
Compressing Polygon Mesh Geometry with Parallelogram Prediction

Martin Isenburg∗

University of North Carolina
at Chapel Hill

Pierre Alliez†

INRIA
Sophia-Antipolis

Abstract

In this paper we present a generalization of the geometry coder by
Touma and Gotsman [34] to polygon meshes. We let the polygon
information dictate where to apply the parallelogram rule that they
use to predict vertex positions. Since polygons tend to be fairly
planar and fairly convex, it is beneficial to make predictions within
a polygon rather than across polygons. This, for example, avoids
poor predictions due to a crease angle between polygons. Up to
90 percent of the vertices can be predicted this way. Our strat-
egy improves geometry compression by 10 to 40 percent depend-
ing on (a) how polygonal the mesh is and (b) on the quality (pla-
narity/convexity) of the polygons.

I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—surface, solid, and object representations;

Keywords: Mesh compression, polygon meshes, geometry cod-
ing, linear prediction, parallelogram rule.

1 INTRODUCTION

The emerging demand for visualizing polygon meshes in networked
environments has motivated research on efficient representations
for such data. Since transmission bandwidth tends to be a limited
resource, compressed polygon mesh formats are beneficial. The
basic ingredients that need to be compressed are the mesh connec-
tivity, that is the incidence relation among the vertices, and the mesh
geometry, that is the specific location of each individual vertex. Op-
tionally there are also mesh properties such as texture coordinates,
shading normals, material attributes, etc.

Traditionally, mesh compression schemes have focused on pure
triangular meshes [7, 33, 34]. The triangle is the basic render-
ing primitive for standard graphics hardware and any other surface
representation can be converted into a triangle mesh. A popular
compressor for triangle meshes was proposed by Touma and Gots-
man [34]. Their connectivity coder tends to give the best bit-rates
for compressing triangular connectivity and recent results have a
posteriori confirmed the optimality of their approach [2]. Also their
geometry coder delivers competitive compression rates. The sim-
plicity of this coder allows a fast and robust implementation and
is one reason for the popularity of their scheme. Yet the achieved
bit-rates are so good that it continues to be the accepted benchmark
coder for geometry compression.

However, there are a significant number of polygon meshes
that are not completely triangular. The 3D models of the View-

∗isenburg@cs.unc.edu http://www.cs.unc.edu/ ˜isenburg/pmc
†pierre.alliez@sophia.inria.fr

“highly”
non-convex

“highly”
non-planar

“fairly”
planar & convex

Figure 1: The parallelogram predictor performs poorly when adja-
cent triangles are highly non-convex or highly non-planar. Perform-
ing this prediction within a polygon is beneficial: polygons tend to
be fairly convex and planar.

point library [35] for example, a well-known source of high-quality
meshes, contain only a small percentage of triangles. Likewise, few
triangles are found in the output of many modeling packages. The
dominating element in these meshes is the quadrilateral, but pen-
tagons, hexagons and higher degree faces are also common.

The first approaches to compress polygonal meshes performed
a triangulation step prior to compression and then used a triangle
mesh coder. In order to recover the original connectivity they had
to store additional information that marked the edges added in the
triangulation step. Inspired by [21] we showed in [13] that polyg-
onal connectivity can be compressed more efficiently directly in its
polygonal representation by avoiding the triangulation step.

More recently we have extended the connectivity coder of Touma
and Gotsman [34] to the polygonal case and also confirmed its op-
timality [12, 18]. This approach gives the lowest reported compres-
sion rates for polygonal connectivity and can be seen as a general-
ization of Touma and Gotsman’s connectivity coder [34].

In a similar spirit we show in this paper how to extend their ge-
ometry coder to the polygonal case. Thereby we confirm our claim
from [13] that polygonal information can be used to improve com-
pression of geometry. Our polygonal geometry coder is just as sim-
ple as the original Touma and Gotsman (TG) coder [34] but signif-
icantly improves the compression rates on polygonal meshes.

The TG coder compresses the geometry of triangle meshes with
the parallelogram rule. The position of a vertex is predicted to
complete the parallelogram formed by the vertices of a neighbor-
ing triangle and only a corrective vector is stored. The sequence
of correctors, which tend to spread around the zero vector, can be
compressed more compactly than the sequence of positions.

However, the parallelogram predictor performs poorly when ad-
jacent triangles are highly non-convex or highly non-planar as il-
lustrated in Figure 1. Since polygons tend to be fairly convex and
fairly planar we can use them to make better parallelogram predic-
tions. We (a) predict within rather than across polygons and (b)
traverse the polygons such that we can do this as often as possible.

