

Fetch

Reg

Read

ALU Data

Access

Reg 
Write

Inst

Fetch

Reg

Read

ALU Data

Access

Reg 
Write

Inst

Fetch

Reg

Read

ALU Data

Access

Reg 
Write

Inst

Fetch

Reg

Read

ALU Data

Access

Reg 
Write



L17 – Pipeline Issues & Memory  5Comp 411 

Problem with starting next instruction before first is 
finished
dependencies that “go backward in time” are data hazards

Data Hazards

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program


execution


order


(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of 


register $2:

DM Reg

Reg

Reg

Reg

DM



L17 – Pipeline Issues & Memory  6Comp 411 

Have compiler guarantee no hazards

Where do we insert the “nops” ?

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Problem:  this really slows us down!

Software Solution



L17 – Pipeline Issues & Memory  7Comp 411 

Use temporary results, don’t wait for them to be written register file 
forwarding to handle read/write to same register ALU forwarding

Forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program


execution order


(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :

X X X X – 20 X X X XValue of MEM/WB :

DM



L17 – Pipeline Issues & Memory  8Comp 411 

Load word can still cause a hazard:
an instruction tries to read a register following a load instruction that writes to 

the same register.

Thus, we need a hazard detection unit to “stall” the instruction

Can't always forward

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program


execution


order


(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM



L17 – Pipeline Issues & Memory  9Comp 411 

Stalling

We can stall the pipeline by keeping an instruction in the 
same stage

lw $2, 20($1)

Program


execution


order


(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble



L17 – Pipeline Issues & Memory  10Comp 411 

When we decide to branch, other instructions are in the 
pipeline!

We are predicting “branch not taken”
need to add hardware for flushing instructions if we are wrong

Branch Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program


execution


order


(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg



L17 – Pipeline Issues & Memory  11Comp 411 

Improving Performance

Try to avoid stalls!  E.g., reorder these instructions:

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

Add a “branch delay slot”
the next instruction after a branch is always executed

rely on compiler to “fill” the slot with something useful

Superscalar:  start more than one instruction in the same 
cycle



L17 – Pipeline Issues & Memory  12Comp 411 

Dynamic Scheduling

The hardware performs the “scheduling” 

hardware tries to find instructions to execute

out of order execution is possible

speculative execution and dynamic branch prediction

All modern processors are very complicated

Pentium 4: 20 stage pipeline, 6 simultaneous instructions

PowerPC and Pentium:  branch history table

Compiler technology important



L17 – Pipeline Issues & Memory  13Comp 411 

Pipeline Summary (I)

• Started with unpipelined implementation
– direct execute, 1 cycle/instruction

– it had a long cycle time: mem + regs + alu + mem + wb

• We ended up with a 5-stage pipelined implementation
– increase throughput (3x???)

– delayed branch decision (1 cycle)

Choose to execute instruction after branch

– delayed register writeback (3 cycles)

Add bypass paths (6 x 2 = 12) to forward correct value

– memory data available only in WB stage

Introduce NOPs at IRALU, to stall IF and RF stages 
until LD result was ready



L17 – Pipeline Issues & Memory  14Comp 411 

Pipeline Summary (II)

Fallacy #1: Pipelining is easy
Smart people get it wrong all of the time! 

Fallacy #2: Pipelining is independent of ISA
Many ISA decisions impact how easy/costly it is to 
implement pipelining (i.e. branch semantics, addressing 
modes). 

Fallacy #3: Increasing Pipeline stages improves 
performance
Diminishing returns. Increasing complexity. 



L17 – Pipeline Issues & Memory  15Comp 411 

RISC = Simplicity???

Generalization of 
registers and 

operand coding

Complex instructions, 
addressing modes

Addressing
features, eg

index registers

RISCs

Primitive Machines 
with direct 

implementations

VLIWs,
Super-Scalars ?

Pipelines, Bypasses,
Annulment, …, ...

“The P.T. Barnum World’s Tallest Dwarf Competition”

World’s Most Complex RISC?



