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Abstract
We present a technique for steganography in polygonal meshes. Our method hides a message in the indexed rep-
resentation of a mesh by permuting the order in which faces and vertices are stored. The permutation is relative
to a reference ordering that encoder and decoder derive from the mesh connectivity in a consistent manner. Our
method is distortion-free because it does not modify the geometry of the mesh. Compared to previous stegano-
graphic methods for polygonal meshes our capacity is up to an order of magnitude better.
Our steganography algorithm is universal and can be used instead of the standard permutation steganography
algorithm on arbitrary datasets. The standard algorithm runs in Ω(n2 log2 n log logn) time and achieves optimal
O(n logn) bit capacity on datasets with n elements. In contrast, our algorithm runs in O(n) time, achieves a
capacity that is only one bit per element less than optimal, and is extremely simple to implement.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous

1. Introduction

Steganography (or, more simply, data-hiding) is the science
of hiding messages in media in such a way that even the
existence of the message remains undetected to all but the
recipient. This is in contrast with cryptography, where the
fact that a message is hidden in the data is not disguised, but
it may be retrieved only by the use of a secret key, typically
known only to the recipient. Thus, steganographic messages
do not attract attention to themselves, to messengers, or to
recipients. A classic example is invisible ink that turns brown
when the paper is heated. An inconspicuous cover message
is important as a blank sheet of paper can arouse suspicion.

The digital equivalent of invisible ink is software that em-
beds secret data inside another file - the carrier. A silly snap-
shot we receive from a colleague via unsecure email, for ex-
ample, could easily hide the root password to his computer.
Image, video, and audio data have been the predominant
carrier for digital steganography—especially in the context
of digital watermarking and copyright protection. In recent
years researchers have turned their attention to the emerging
media of 3D datasets. This is the subject of our paper.

Once it has been established that a particular media can
carry steganographic content, the issue is capacity and com-
plexity - how large a message can be hidden in a given data
set and at what runtime cost (for encoding and decoding).

Traditional steganographic methods try to hide informa-
tion in the noise of the data. They distort the original data
just enough to embed a message but without this distortion
being noticable. They may, for example, modify the least
significant bits of individual samples in an image, a video,
or an audio track. A common approach for 3D data is to
slightly perturb the vertex positions. Such a geometric mod-
ification can be done directly in the spatial domain [OMA97,
CDSM04, ADME02, ME04, WC05, WW06, PHF99], which
is simple and efficient but also prone to robustness is-
sues. Better robustness can be achieved by spectral meth-
ods [KDK98,OTMM01,OMT04,CWPG04]. However, com-
puting a spectral representation is expensive, and generally
provides lower capacity. These steganographic techniques
are lossy because they affect the integrity of the data.

Recently, researchers have started to exploit the flexibility
in representing polygon meshes to gain additional capacity.
Wang and Cheng [WC05] used alternating CW and CCW
orders of face vertices to encode an additional bit per trian-
gle. Cheng and Wang [CW06] describe a connectivity em-
bedding scheme which increases the capacity by 6 bits per
vertex. They rearrange vertices and faces relative to a refer-
ence ordering derived from the mesh geometry. The position
of a vertex or a face in the new ordering encodes a single
bit, depending on the parity of the position. They also use

c© 2007 The Author(s)
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



A. Bogomjakov & C. Gotsman & M. Isenburg / Steganography for Polygonal Meshes

cyclic vertex shifts within triangles to gain another 2 bits per
vertex. These steganographic techniques are lossless because
reordering mesh elements does not distort the geometry.

Surprisingly, the authors of these papers do not seem to be
aware of a well-known steganographic method, called per-
mutation steganography, that gives optimal capacity. Per-
mutation steganography hides information in the ordering
of elements of a set, for example, in the order of cards in
a deck, of people in a picture, of cars parked along the
street, or anything else. This assumes that the elements can
be rearranged into any order. A message is then encoded
as the difference between the arrangement of elements with
respect to a known reference ordering. Given n elements,
permutation steganography can encode messages of up to
O(log(n!)) = O(n logn) bits, which is optimal and much bet-
ter than the results reported for 3D mesh data to date.

