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Abstract— In this paper, we propose a new concept —
the “Reciprocal Velocity Obstacle”— for real-time multi-agent
navigation. We consider the case in which each agent navi-
gates independently without explicit communication with other
agents. Our formulation is an extension of the Velocity Obstacle
concept [3], which was introduced for navigation among (pas-
sively) moving obstacles. Our approach takes into account the
reactive behavior of the other agents by implicitly assuming that
the other agents make a similar collision-avoidance reasoning.
We show that this method guarantees safe and oscillation-
free motions for each of the agents. We apply our concept
to navigation of hundreds of agents in densely populated
environments containing both static and moving obstacles, and
we show that real-time and scalable performance is achieved
in such challenging scenarios.

I. INTRODUCTION

Recently, multi-agent systems have been gaining increas-
ing attention, especially to carry out tasks that can be done
more efficiently and effectively with a team of agents such
as assembly, demining, search and rescue, etc. Other than
control and coordination of multiple agents, one of the cen-
tral problems in this area is motion planning among multiple
moving agents. In this paper, we address the problem of real-
time navigation for multi-agent motion planning in dynamic
environments containing both static and moving obstacles.
Each agent navigates independently without explicit commu-
nication with the other agents. Therefore, we can formulate
the basic problem as navigating a single agent to its goal
location without colliding with the obstacles and the other
agents in the environment.

This problem is not only of interest to robotics but also has
been widely studied for crowd simulation in computer graph-
ics, virtual environments, video gaming, traffic engineering
and architecture design, where each agent can be considered
as a virtual human, a moving car, or an individual pedestrian.
A common approach to this problem is continuous naviga-
tion. It involves a continuous cycle of sensing and acting,
and during each cycle, each agent ‘makes a move’ based on
its observation of its surroundings. Global path planning and
local collision avoidance are often decoupled in this scheme.
Typically, a global path to the goal location indicates the
global direction of motion, while collisions with other agents
and obstacles are avoided by locally navigating around them.

The local collision avoidance technique is an important
module for these planners, and many approaches have been
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Fig. 1. The paths followed by two agents that have opposite preferred
velocities and are on a head-on collision course, using the original Velocity
Obstacle concept (left) and the Reciprocal Velocity Obstacle concept (right).

proposed. However, often these approaches deal with ob-
stacles that are assumed to move passively through the
environment without perception of their surroundings. In
a multi-agent setting, this assumption does not hold as
the agents do perceive each other, and actively adapt their
motions accordingly. When each of the agents does not take
into account that the other agents also have the decision-
making ability to avoid collisions, the resulting motion is
prone to contain undesirable and unrealistic oscillations.
Although this problem has been identified by several prior
works (see, e.g., [2], [1], [9]), no good solution is known for
safe and oscillation-free navigation among multiple agents
in large, cluttered environments.

Main Results: In this paper, we introduce a new concept
for local reactive collision avoidance called the Reciprocal
Velocity Obstacle, which implicitly assumes that the other
agents make a similar collision-avoidance reasoning. Under
this assumption, our framework is guaranteed to generate
safe and oscillation-free motions.

Our method is an extension of the Velocity Obstacle
concept, introduced by Fiorini and Shiller in [3], which is
a generally applicable, well-defined, and simple technique
that has been widely used for safe navigation among moving
obstacles (see, e.g., [16], [9], [5]). Our approach inherits all
of its appealing properties, but we introduce an important
new capability to resolve the common oscillation problem in
multi-agent navigation.

The only information each agent is required to have about
the other agents is their current position and velocity, and
their exact shape (which can be acquired by sensors). We
assume that the agents and the obstacles are translating
objects in the 2-D plane (e.g. discs or polygons). This
assumption is applicable to most applications with mobile
agents, whose orientation can be inferred from the heading
of each agent’s motion.

