
L20 – OS and IO 1Comp 411

Operating System

The OS is JUST A PROGRAM

but it runs in SUPERVISOR state

access to PHYSICAL addresses

access to special registers (like page table register)

all IO devices, etc.

whereas ordinary programs run in USER state

only access to VIRTUAL addresses through page tables

normally no access to IO devices

Programs ask the OS for services (syscall)

give me more memory

read/write data from/to disk

put pixel on screen

give me the next character from the keyboard

L20 – OS and IO 2Comp 411

OS Execution

The OS keeps a PROCESS TABLE of all running

programs

disk location of executable

memory location of page tables

priority

current status (running, waiting ready, waiting on an event,

etc.)

PID (process ID) a number assigned to the process

A PROCESS is an independent program running in

its own memory space

The OS allocates a new entry in the PROCESS

TABLE

And sets up the PAGE TABLE for the new process

L20 – OS and IO 3Comp 411

Initial Page Table

foo

foo

swap

0x00000000 0 text segment

0x00001000 0 text segment

0x00002000 1 data segment

0x00003000

0x00004000

0x00005000

0xffffe000

0xfffff000 1 stack

memory

disk

page table

L20 – OS and IO 4Comp 411

Program Startup
Now everything is ready

The PROCESS TABLE entry has been set up

The PAGE TABLE for the process has been initialized

The TEXT SEGMENT is out on disk

The DATA SEGMENT is in memory

The STACK SEGMENT has been allocated 1 PAGE

The OS is ready to take the leap of faith

ONLY ONE program runs at a time

When your program is running the OS is not

To run your program and maintain control the OS

must trust that it will eventually regain control

when the program asks for a service

when the program does something illegal

when a timer goes off

L20 – OS and IO 5Comp 411

Page Fault in the Text

When we branch to the beginning of “main” we get a

page fault

So the OS copies the first page of the TEXT of main

to a free page in memory

L20 – OS and IO 6Comp 411

Page Fault in the Text

foo

foo

swap

0x00000000 1 text segment

0x00001000 0 text segment

0x00002000 1 data segment

0x00003000

0x00004000

0x00005000

0xffffe000

0xfffff000 1 stack

memory

disk

page table

L20 – OS and IO 7Comp 411

Allocate a block of memory

Now suppose the first thing our program needs to

do is get 6k of memory for an array

The program uses “new” to make an array

Down inside “new” it calls “malloc”

Down inside “malloc” it uses a system call to ask

the OS for memory

The OS will have to find 2 pages to hold 6k

L20 – OS and IO 8Comp 411

Allocate a block of memory

foo

foo

swap

0x00000000 1 text segment

0x00001000 0 text segment

0x00002000 1 data segment

0x00003000 1 heap

0x00004000 1 heap

0x00005000

0xffffe000

0xfffff000 1 stack

disk

page table

L20 – OS and IO 9Comp 411

Fault in the other page of TEXT

foo

foo

swap

0x00000000 1 text segment

0x00001000 1 text segment

0x00002000 1 data segment

0x00003000 1 heap

0x00004000 1 heap

0x00005000

0xffffe000

0xfffff000 1 stack

memory

disk

page table

L20 – OS and IO 10Comp 411

Grow the stack

Now our program needs more stack space

Perhaps it has to call a recursive function to

traverse a complex data structure

Or perhaps the user declares an “automatic” array

like

double work[1000];

which needs 8000 bytes of memory

L20 – OS and IO 11Comp 411

Grow the stack

foo

foo

swap

0x00000000 1 text segment

0x00001000 1 text segment

0x00002000 1 data segment

0x00003000 1 heap

0x00004000 1 heap

0x00005000

...

0xffffd000 1

0xffffe000 1

0xfffff000 1 stack

memory

disk

page table

L20 – OS and IO 12Comp 411

Get partially paged out

Sometime later, some other program running on the

system needs more memory

It asks the OS

The OS realizes that not enough physical memory

remains available

So the OS chooses to PAGE OUT one page from our

program

It would choose one that hasn’t been used for a

while

like possibly one of the heap segments

L20 – OS and IO 13Comp 411

Partially Paged Out

foo

foo

swap

0x00000000 1 text segment

0x00001000 1 text segment

0x00002000 1 data segment

0x00003000 0 heap

0x00004000 1 heap

0x00005000

...