L17 – Pipeline Issues & Memory  16Comp 411 

Memory Hierarchy

Why are you dressed 
like that? Halloween 
was weeks ago!

It makes me look faster,
don’t you think?

•Memory Flavors
•Principle of Locality
•Program Traces
•Memory Hierarchies
•Associativity

(Study Chapter 5)



L17 – Pipeline Issues & Memory  17Comp 411 

What Do We Want in a Memory?

PC

INST

MADDR

MDATA

miniMIPS MEMORY

Capacity Latency Cost

Register 1000’s of bits 10 ps $$$$

SRAM 1’s Mbytes 0.2 ns $$$

DRAM 10’s Gbytes 10 ns $

Hard disk* 10’s Tbytes 10 ms ¢

Want?

* non-volatile

ADDR

DOUT

ADDR

DATA

R/WWr

100 Gbytes 0.2 ns              cheap



L17 – Pipeline Issues & Memory  18Comp 411 

Tricks for Increasing Throughput

R
ow

 A
d

d
re

ss
 D

ec
od

er
Col.

1
Col.
2

Col.
3

Col.
2M

Row 1

Row 2

Row 2N

Column Multiplexer/Shifter
N

N

Multiplexed  
Address

bit lines word lines

memory
cell

(one bit)

Dt1 t2 t3 t4

The first thing that should 
pop into your mind when 
asked to speed up a digital 
design…

PIPELINING

Synchronous DRAM
(SDRAM)

($25 per Gbyte)

Clock

Data
out

Double-clocked
Synchronous DRAM

(SDRAM)



L17 – Pipeline Issues & Memory  19Comp 411 

Hard Disk Drives

Typical drive:
• Average latency = 4 ms (7200 rpm)
• Average seek time = 8.5 ms
• Transfer rate = 140 Mbytes/s (SATA)
• Capacity = 1.5 T byte
• Cost = $149 (10¢ G byte)

fi
gu

re
s 

fr
om

 w
w

w
.p

ct
ec

hg
ui

de
.c

om



L17 – Pipeline Issues & Memory  20Comp 411 

Quantity vs Quality…

Your memory system can be
• BIG and SLOW... or
• SMALL and FAST.

10-8 10-3 1 100

.1

10

1000

100

1

10-6

DVD Burner (0.06$/G, 150ms)

DISK (0.10$/GB, 10 mS)

DRAM (25$/GB, 5 ns)

SRAM (5000$/GB, 0.2 ns)

Access
Time

.01

$/GB

We’ve explored a range of 
device-design trade-offs.

Is there an 
ARCHITECTURAL solution 
to this DELIMA?

1



L17 – Pipeline Issues & Memory  21Comp 411 

Managing Memory via Programming

• In reality,  systems are built with a mixture of all these 
various memory types

• How do we make the most effective use of each memory? 
• We could push all of these issues off to programmers

• Keep most frequently used variables and stack in SRAM
• Keep large data structures (arrays, lists, etc) in DRAM
• Keep bigger data structures on disk (databases) on DISK

• It is harder than you think… data usage evolves over a 
program’s execution  

CPU

SRAM
MAIN
MEM



L17 – Pipeline Issues & Memory  22Comp 411 

Best of Both Worlds

What we REALLY want:  A BIG, FAST memory!
(Keep everything within instant access)

We’d like to have a memory system that
• PERFORMS like 10 GBytes of SRAM; but
• COSTS like 1-4 Gbytes of slow memory.

SURPRISE: We can (nearly) get our wish!

KEY: Use a hierarchy of memory technologies:

CPU

SRAM
MAIN
MEM



L17 – Pipeline Issues & Memory  23Comp 411 

Key IDEA

• Keep the most often-used data in a small, 
fast SRAM (often local to CPU chip)

• Refer to Main Memory only rarely, for 
remaining data.

The reason this strategy works:  LOCALITY

Locality of Reference:

Reference to location X at time t implies 

that reference to location  X+X  at time  

t+t becomes more probable as X and 

t approach zero.



L17 – Pipeline Issues & Memory  24Comp 411 

Cache

cache (kash) 
n. 