Compressing Polygon Mesh Geometry, Isenburg, Alliez 1 appeared in Visualization ’2002



2 MESH COMPRESSION

Recently we have seen a number of novel and innovative ap-
proaches to the compression of polygonal meshes. There are spec-
tral methods [16, 17] that perform a global frequency decompo-
sition of the surface, there are space-dividing methods [8, 9] that
specify the mesh connectivity relative to a geometric triangula-
tion of connectivity-less coded positions, there are remeshing meth-
ods [20, 19] that compress a regularly parameterized version instead
of the original mesh, there are angle-based methods [25] that en-
code the dihedral and internal angles of the mesh triangles, there are
model-space methods [24] that compress prediction errors in a local
coordinate frame using vector quantization, there are feature-based
methods [30] that find repeated geometric features in a model, and
finally there are progressive methods [32, 11, 28, 6, 3, 1] that allow
to incrementally reconstruct the mesh at multiple resolutions.

All of the above schemes are fairly complex: Some perform ex-
pensive global operations on the mesh [16, 17], some require com-
plex geometric algorithms [8, 9], some modify the mesh prior to
compression [20, 19], some involve heavy trigonometric computa-
tions [25], some make use of complex quantization schemes [24],
some perform expensive searches for matching shapes [30], and
some are meant to fulfill a more complex task [32, 11, 28, 6, 3, 1].
We do not attempt to improve on these schemes. Instead we gener-
alize a simple and popular triangle mesh compressor [34] to achieve
better compression performance on polygonal meshes.

Traditionally, the compression of mesh connectivity and the
compression of mesh geometry are done by clearly separated (but
often interwoven) techniques. Most efforts have focused on connec-
tivity compression [7, 33, 34, 26, 10, 29, 21, 4, 13, 22, 31, 2, 12, 18].
There are two reasons for this: First, this is where the largest gains
are possible, and second, the connectivity coder is the core compo-
nent of a compression engine and usually drives the compression of
geometry [7, 33, 34] and of properties [14].

Most connectivity compression schemes use the concept of re-
gion growing [12]. Faces adjacent to an already processed region
of the mesh are processed one after the other until the entire mesh is
completed. Most geometry compression schemes use the traversal
order this induces on the vertices to compress their associated po-
sitions with a predictive coding scheme. Instead of specifying each
position individually, previously decoded information is used to
predict a position and only a corrective vector is stored. All popular
predictive coding schemes use simple linear predictors [7, 33, 34].

The reasons for the popularity of linear prediction schemes is
that (a) they are simple to implement robustly, (b) compression or
at least decompression is fast, and (c) they deliver good compres-
sion rates. For nearly five years already the simple parallelogram
predictor by Touma and Gotsman [34] is the accepted benchmark
that many recent approaches compare themselves with. Although
better compression rates have been reported, in practice it is often
questionable whether these gains are justified given the sometimes
immense increase in algorithmic and asymptotic complexity of the
coding scheme. Furthermore these improvements are often specific
to a certain type of mesh. Some methods achieve significant gains
only on models with sharp features, while others are only applicable
to smooth and sufficiently dense sampled meshes.

Predictive geometry compression schemes work as follows: First
the floating-point positions are uniformly quantized using a user-
defined precision of for example 8, 10, 12, or 16 bits per coordi-
nate. This introduces a quantization error as some of the floating-
point precision is lost. Then a prediction rule is applied that uses
previously decoded positions to predict the next position and only
an offset vector is stored, which corrects the predicted position to
the actual position. The values of the resulting corrective vectors
tend to spread around zero. This reduces the variation and thereby
the entropy of the sequence of numbers, which means they can be
efficiently compressed with, for example, an arithmetic coder [37].

The simplest prediction method that predicts the next position
as the last position was suggested by Deering [7]. While this tech-
nique, which is also known as delta coding, makes as a systematic
prediction error, it can easily be implemented in hardware. A more
sophisticated scheme is the spanning tree predictor by Taubin and
Rossignac [33]. A weighted linear combination of two, three, or
more parent vertices in a vertex spanning tree is used for prediction.
The weights used in this computation can be optimized for a partic-
ular mesh but need to be stored as well. Although this optimization
step is computationally expensive, it is only performed by the en-
coder and not by the decoder. By far the most popular scheme is the
parallelogram predictor introduced by Touma and Gotsman [34]. A
position is predicted to complete the parallelogram that is spanned
by the three previously processed vertices of a neighboring triangle.

Good predictions are those that predict a position close to its
actual position. In the triangle mesh case the parallelogram rule
gives good predictions if used across triangles that are in a fairly
planar and convex position. Consequently, the parallelogram rule
gives bad predictions if used across triangles that are in a highly
non-planar and/or non-convex position (see Figure 1). Two ap-
proaches [23, 5] have recently been proposed to increase the num-
ber of good parallelogram predictions.