We show the potential of the Reciprocal Velocity Obstacle
approach by applying it to scenarios in which hundreds of
similar agents navigate independently in a complex envi-
ronment. Our experiments show that smooth and realistic
motions are generated even when the agents form very dense,



packed groups. Moreover, real-time performance can be
achieved in such challenging scenarios, and the approach is
especially well suitable for parallelization, as an independent
computation is performed for each agent.

Organization: The rest of this paper is organized as
follows. We give a brief overview of prior work in Section II.
In Section III, we review the concept of Velocity Obstacles
and show that it generates oscillations when it is used for
multi-agent navigation. In Section IV, we present our new
concept, the Reciprocal Velocity Obstacle and show that
it generates safe and oscillation-free motions. In Section
V, we describe how we use this method for navigating
many agents in several challenging environments containing
both static and moving obstacles. We demonstrate the real-
time performance of our approach on several benchmarks in
Section VI and conclude in Section VII.

II. PRIOR WORK

In this section, we give a brief overview of prior work on
multi-agent navigation and planning. Besides the Velocity
Obstacle approach [3], [16], many other methods have been
proposed for collision-avoidance, navigation, and planning
among moving obstacles [4], [7], [8], [14], [23], [21], [20],
[24]. However, most of the existing work do not take into
account that the obstacles’ motion may be affected by the
presence of the agent. Some approaches consider the moving
obstacles to be static and replan when it appears that they
have moved. Such approaches are generally not able to plan
safe paths among obstacles moving at high speeds.

There is also an extensive amount of literature on multi-
agent navigation, in which each agent navigates individually
among the other agents, which are considered as obstacles,
e.g. [13], [19], [17], [6], [12]. Most of these techniques have
focused on crowd simulation. Also in these cases, the other
agents are assumed to be either passively moving obstacles
or static obstacles. A number of approaches (roughly) follow
the Velocity Obstacle concept to avoid other agents [2], [10].

We distinguish decoupled multi-agent navigation from
centralized multi-agent planning here. In multi-agent plan-
ning, the composite configuration space of the agents is
considered, and a path is centrally planned in this space (see,
e.g., [11], [15], [18]). These works focus on different aspects
of the problem (e.g., finding optimal coordinations) and are
mostly not suited for on-line real-time application.

Only few attempts have been made to incorporate the
reactive behavior of other entities into the navigation. Kluge
and Prassler [9] proposed Recursive Velocity Obstacles. The
idea is that the first agent chooses a velocity based on the
expected behavior of the second agent, which in turn is
acquired based on the expected behavior of the first agent,
and so on, up to some level of recursion. However, this
approach may not be able to address the oscillation problem
well. In fact, the velocities chosen oscillate between odd and
even levels of recursion and may not converge. Abe and
Matsuo [1] proposed the Common Velocity Obstacle, which
is defined in the 4-dimensional space of all combinations of
velocities of two agents. It addresses the oscillation issue, but

Fig. 2. The Velocity Obstacle V OA
B(vB) of a disc-shaped obstacle B to

a disc-shaped agent A.

it is unclear how this notion is extended for use with multiple
agents or how well it scales to more complex environments.

III. VELOCITY OBSTACLES

In this section, we briefly review the original concept of
Velocity Obstacles (as introduced in [3]), derive some of its
elementary properties, and show that it generates oscillatory
motions when used in navigation among autonomous entities
with a symmetric collision-avoidance strategy.

A. Velocity Obstacles: Definition

Let A be an agent translating in the plane with its reference
point positioned at pA, and let B be a planar (moving)
obstacle with its reference point positioned at pB . The
velocity obstacle V OA

B(vB) of obstacle B to agent A is then
the set consisting of all those velocities vA for A that will
result in a collision at some moment in time with obstacle
B moving at velocity vB .

The Velocity Obstacle can geometrically be defined as
follows (see Fig. 2). Let A⊕B denote the Minkowski sum
of two objects A and B, and let −A denote the object A
reflected in its reference point:

A⊕B = {a + b |a ∈ A,b ∈ B}, −A = {−a |a ∈ A}.