The standard permutation steganography algorithm is de-
scribed and implemented on a number of Web sites [Pst,Deo,
Sgp, Gif], but has received little mention in scientific litera-
ture [Art01]. There is software that hides information in a
GIF picture by reordering the color palette or in Web pages
by reordering the arguments of HTML tags. The drawback
of the standard algorithm is that it is based on integer arith-
metic of very large numbers and its runtime complexity of
Ω(n2 log2 n log logn) can be prohibitive for long messages.

We present here a different permutation steganography al-
gorithm whose runtime complexity is only O(n) and whose
implementation is surprisingly simple. This comes at the
price of a slightly lower (and therefore less than optimal)
capacity of logn−1 instead of logn bits per element. Our al-
gorithm is completely universal and may be used instead of
the standard permutation steganography algorithm whenever
run-time efficiency and simplicity of implementation are im-
portant, especially when hiding large messages.

We apply our algorithm to polygonal meshes and permute
mesh vertices and faces relative to a canonical ordering that
we derive from a systematic traversal of the mesh connec-
tity. Obviously, this approach is lossless: The mesh with the
hidden message is identical to the mesh without the message
in all ways except the order of its elements. We significantly
improve over previous results in lossless hiding of data in
polygonal meshes. Our capacity is much higher and grows
with the size of the mesh. Our encoding and decoding algo-
rithms are fast and extremely simple to implement.

2. Permutation Steganography

Permutation steganography deals with encoding messages
in a dataset by rearranging the order of elements in the
dataset. Since there are n! possible permutations of n ele-
ments, it should be possible to encode a message of log2(n!)
bits. The standard permutation steganography algorithm
[Pst, Deo, Sgp, Gif] treats the sequence of bits representing
a message as a very long unsigned integer. This number is

represented in an alternative basis, which is defined by the
number of elements only. The new permutation of the ele-
ments – encoding the message – is defined by the alternative
representation.

2.1. The Alternative Basis

An integer M is represented in the alternative basis of n ele-
ments as the linear combination:

M =
n

∑
k=1

ckbk, (1)

where {bk} is the basis and {ck} is the alternative represen-
tation. The basis is defined as: bk = ∏k−1

i=0 di, where d0 = 1
and di≥1 is the number of distinct values that may appear in
digit i. Thus ci ∈ {0, ..,di− 1}. Note that di may be differ-
ent for different digits. In conventional number systems all
digits have the same number of values, e.g. di≥1 = 10 and

bk = 10k−1 in the decimal system. It turns out that a vari-
able number of values per digit in the basis {bk}, as defined
above, still leads to a unique representation, at least for any
non-negative integer.

2.2. The Optimal Capacity Algorithm

The optimal capacity permutation steganography algorithm
for n elements transforms a number M representing a mes-
sage into its representation using an alternative basis. The
number of possible values in digit i is defined to be di = i.
Thus the basis elements are bk = (k−1)!.

The encoding algorithm proceeds in the reverse order
k = n, ..,1, at each step computing the new representation
ck, starting with Mn = M:

ck = Mk div bk (2)

and the number representing the remainder of the message:

Mk−1 = Mk mod bk (3)

The alternative representation {ck} is then converted to a
permutation of n elements by making the element at posi-
tion cn the first element of the permutation, the element at
position cn−1 among the remaining n− 1 elements the sec-
ond element of the permutation and so on (see details in Sec-
tion 3.2).

For decoding, conversion of a permutation into a repre-
sentation {ck} is done by reversing this logic using an appro-
priate data structure (see details in Section 3.3). The original
message M is then recovered by applying Equation (1).

2.3. Analysis

The division and modulo operations (2) and (3) at step k
involve two integers whose magnitude is ≥ (k− 1)!. Inte-
ger division of two m-bit integers requires O(m2) opera-
tions using the most naive method, and O(m logm log logm)
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operations using the most sophisticated (and complicated)
method [PFTV92, SS71]. At step k, the length of the inte-
gers is m = O(log(k− 1)!) = O(k logk), incurring runtime
of O(k log2 k log logk). The total runtime complexity of the
algorithm is thus

T (n) =
n

∑
k=1

(O(k log2 k log logk)) = O(n2 log2 n log logn)

The decoding algorithm has the same time complexity be-
cause the multiplication operation in (1) also runs in time
O(m logm log logm) for m-bit integers.