A hiding place used especially for storing provisions. 

A place for concealment and safekeeping, as of valuables. 

The store of goods or valuables concealed in a hiding place. 

Computer Science. A fast storage buffer in the central processing 
unit of a computer. In this sense, also called cache memory.

v. tr. cached, cach·ing, cach·es. 

To hide or store in a cache.



L17 – Pipeline Issues & Memory  25Comp 411 

Cache Analogy

You are writing a term paper at a table in the 
library

As you work you realize you need a book

You stop writing, fetch the reference, continue 
writing

You don’t immediately return the book, maybe you’ll 
need it again

Soon you have a few books at your table and no 
longer have to fetch more books

The table is a CACHE for the rest of the library



L17 – Pipeline Issues & Memory  26Comp 411 

Typical Memory Reference Patterns

time

address

data

stack

program

MEMORY TRACE –
A temporal sequence
of memory references 
(addresses) from a
real program. 

TEMPORAL LOCALITY –
If an item is referenced,
it will tend to be 
referenced again soon

SPATIAL LOCALITY –
If an item is referenced,
nearby items will tend
to be referenced soon.



L17 – Pipeline Issues & Memory  27Comp 411 

Working Set

time

address

data

stack

program

t

|S|

t

S is the set of locations 
accessed during  t.

Working set:  a set S 
which changes slowly 
w.r.t. access time.

Working set size, |S|



L17 – Pipeline Issues & Memory  28Comp 411 

Exploiting the Memory Hierarchy

Approach 1 (Cray, others): Expose Hierarchy

• Registers, Main Memory, 

Disk each available as
storage alternatives;

• Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy
• Programming model: SINGLE kind of memory, single address 

space.

• Machine AUTOMATICALLY assigns locations to fast or slow 
memory, depending on usage patterns.

CPU

SRAM
MAIN
MEM

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”



L17 – Pipeline Issues & Memory  29Comp 411 

Why We Care

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”

TRICK #1: How to make slow MAIN MEMORY appear faster than it is.

CPU performance is dominated by memory performance.
More significant than:

ISA, circuit optimization, pipelining, super-scalar, etc  

TRICK #2: How to make a small MAIN MEMORY appear bigger than it is.

“VIRTUAL MEMORY”
“SWAP SPACE”

Technique: VIRTUAL MEMORY 

“CACHE”

Technique: CACHEING



L17 – Pipeline Issues & Memory  30Comp 411 

The Cache Idea:
Program-Transparent Memory Hierarchy

Cache contains TEMPORARY COPIES of selected
main memory locations...  eg. Mem[100] =  37

GOALS:  
1) Improve the average access time

2) Transparency (compatibility, programming ease)

1.0 (1.0-)

CPU

"CACHE"

DYNAMIC
RAM

"MAIN
MEMORY"

100     37



(1-)

HIT RATIO:  Fraction of refs found in CACHE.
MISS RATIO: Remaining references.

Challenge:
To make the
hit ratio as
high as
possible.mcmccave t)(t)tt)((tt  11



L17 – Pipeline Issues & Memory  31Comp 411 

How High of a Hit Ratio?

Suppose we can easily build an on-chip static memory 
with a 0.8 nS access time, but the fastest dynamic 
memories that we can buy for main memory have an 
average access time of 10 nS. How high of a hit rate do 
we need to sustain an average access time of 1 nS?

m

cave

t

tt 
 1 %98

10

8.01
1 




WOW, a cache really needs to be good?