Let λ(p,v) denote the a ray starting at p and heading in the
direction of v:

λ(p,v) = {p + tv | t ≥ 0}. (1)

If the ray starting at pA and heading in the direction of the
relative velocity of A and B (which is vA−vB) intersects the
Minkowski sum of B and −A centered at pB , velocity vA

is in the velocity obstacle of B. Hence, the velocity obstacle
of B to A is defined as follows:

Definition 1 (Velocity Obstacle).
V OA

B(vB) = {vA |λ(pA,vA − vB) ∩B ⊕−A 6= ∅}.

This means that if vA ∈ V OA
B(vB), A and B will collide at

some point in time. If vA is outside the velocity obstacle of
B, both objects will never collide. If vA is on the boundary
of the velocity obstacle, it will touch B at some moment in



Fig. 3. The velocity obstacle (grey), and left and right half-planes (striped)
outside the velocity obstacle. The symbols that apply to the velocities in
each of the regions with respect to the velocity obstacle are shown.

time. The velocity obstacle is a cone with its apex at vB , as
can be seen in Fig. 2.

The concept of Velocity Obstacles can be used for navi-
gation among moving obstacles as follows. In each planning
cycle, the agent chooses a velocity that lies outside any
of the velocity obstacles induced by the moving obstacles.
If among the free velocities, the velocity chosen is most
directed towards the agent’s goal position, the agent will
safely navigate towards its goal (see, e.g. [3], [5]).

B. Velocity Obstacles: Properties
Here, we deduce some elementary properties and notations

of velocity obstacles that we will use in this paper:

Lemma 2 (Symmetry).
vA ∈ V OA

B(vB) ⇔ vB ∈ V OB
A(vA).

Lemma 3 (Translation Invariance).
vA ∈ V OA

B(vB) ⇔ vA + u ∈ V OA
B(vB + u).

These properties follow immediately from Definition 1.
Let us also consider the region outside the velocity obsta-

cle. We distinguish the region to the left and the region to
the right of the velocity obstacle, defined by the half-planes
delimited by the two boundaries of the velocity obstacle (see
Fig. 3). We introduce two new notations here, ‘

←−
/∈ ’ and ‘

−→
/∈ ’,

and denote
vA
←−
/∈ V OA

B(vB)

if vA is in the half-plane to the left of V OA
B(vB). Such

velocities let A pass B on the left side. Similarly, we denote

vA
−→
/∈ V OA

B(vB),

if vA is in the half-plane to the right of V OA
B(vB). These

velocities let A pass B on the right side. Note that the left
and the right half-planes overlap. Velocities in this region let
A and B diverge.

Lemmas 2 and 3 also hold for the regions outside the
velocity obstacle. That is, the ‘∈’ in Lemmas 2 and 3 can
freely be replaced by ‘6∈’, ‘

←−
/∈ ’, or ‘

−→
/∈ ’.

We prove the following property for the half planes (the
‘
−→
/∈ ’ can freely be replaced by ‘

←−
/∈ ’):

Lemma 4 (Convexity).
vA
−→
/∈ V OA

B(vB) ∧ v′A
−→
/∈ V OA

B(vB) ⇒
(1− α)vA + αv′A

−→
/∈ V OA

B(vB), for 0 ≤ α ≤ 1.

This lemma follows from the fact that a half-plane is convex.

C. Oscillation

The Velocity Obstacle concept can be used for multi-
agent navigation when each agent regards the other agents as
moving obstacles and chooses a velocity for itself that lies
outside any of the velocity obstacles induced by the other
agents (see, e.g., [2], [10]). However, this approach results
in undesirable oscillatory motions, as we show here.