The capacity of this algorithm is log2(n!) = O(n logn)
bits, because an n-element basis can uniquely represent the
n! integers {0,1, ..n!− 1}. This is also optimal, because n
elements can generate no more than n! permutations.

3. Our Algorithm

A typical polygon mesh dataset (also known as an indexed
face set) consists of two kinds of elements: a list of 3D vec-
tors representing the geometry of the vertices, and a list of
polygonal faces representing the mesh connectivity. Each
such polygonal face is represented as a list of (integer) in-
dices into the vertex list. There is inherent redundancy in this
representation: the same mesh is represented even if either or
both lists are permuted (note: after permuting the vertex list
the indices within the face lists must be updated). Permuta-
tion steganography takes advantage of this.

A permutation of the mesh elements is well defined only
relative to some "canonical" reference ordering. To be use-
ful, this canonical ordering should be easy to compute by
some deterministic algorithm given only a start element. We
capitalize on a number of canonical ordering methods that
have emerged over recent years as "side-effect" of mesh
compression algorithms. Examples are those generated by
the TG algorithm [TG98] and the Edgebreaker [Ros99] al-
gorithm. Other canonical orderings have also been used as
so-called "rendering sequences" [BG02].

The encoding and the decoding algorithm consists of two
stages. In the first stage a reference ordering of the mesh ver-
tices and faces is computed. In the second stage the message
is encoded as a permutation of the mesh vertices and faces
relative to their reference order, or decoded by comparing
the ordering present in the dataset to the reference one. We
can hide one part of the message by rearranging the vertices
and the other part by rearranging the faces. The vertex and
face reorderings are independent of each other and use the
same encoding and decoding procedure.

The essence of the encoding procedure is as follows: At
step i we pick element ei from position b amongst the n− i
remaining elements of the reference ordering and output it
as the next element of our permutation. The position b is
defined by the next several bits of the input message. The

number of input bits read at step i is such that their numerical
value is in the range {0, ..,n− i− 1}. Then element ei is
eliminated from the reference ordering so that we are left
with n− i−1 available positions to chose from when picking
the next element ei+1 for our permutation.

The output of the encoding procedure is a mesh with the
same connectivity and geometry as the original, but with ver-
tices and faces rearranged according to the hidden message.

Figure 1: An ordering of the vertices of an example mesh
obtained from the Edgebreaker algorithm [Ros99].

3.1. The Reference Ordering

To apply our data hiding method to 3D mesh datasets we
need to obtain a "canonical" ordering of the mesh elements
that can easily be computed by both the encoder and de-
coder. One possibility is to compute such an ordering based
on the mesh geometry using some kind of spatial sort-
ing [WC05, CW06], e.g. by sorting the vertices along one
coodinate axis and breaking ties using the other two axii.
This requires access to vertex geometry and is sensitive to
geometric distortion. Instead we define a reference order-
ing based on the mesh connectivity alone. This makes our
method immune to any kind of attack on the geometry.

We simultaneously compute a reference ordering of the
mesh faces and vertices using the traversal performed by the
Edgebreaker mesh compression algorithm [Ros99]. Once
the initial vertex and edge are specified, the entire traver-
sal is uniquely defined, see Figure 1. The only condition on
the connectivity is that the mesh is manifold and orientable.
Both the encoder and decoder compute this ordering with-
out any information beyond the identity of the initial vertex
and edge and the mesh connectivity. One possible way to en-
sure consistent selection of the initial vertex and edge during
encoding and decoding is to exclude the first face from en-
coding. Then start with the first edge of the first face when
constructing the reference ordering for decoding.
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Note that any kind of well-defined deterministic mesh tra-
versal could be used here, as long as it is independent of the
element ordering in the input and is based only on the con-
nectivity. The complexity of computing the traversal should
not exceed O(n). Possible alternatives are the traversal of
the TG mesh compression algorithm [TG98], GPS traver-
sal [GPS76] or universal rendering sequences [BG02]. The
complexity of Edgebreaker and TG are O(n).