L17 – Pipeline Issues & Memory  32Comp 411 

Cache
Sits between CPU and main memory

Very fast table that stores a TAG and DATA

TAG is the memory address

DATA is a copy of memory at the address given by TAG

1000 17

1040 1

1032 97

1008 11

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data



L17 – Pipeline Issues & Memory  33Comp 411 

Cache Access

On load we look in the TAG entries for the address we’re loading

Found  a HIT, return the DATA

Not Found  a MISS, go to memory for the data and put it and 

the address (TAG) in the cache

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

1000 17

1040 1

1032 97

1008 11

Tag Data



L17 – Pipeline Issues & Memory  34Comp 411 

Cache Lines

Usually get more data than requested (Why?)

a LINE is the unit of memory stored in the cache

usually much bigger than 1 word, 32 bytes per line is common

bigger LINE means fewer misses because of spatial locality

but bigger LINE means longer time on miss

1000 17 23

1040 1 4

1032 97 25

1008 11 5

Tag Data

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory



L17 – Pipeline Issues & Memory  35Comp 411 

Finding the TAG in the Cache

A 1MByte cache may have 32k different lines each of 32 bytes

We can’t afford to sequentially search the 32k different tags

ASSOCIATIVE memory uses hardware to compare the address to 

the tags in parallel but it is expensive and 1MByte is thus unlikely

TAG Data

= ?

TAG Data

= ?

TAG Data

= ?

Incoming
Address

HIT

Data
Out



L17 – Pipeline Issues & Memory  36Comp 411 

Finding the TAG in the Cache

A 1MByte cache may have 32k different lines each of 32 bytes

We can’t afford to sequentially search the 32k different tags

ASSOCIATIVE memory uses hardware to compare the address to 

the tags in parallel but it is expensive and 1MByte is thus unlikely

DIRECT MAPPED CACHE computes the cache entry from the 

address

multiple addresses map to the same cache line

use TAG to determine if right 

Choose some bits from the address to determine the Cache line

low 5 bits determine which byte within the line

we need 15 bits to determine which of the 32k different lines 

has the data

which of the 32 – 5 = 27 remaining bits should we use?



L17 – Pipeline Issues & Memory  37Comp 411 

Direct-Mapping Example

1024 44 99

1000 17 23

1040 1 4

1016 29 38

Tag Data

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

•With 8 byte lines, the bottom 3 bits determine the byte within the line

•With 4 cache lines, the next 2 bits determine which line to use

1024d = 10000000000b  line = 00b = 0d

1000d = 01111101000b  line = 01b = 1d

1040d = 10000010000b  line = 10b = 2d



L17 – Pipeline Issues & Memory  38Comp 411 

Direct Mapping Miss

1024 44 99

1000 17 23

1040 1 4

1016 29 38

Tag Data

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

•What happens when we now ask for address 1008?

1008d = 01111110000b  line = 10b = 2d

but earlier we put 1040d there...

1040d = 10000010000b  line = 10b = 2d

1008 11 5



L17 – Pipeline Issues & Memory  39Comp 411 

Miss Penalty and Rate

The MISS PENALTY is the time it takes to read the memory if it isn’t 

in the cache

50 to 100 cycles is common.

The MISS RATE is the fraction of accesses which MISS

The HIT RATE is the fraction of accesses which HIT

MISS RATE + HIT RATE = 1

Suppose a particular cache has a MISS PENALTY of 100 cycles 

and a HIT RATE of 95%. The CPI for load on HIT is 5 but on a 

MISS it is 105. What is the average CPI for load?

Average CPI = 10

Suppose MISS PENALTY = 120 cycles?

then CPI = 11 (slower memory doesn’t hurt much)

5 * 0.95 + 105 * 0.05 = 10



L17 – Pipeline Issues & Memory  40Comp 411 

Some Associativity can help

Direct-Mapped caches are very common but can cause 
problems...

SET ASSOCIATIVITY can help.

Multiple Direct-mapped caches, then compare multiple 
TAGS
2-way set associative = 2 direct mapped + 2 TAG comparisons

4-way set associative = 4 direct mapped + 4 TAG comparisons

Now array size == power of 2 doesn’t get us in trouble

But
slower

less memory in same area

maybe direct mapped wins...



L17 – Pipeline Issues & Memory  41Comp 411 

What about store?

What happens in the cache on a store?
WRITE BACK CACHE  put it in the cache, write on replacement

WRITE THROUGH CACHE  put in cache and in memory

What happens on store and a MISS?
WRITE BACK will fetch the line into cache

WRITE THROUGH might just put it in memory