Imagine the following situation. Two agents A and B are
moving with velocities vA and vB , respectively, such that
vA ∈ V OA

B(vB) and vB ∈ V OB
A(vA). Hence, continuing

along the current velocities will result in a collision. As a
result, agent A decides to alter its velocity to v′A, such that it
is outside the velocity obstacle of B (i.e., v′A 6∈ V OA

B(vB)).
At the same time, B alters its velocity to v′B to be outside
the velocity obstacle of A (i.e., v′B 6∈ V OB

A(vA)).
However, in the new situation, the old velocities vA

and vB are outside the velocity obstacles of B and A,
respectively (i.e., vA 6∈ V OA

B(v′B) and vB 6∈ V OB
A(v′B)).

This follows directly from Lemma 2. If both agents prefer
the old velocities, for instance because it leads them directly
to their goals, they will choose these again. In the next cycle,
it appears that these velocities will result in a collision, and
they will probably choose v′A and v′B again, and so on. Thus,
the agents oscillate between these two velocities when the
Velocity Obstacle approach is used to avoid each other (see
Fig. 1), even if the agents initially choose the same side to
pass each other.1

IV. RECIPROCAL VELOCITY OBSTACLES

In this section, we present a new concept called the
Reciprocal Velocity Obstacle to overcome the oscillation
problem mentioned above. It provides a simple approach to
safely and smoothly navigate multiple agents amongst each
other without explicit communication between them.

A. Reciprocal Velocity Obstacles: Definition

The basic idea is simple: instead of choosing a new
velocity for each agent that is outside the other agent’s
velocity obstacle, we choose a new velocity that is the
average of its current velocity and a velocity that lies outside
the other agent’s velocity obstacle.

We formalize this principle and propose the concept of the
Reciprocal Velocity Obstacle, which is defined as follows:

Definition 5 (Reciprocal Velocity Obstacle).
RV OA

B(vB ,vA) = {v′A | 2v′A − vA ∈ V OA
B(vB)}.

The reciprocal velocity obstacle RV OA
B(vB ,vA) of agent

B to agent A contains all velocities for agent A that are the
average of the current velocity vA and a velocity inside the
velocity obstacle V OA

B(vB) of agent B. It can geometrically
be interpreted as the velocity obstacle V OA

B(vB) that is
translated such that its apex lies at vA+vB

2 (see Fig. 4).

1Note that these oscillations are fundamentally different from “reciprocal
dances”, which occur when there is no agreement among the agents about
which side to pass each other on.



Fig. 4. The Reciprocal Velocity Obstacle RV OA
B(vB ,vA) of agent B

to agent A.

B. Guarantees

We now prove that the Reciprocal Velocity Obstacles
can be used to generate collision-free and oscillation-free
motions for each agent.

1) Collision-Free Navigation: Let vA be the current ve-
locity of agent A, and let vB be the current velocity of agent
B, and let both A and B choose new velocities (v′A and
v′B) outside each other’s reciprocal velocity obstacle. The
following theorem proves that this is safe, provided that both
agents choose the same side to pass each other (the ‘

−→
/∈ ’ can

freely be replaced by ‘
←−
/∈ ’):

Theorem 6 (Collision-Free).
v′A
−→
/∈ RV OA

B(vB ,vA) ∧ v′B
−→
/∈ RV OB

A(vA,vB) ⇒
v′A
−→
/∈ V OA

B(v′B) ∧ v′B
−→
/∈ V OB

A(v′A)

Proof: v′A
−→
/∈ RV OA

B(vB ,vA) ∧ v′B
−→
/∈ RV OB

A(vA,vB)
⇔ {Definition 5 and Lemma 2}

2v′A − vA
−→
/∈ V OA

B(vB) ∧ vA
−→
/∈ V OA

B(2v′B − vB)
⇔ {Lemma 3}

2v′A−vA−vB
−→
/∈ V OA

B(0)∧vA +vB−2v′B
−→
/∈ V OA

B(0)
⇒ {Lemma 4, with α = 1

2}
v′A − v′B

−→
/∈ V OA

B(0)
⇔ {Lemma 3 and Lemma 2}

v′A
−→
/∈ V OA

B(v′B) ∧ v′B
−→
/∈ V OB

A(v′A) �

2) Same Side: We can guarantee that both agents auto-
matically choose the same side to pass each other if each of
them chooses the velocity outside the other agent’s reciprocal
velocity obstacle that is closest to its current velocity.