Step 1:
Compute reference ordering of mesh vertices.
Place vertices into ref[] array

Step 2:
for i = 0, ..,n−1

k← �log2(n− i)�
b← peek(k +1) // peek at next k +1 bits
if 2k ≤ b and b < n− i

advance(k +1) // advance by k +1 bits
else

b← peek(k) // peek at next k bits
advance(k) // advance by k bits

end
perm[i]← ref[b] // vertex b to permutation
ref[b]← ref[n− i−1] // replace with last vertex

end

Figure 2: Pseudocode for encoding a message as a permu-
tation of n vertices. The input is the message in form of a
bitstream and the output is the permutation array perm[].

3.2. Encoding

Encoding works exactly in the same way when hiding bits
in the vertex or face orderings, thus we only describe how to
reorder the vertices.

Let n be the number of vertices in the initial reference
ordering and let i be the number of vertices that have already
been reordered. At each step we pick a vertex at position b
from the n− i remaining vertices of the reference ordering
and output it as the next vertex of the permutation. Since b
is an integer in the range {0, ..,n− i− 1}, this encodes (at
least) the next k = �log2(n− i)� bits of the input message.

We peek at the next k+1 bits of the input message. If their
value b is smaller than n− i but also larger or equal to 2k (i.e.
if the first bit is set) we can encode k +1 bits by picking the
vertex at position b. Otherwise we can only encode k bits and
we use their value for picking the vertex. Figure 2 shows the
pseudocode of the encoding algorithm.

After a vertex was picked for output, we remove it from
the reference ordering and move the currently last vertex into
its position. This means that the remaining vertices in the ref-
erence ordering are always stored consecutively in the array.
Looking up a vertex at a given position can therefore be done

in constant time. Hence, the entire encoding procedure has a
time complexity of O(n). This also means that the reference
ordering is not fixed in its initial order but evolves over the
course of the algorithm. This is fine as long as we assure that
it evolves in the same manner during decoding.

Step 1:
Compute reference ordering of mesh vertices.
Place vertices into ref[] array
for i = 0, ..,n−1

ref[i].ref← i // initial position in ref array

Step 2:
for i = 0, ..,n−1

b← perm[i].ref // position in ref array
k← �log2(n− i)�
if 2k ≤ b then k++
output(b,k) // output b using k bits
ref[b]← ref[n−1− i]// update reference ordering
ref[b].ref← b

end

Figure 3: Pseudocode of decoding a message from a per-
mutation of n vertices. The input is the permutation array
perm[] and the output is the message in form of a bitstream.

3.3. Decoding

The decoder enhances every vertex record with a ref field
that stores the current position of the vertex in the evolving
reference ordering. The decoder initializes the ref field of
each vertex to the position it has in the initial reference or-
dering. The field is updated each time the last vertex replaces
the eliminated vertex in the reference ordering.

Let n be the total number of vertices in the permutation
and let i be the number of vertices that has already been
processed. At each step we get the value b from the ref
field of the next vertex in the permutation. This value corre-
sponds to the position b that the vertex has in the reference
ordering. It also represents the value of the next few bits in
the output message. We still need to determine how many
bits the value b represents. Let k = �log2(n− i)�. If b < 2k

then b represents k bits of data. Otherwise 2k ≤ b < n− i
must hold and b represents k +1 bits of data.

We then update the reference ordering. The currently last
vertex of the reference ordering is copied to position b and
the ref field of this vertex is updated to hold the correct
new value b. Figure 3 shows the pseudocode of the decoding
algorithm. Its time complexity is also O(n).