0xffffd000 1

0xffffe000 1

0xfffff000 1 stack

memory

disk

page table

L20 – OS and IO 14Comp 411

Later we need that page

foo

foo

swap

0x00000000 1 text segment

0x00001000 1 text segment

0x00002000 1 data segment

0x00003000 1 heap

0x00004000 1 heap

0x00005000

...

0xffffd000 1

0xffffe000 1

0xfffff000 1 stack

memory

disk

page table

L20 – OS and IO 15Comp 411

Exit

Finally our program exits

It calls the “exit” system call to notify the OS that it

is done

The OS puts the memory back on the free list

Cleans up the PAGE TABLE and PROCESS TABLE

And goes on about its business...

L20 – OS and IO 16Comp 411

Interrupts

How does the CPU manage SLOW I/O devices?

Programmed I/O

Interrupt Driven I/O

L20 – OS and IO 17Comp 411

Polling

Advantages

Simple

No surprises

Processor in full control

Disadvantages

Polling can waste lots of time

L20 – OS and IO 18Comp 411

Interrupt Driven I/O

Advantage

CPU only bothered when actually needed

Disadvantage

Can occur at surprising or inconvenient times

Have to save and restore state

L20 – OS and IO 19Comp 411

MIPS Exceptions

Reset

Hardware Errors (Bus Error, Cache Error)

External Interrupt (6 inputs)

Address Error

Reserved Instruction

TLB Miss

System Call

Breakpoint

Trap

Integer Overflow

Floating Point Error

Timer

And a few more

L20 – OS and IO 20Comp 411

Exception Processing

EPC gets address of faulty instruction or of next

instruction depending on type of exception

Switch to SUPERVISOR mode

Jump to a new location based on type of exception

PC  FFFF FFFF BFC0 0000 for Reset

PC  FFFF FFFF BFC0 0300 for Hardware error

PC  FFFF FFFF BFC0 0380 for external interrupts

PC  FFFF FFFF BFC0 0400 for …

Save registers

Examine the “cause” register to find out why you

came here

Branch to code to do the right thing

L20 – OS and IO 21Comp 411

Quick overview of I/O devices

This is the “rest” of the computer

– Used to be called “peripherals”

– …but that term does not do justice to them!

L20 – OS and IO 22Comp 411

Magnetic Disk

Long term, nonvolatile storage

Large, inexpensive, and slow

Rotating platter(s) coated with magnetic material

Use a movable read/write head to access

When magnetized region zips past coils in head, a

tiny signal is produced

Force current through coils to generate magnetic

field to magnetize tiny regions on the disk

Use feedback to keep the head in the right place

L20 – OS and IO 23Comp 411

Magnetic Disks: Outside

L20 – OS and IO 24Comp 411

Inside

L20 – OS and IO 25Comp 411

Platters and Heads

L20 – OS and IO 26Comp 411

Magnetic Disk Organization

• Cylinder: All tracks under head with arm in a fixed position

• Read/Write time has 3 components

•Seek time to move the arm

•Rotational latency: wait for the desired sector to come by

•Transfer time: transfer bits

L20 – OS and IO 27Comp 411

CD

L20 – OS and IO 28Comp 411

LCD

L20 – OS and IO 29Comp 411

Graphics Cards

L20 – OS and IO 30Comp 411

Polygons to Surfaces

• Numerical coordinates specify vertex positions in 3D

• Matrix multiply transforms 3D coordinates to eye coordinates

• Divide projects 3D to 2D in perspective

• Pixel processors fill polygons with appropriate colors based on lighting model

L20 – OS and IO 31Comp 411

Sound

Sound is variations in air pressure

A microphone converts these into an

analog electrical signal

An analog-to-digital converter samples

this at frequent intervals

The resulting numbers are stored in a

file (.wav)

On playback a digital-to-analog

converter changes these numbers

into an analog electrical signal

And the moving cone of a speaker

converts this into varying air

pressure

L20 – OS and IO 32Comp 411

That’s it folks!

You now have a pretty good idea about:

• How computers are designed and how they work

– How data and instructions are represented

– How arithmetic and logic operations are performed

– How ALU and control circuits are implemented

– How registers and the memory hierarchy are

implemented

– How performance is measured

– How performance is increased via pipelining, caching

– How VM works.

– (briefly) What the rest of the computer looks like (disks,

sound, etc.)