This is proven by the following facts: (1) If for agent A,
vA + u is the velocity closest to vA outside B’s reciprocal
velocity obstacle, then for agent B, vB − u is the velocity
closest to vB outside A’s reciprocal velocity obstacle. (2) If
for agent A, this closest velocity appears to be on the right
(or left) side of B’s reciprocal velocity obstacle, then the
closest velocity for agent B is on the right (or left) side of A’s
reciprocal velocity obstacle as well. These facts both follow
from the following lemma (the ‘/∈’ can freely be replaced by
‘
−→
/∈ ’, ‘
←−
/∈ ’, or ‘∈’):

Lemma 7 (Same Side).

vA+u /∈ RV OA
B(vB ,vA) ⇔ vB−u /∈ RV OB

A(vA,vB)

Proof: vA + u /∈ RV OA
B(vB ,vA)

⇔ {Definition 5}
2(vA + u)− vA /∈ V OA

B(vB)
⇔ {Lemma 3 and Lemma 2}

2(vB − u)− vB /∈ V OB
A(vA)

⇔ {Definition 5}
vB − u /∈ RV OB

A(vA,vB) �

3) Oscillation-Free Navigation: Choosing the closest ve-
locity outside the other agent’s reciprocal velocity obstacle
also guarantees oscillation-free navigation. This is proven by
the following theorem:

Theorem 8 (Oscillation-Free).
vA ∈ RV OA

B(vB ,vA) ⇔ vA ∈ RV OA
B(vB−u,vA+u)

Proof: vA ∈ RV OA
B(vB ,vA)

⇔ {Definition 5 and Lemma 3}
2vA − vA − vB ∈ V OA

B(0)
⇔

2vA − vA − vB − u + u ∈ V OA
B(0)

⇔ {Lemma 3 and Definition 5}
vA ∈ RV OA

B(vB − u,vA + u) �

Hence, the old velocity vA of A is inside the new
reciprocal velocity obstacle of B, given the new velocities
vA + u and vB − u for agent A and B, respectively.2 The
same holds for agent B. Therefore, after choosing the new
velocity, the old (preferred) velocity is invalid and will not
be chosen (in contrast to when the orginal Velocity Obstacles
are used – see Section III-C). In fact, by choosing the closest
velocity outside the reciprocal velocity obstacle for both A
and B, the reciprocal velocity obstacles stay exactly in the
same position. Hence, the velocities vA +u and vB −u are
still the closest to the preferred velocities among all valid
velocities. As a result, no oscillations will occur (see Fig.
1).

C. Generalized Reciprocal Velocity Obstacles

In the above we have implicitly assumed that each agent
takes an equal share in the effort to avoid mutual collisions.
However, there may be natural priorities among agents that
motivate a different balance, and we can generalize the
Reciprocal Velocity Obstacle concept accordingly. Let us
denote the share of the effort agent A takes to avoid agent B
by αA

B . By definition, αB
A = 1− αA

B (thus far, we implicitly
assumed αA

B = αB
A = 1

2 ).
The idea is that agent A chooses a new velocity that is the

weighted average of 1−αA
B of its current velocity vA and αA

B

of a velocity outside the velocity obstacle V OA
B(vB) of agent

B, and that agent B does exactly the opposite, i.e., choosing
a new velocity that is the weighted average of 1−αB

A = αA
B

of its current velocity vB and αB
A = 1 − αA

B of a velocity
outside the velocity obstacle V OB

A(vA) of agent A.

2There is a more generous set of new velocities that will not result in
oscillations. These are all pairs of velocities v′

A and v′
B , such that (v′

A +
v′

B)/2 is both inside V OA
B(vB) and inside V OB

A (vA).