4. Capacity

The capacity achieved by our method will not be optimal.
By breaking up the very long input message into more man-
ageable pieces which are encoded separately (as opposed to
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encoding the entire input as one very long integer), we lose
up to one bit per element. Luckily this is a very small loss
compared to the optimal capacity of logn bits per element.
More precisely, at step i of the encoding procedure at least
�log2(n− i + 1)� bits are encoded. So for an ordering of n
elements our algorithm achieves the following capacity:

C(n)≥ Σn
i=1�log2(n− i+1)�=

Σn
i=1�log2 i� ≥ Σn

i=1(log2 i−1) =

log2(n!)−n+1 (4)

There are n! possible permutations of n elements. Hence
the maximal theoretical capacity of an n-element ordering
is log2 n! bits. From (4) we see that the difference between
the capacity guaranteed by our algorithm and the theoretical
optimum is less than one bit per element.

5. Experimental Results

We implemented the described algorithms in C++ and exper-
imented with triangle meshes of different sizes on a laptop
with a 2.1GHz Intel Centrino processor and 1GB of RAM.
The results are summarized in Table 1. Computation times
are nearly instant. For example, after loading the “isis” mesh
from disk we need less than 0.3 seconds to hide a 1 MB
message of random bits. Most of this time is spent on com-
puting the reference ordering, which entails reconstructing
connectivity and traversing it with Edgebreaker. Decoding is
slower than encoding. This is due to the incoherent access to
the ref field that hurts memory cache performance and the
additional pass for initializing the ref field.

We provide three exact bit counts related to capacity. The
minimum is the guaranteed capacity, computed from the
lower bound as Σn

i=1�log2 i�+Σm
i=1�log2 i�. The maximum is

the highest possible capacity for this model and is computed
as �Σn

i=1 log2 i�+�Σm
i=1 log2 i� (notice that here the floor op-

eration is outside the sum). n is the number of vertices and
m is the number of faces in the mesh. The third bit count is
experimentally measured for a message with random bits.

An important observation is that the capacity per vertex
in our method increases with the model size, as opposed to
previous algorithms [WC05, CW06], for which the capacity
in bits/vertex is independent of the mesh size. The small-
est mesh used in our experiments achieved capacity of over
31 bit/vertex. This is more than 3.4 times greater than the
fixed 9 bit/vertex of Cheng and Wang [CW06], which is the
highest capacity algorithm so far. The largest mesh in our
experiments was able to hide as much as 49.43 bit/vertex.

6. Summary and Discussion

We have presented a universal algorithm for permuta-
tion steganography, which may be applied to any data

set which can tolerate an arbitrary permutation of its el-
ements. The associated encoder and decoder run in O(n)
time on a dataset of n elements. This contrasts with stan-
dard permutation steganography techniques, which run in
time Ω(n2 log2 n log logn). The improved runtime complex-
ity comes with a small penalty in capacity, which is one bit
per element worse than the optimal O(n logn) bits.

We have shown that we can use this technique for
distortion-free hiding of data within the connectivity compo-
nent of a 3D mesh dataset. For this we derive the reference
ordering of mesh elements—relative to which the permuta-
tion is computed—from a canonical traversal of the connec-
tivity. The capacity we achieve is much higher than what has
been reported in previous works [WC05, CW06].

Nowhere in the algorithm did we make any assumptions
about degrees of the faces. In fact, the algorithm is not lim-
ited to triangular faces and can be used with any polyg-
onal meshes. Care should be taken, however, that an ap-
propriate traversal technique is chosen. For example, Edge-
breaker and TG compression algorithms, whose traversals
can be employed here, and were designed originally for tri-
angle meshes, have versions that work on general polygonal
meshes [KG01, KADS02, Ise02].

There is another independent medium for data hiding
present in 3D mesh data. The order of the vertices inside
faces can also be employed. Each face of d vertices has d
equivalent possibilities for description, each a cyclic shift of
the others. This can add another log2 d bits per face. We did
not describe this technique here because it has already been
used by Cheng et al. [CW06] on triangular faces.

Finally, if an application requires higher capacity and
some distortion can be tolerated, our algorithm can be com-
bined with some other, geometry-based technique.

We should point out that while permuting vertices and
faces does not affect the geometric quality of the mesh it
can affect rendering performance—especially if the origi-
nal mesh was ordered for cache efficient rendering [BG02].
However, in the past little attention has been given to the
mesh element ordering at distribution time as evident in the
highly incoherent mesh layouts of popular datasets [IL05].
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