Fig. 5. The Generalized Reciprocal Velocity Obstacle RV OA
B(vB ,

vA, αA
B) of agent B to agent A for various values of αA

B .

The Generalized Reciprocal Velocity Obstacle of agent B
to agent A is defined as follows:

Definition 9 (Generalized Reciprocal Velocity Obstacle).
RV OA

B(vB ,vA, αA
B) =

{v′A | 1
αA

B

v′A + (1− 1
αA

B

)vA ∈ V OA
B(vB)}.

It can geometrically be interpreted as the velocity obstacle
V OA

B(vB), whose apex is translated to (1−αA
B)vA +αA

BvB

(see Fig. 4).
All the theorems we have proved above can easily be

extended for the Generalized Reciprocal Velocity Obstacles.
The main idea is that Lemma 4 not only holds for α = 1

2
but for any α between 0 and 1. So, also in the generalized
case, the generated motions are safe and oscillation-free.

V. MULTI-AGENT NAVIGATION

In this section, we show how the Reciprocal Velocity
Obstacle concept can be used to simultaneously navigate
a large number of agents to their goals in a common
environment containing both static and moving obstacles.
Given n (planar translating) agents A1, . . . , An, each agent
Ai has a current position pi (defined by its reference point), a
current velocity vi, a goal location gi, and a preferred speed
vpref

i . Furthermore, let there be a set of (planar translating)
obstacles O, where each obstacle O ∈ O has current position
pO (defined by its reference point) and velocity vO. Static
obstacles have zero velocity.

The overall approach is as follows. We choose a small
amount of time ∆t, which is the time step of the simulation.
In each cycle of the simulation, we select for each agent inde-
pendently a new velocity and update its position accordingly.
This process continues until all of the agents have reached
their goal positions.

We show in this section how to select a velocity for all
agents, such that they safely navigate towards their goals.

A. Combined Reciprocal Velocity Obstacles

In the forgoing, we have seen how the Reciprocal Velocity
Obstacle is defined for a pair of agents. If the concept is
applied for an agent moving among many other agents and
passively moving or static obstacles, the combined reciprocal

Fig. 6. The combined reciprocal velocity obstacle for the agent (dark) is
the union of the individual reciprocal velocity obstacles of the other agents.

velocity obstacle RV Oi for agent Ai becomes the union of
all reciprocal velocity obstacles generated by the other agents
individually, possibly with varying mutual priorities, and
the velocity obstacles generated by the (passively) moving
obstacles (See Fig. 6).

Definition 10 (Combined Reciprocal Velocity Obstacle).
RV Oi =

⋃
j 6=i RV Oi

j(vj ,vi, α
i
j) ∪

⋃
O∈O V Oi

O(vO).

Each agent can safely navigate by choosing a velocity outside
its combined reciprocal velocity obstacle.

B. Kinematic and Dynamic Constraints

Each agent Ai may be subject to kinematic and dynamic
constraints that restrict the set of admissible new velocities,
given the current velocity vi. We denote this set AV i(vi). It
may have any shape depending on the nature of the agent. For
example, if the agent is subject to a maximum speed vmax

i

and a maximum acceleration amax
i , the set of admissible

velocities is:

AV i(vi) = {v′i | ‖v′i‖ < vmax
i ∧ ‖v′i − vi‖ < amax

i ∆t}.

C. Selecting Velocities

In each cycle of the simulation, we start with computing
for each agent Ai its preferred velocity vpref

i . This is the
vector with a magnitude equal to the preferred speed in the
direction of the target location. If the agent is close to its
goal, we set the preferred velocity to the null vector.

Subsequently, we select for each agent Ai a new velocity
v′i. Ideally, this is the velocity closest to vpref

i that is
outside the combined reciprocal velocity obstacle RV Oi and
inside the set AV i of admissible velocities. However, the
environment may become so crowded that the combined re-
ciprocal velocity obstacle fills up the entire set of admissible
velocities. To address this issue, the algorithm is allowed
to select a velocity inside RV Oi, but is penalized by this
choice. The penalty of a candidate velocity v′i depends on
its distance to the preferred velocity and on the expected time
to collision tci(v′i) this velocity will give:

penalty i(v
′
i) = wi

1
tci(v′i)

+ ‖vpref
i − v′i‖,



for some factor wi, where wi can vary among the agents to
reflect differences in aggressiveness and sluggishness.

The expected time to collision tci(v′i) can easily be calcu-
lated. For the original velocity obstacle V OA

B(vB), the time
to collision when A chooses velocity vA inside V OA

B(vB)
is computed by solving the equation λ(pA,vA − vB) =
B ⊕ −A for t (see Eq. (1)). This follows from Definition
1. For the reciprocal velocity obstacle RV OA

B(vB ,vA), the
expected time to collision when A chooses velocity v′A is
calculated similarly by solving λ(pA, 2v′A − vA − vB) =
B ⊕ −A for t. This follows from Definition 5. For the
combined reciprocal velocity obstacle, the expected time to
collision is the minimum of all expected times to collision
with respect to the individual other agents and obstacles, and
infinity when there is no collision.

We select the velocity with minimal penalty among the
velocities in AV i as the new velocity v′i for agent Ai:

v′i = arg min
v′′

i ∈AV i
penalty i(v

′′
i ).

We approximate this minimum by sampling a number N of
velocities evenly distributed over AV i.

D. Neighbor Region

We do not need to take all other agents into account when
selecting a new velocity, as the penalty of the velocities will
not depend much, if at all, on agents that are far away.
Therefore, we define a neighbor region NRi around the
current position of agent Ai and only take into account
the agents and obstacles inside this neighbor region in the
combined reciprocal velocity obstacle. The optimal size of
the neighbor region depends on the average speed of the
agents and the obstacles, the size of the time step of the
simulation, etc.

A neighbor region not only provides a speed-up for the
computation; it may also be used to model natural (human)
behavior. For example, the neighbor region may be restricted
to the region that the agent can actually see, given the direc-
tion of motion of the agent, its view angle, and the position
of the static obstacles (and perhaps the other agents).

VI. EXPERIMENTAL RESULTS

We have implemented and tested our multi-agent naviga-
tion approach in three challenging scenarios:

• Circle: (See Figs. 7 and 8) A variable number of agents
are distributed evenly on a circle, and their goal is to
navigate to the antipodal position on the circle. In doing
so, the agents will form a dense crowd in the middle.

• Narrow passage: (See Fig. 9) Four groups of 25 agents
in each corner of the environment move to the opposite
corner of the environment. In the middle, there are
four square-shaped static obstacles that form narrow
passages. The groups with opposite goal directions meet
in the narrow passage.

• Moving obstacle: (See Fig. 10) A number of agents
cross a street on which a car is driving. The car is
considered to be a passively moving obstacle.

Fig. 7. The resulting paths in the Circle scenario using the original Velocity
Obstacle approach (left) and the Reciprocal Velocity Approach (right).

Fig. 10. Eleven agents cross a street on which a car is driving in the
Moving Obstacle scenario.

We performed our experiments on a Intel Core2 Duo
1.66 GHz with 1GByte of memory. For the first benchmark,
Circle, we started with an experiment containing 12 agents to
show the difference between the original Velocity Obstacle
approach and our Reciprocal Velocity Obstacle approach.
All of the agents are discs with equal radii, have the same
preferred and maximum speeds, and do not have constraints
on the acceleration. In both experiments, all parameters are
equal. The traces of the agents are shown in Fig. 7 for
both methods. As can be seen clearly from the figures, the
original Velocity Obstacle approach generates chaotic and
oscillatory motions. In contrast, the motions generated by our
method are smooth and straight-forward. Also, there were no
collisions among agents.

Next, we varied the number of agents in the Circle
benchmark to see how our approach scales when the number
of agents grows (see Fig. 8 and the accompanying video for
the experiment with 250 agents). In this case, we used a
circular neighbor region around each agent. We chose the
radius of this region such that the navigation of the agents is
still safe (which was 8 times the agent radius). The results
are given in Fig. 11.

Clearly, the amount of time needed to generate one frame
(i.e., process one cycle in the simulation) scales linearly with
the number of agents. Only the neighbor selecting routine
has a quadratic nature, but this step is negligible in the
total running time. The graph also shows that even for 1000
agents, we are able to generate more than 10 frames per
second. We chose the time step ∆t to be 0.25 seconds in
this experiment, so these results are obtained in real-time



Fig. 8. The Circle scenario for 250 agents. Each agent moves to the diametrically opposite position on the circle (the zoom level varies between stills).

Fig. 9. Four groups in opposite corners of the environment exchange positions in the Narrow Passage scenario (the zoom level varies between stills).

frame rates. We note that the running time of our method
scales linearly with the value of parameter N , the number
of velocities sampled for each agent in each frame. We fixed
this value at 250 in our experiments. We believe that smarter
sampling can further improve the performance. Furthermore,
since we perform an independent computation for each agent,
the approach is fully parallelizable. We took advantage of
this feature and used two processors for performing the
experiments.

To see how our approach performs in presence of narrow
passages generated by static obstacles, we performed the
experiment in the Narrow Passage benchmark. The agents
from the different groups will meet inside the narrow passage
with opposite goal directions. Even though the passage
becomes very crowded (see Fig. 9), eventually all agents
reach their goals safely. We note that if the static obstacles
would form a U-shaped obstacle, the agents may get stuck
in there when using our method. To overcome this, the

method can be extended with a roadmap that governs the
preferred velocities of the agent (instead of the velocity
directed towards the goal) [22].

Finally, we show in the Moving Obstacle benchmark that
our approach easily deals with high-speed moving obstacles
(which do not react on their surroundings). Eleven agents
cross a street on which a car is driving. The ones that are not
able to cross in front of the car wait until it has passed. The
others move quickly before they are run over. See Fig. 10 for
a series of screenshots from this simulation. Although this
result could have been achieved using the original Velocity
Obstacle approach, many contemporary works in multi-robot
navigation cannot handle moving obstacles, especially when
they move at high speeds. This is because only their position
is taken into account and not their velocity.

Videos of these and other scenarios can be found at
http://gamma.cs.unc.edu/RVO.
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Fig. 11. Results of our experiments in the Circle scenario for a varying
number of agents. The diamond-marked graph gives the run time per frame
(right axis) and the square-marked graph gives the frame rate (left axis).

VII. CONCLUSION

In this paper, we have introduced the concept of Reciprocal
Velocity Obstacles for safe and oscillation-free navigation
among autonomous decision-making entities, as well as
static and moving obstacles. It has been applied to multi-
agent navigation and shown to compute smooth, natural
paths at interactive rates for more than 1000 agents moving
simultaneously in the same environment.

Although our current implementation is mainly for agents
translating in the two-dimensional plane, the orientation of
the agents can be can be inferred from the heading direc-
tion of the agent’s motion. In addition, Reciprocal Velocity
Obstacles can easily be extended for agents moving in the
three-dimensional space.

This method offers several advantages over the existing
techniques. First, our approach takes into account that other
moving entities react to the agent; thereby it prevents oscil-
latory motions resulting from the assumption that the other
entities are passively moving obstacles. Also, our approach
automatically deals with high-speed moving obstacles. Fur-
thermore, the Reciprocal Velocity Obstacle is a simple and
natural formulation that is generally applicable and easy to
implement. We plan to further investigate the application of
Reciprocal Velocity Obstacles for multi-robot navigation and
crowd simulation in complex, densely packed environments
(see [22]).
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