Kronrod and Gotsman [23] first locate good triangle pairs for
parallelogram prediction and then try to use a maximal number
of them. They construct a prediction tree that directs the traver-
sal to good predictions. They propose a scheme that traverses this
tree and simultaneously encodes the mesh connectivity. Especially
on meshes with many sharp features, such as CAD models, they
achieve significant improvements in geometry compression. How-
ever, this scheme is considerably more complex than the original
method [34] in both algorithmic and asymptotic complexity.

Instead of using a single parallelogram prediction, Cohen-Or et
al. [5] propose to average over multiple predictions. They define
the prediction degree of a vertex to be the number of triangles that
can be used to predict its position with the parallelogram rule. For
typical meshes the average prediction degree of a vertex is two. In
order to have as many multi-way predictions as possible, their ge-
ometry coder traverses the mesh vertices using a simple heuristic
that always tries to pick a vertex with a prediction degree of two
or higher. This approach improves slightly on the geometry com-
pression rates reported in [34], but at the same time increases the
complexity of the encoding and the decoding algorithm, since con-
nectivity and geometry need to be processed in two separate passes.

Our geometry coder on the other hand can be seen as a gener-
alization of the simple TG coder [34] to the polygonal case. The
increase in complexity is only an extra if ... else ... statement and a
second set of arithmetic probability tables.

3 GOOD “POLYGONAL” PREDICTIONS

We compress the geometry of a polygon mesh as follows: The ver-
tex positions are uniformly quantized with a user-defined number
of bits. In an order dictated by our connectivity coder [12] the ver-
tex positions are predicted using the parallelogram rule [34]. This
converts the sequence of quantized positions into a sequence of cor-
rective vectors. This sequence of integer-valued correction vectors
is then compressed using arithmetic coding [37]. Good predictions
result in a corrector sequence with a small spread around the zero
vector. Smaller symbol dispersion means lower entropy and leads
to better arithmetic compression. We use the polygonal information
to generate a sequence of mostly good predictions and only few bad
predictions. The mesh traversal of our connectivity coder [12] nat-
urally favors the occurrence of good predictions. Furthermore, we
code good predictions with a different arithmetic context than bad
predictions. This makes sure that bad predictions do not “spoil” the
symbol distribution of the good predictions.

Compressing Polygon Mesh Geometry, Isenburg, Alliez 2 appeared in Visualization ’2002



3.1 Quantizing of Vertex Positions

First the minimal and maximal x, y, and z coordinates of all posi-
tions are computed. They define a bounding box whose longest side
is uniformly quantized with a user-defined number of k bits. The
floating-point coordinates along this side are mapped into an inte-
ger number between 0 and 2k − 2. The floating-point coordinates
along the other two sides of the bounding box are mapped into an
integer range proportional to their length.

3.2 Predictive Coding of Quantized Positions

The first vertex position of each mesh component has no obvious
predictor. We simply predict it as the center of the bounding box.
There will be only one such center prediction per mesh component.
The second and the third vertex positions cannot yet be predicted
with the parallelogram rule since at least three vertices are needed
for this. We predict them as a previously decoded position to which
they are connected by an edge. This is simple delta coding and
makes a systematic prediction error, but there will be only two such
last predictions per mesh component. All following vertex posi-
tions use the parallelogram predictor. We distinguish two cases: a
within and an across prediction (see Figure 2).

within predictionacross prediction

Figure 2: The parallelogram used for prediction is shown in dark
grey and the corrective vectors are shown in red. Imagine the green
shaded edges symbolize a sharp crease in the model: then across
predictions will perform a lot worse than within predictions.

Polygonal faces tend to be fairly planar and convex. Although
they are usually not perfectly planar, major discontinuities are im-
probable to occur across them—otherwise they would likely have
been triangulated when the model was designed. Furthermore, a
quadrilateral, for example, is usually convex while two adjacent tri-
angles can potentially form a non-convex shape. Therefore predict-
ing within a polygon is preferred over predicting across polygons.

A good mesh traversal order maximizes the number of within
predictions. At least three vertices of a (non-triangular) polygon
must be known before a within prediction is possible. A simple
greedy strategy should grow the already processed mesh region as
follows: (a) ideally continue with a polygon that shares three or
more vertices with the processed region and (b) otherwise continue
with a polygon that creates (a) for the next iteration.

Luckily the mesh traversal performed by our connectivity coder
already gives us such a traversal (see also Figure 3). The mesh is
traversed with a heuristic that aims at reducing the number of split
operations, which are expensive to code. This idea of an adap-
tive conquest was originally proposed by Alliez and Desbrun [2] to
improve the connectivity compression rates of the TG coder. Our
strategy favors polygons that complete the boundary vertices of the
processed region: ideally it continues with a polygon that completes
a boundary vertex, which gives us (a). Otherwise it continues with a
polygon that brings a boundary vertex closer to completion, which
gives us (b). The results in Table 1 illustrate the success of this
strategy: on average 84 % of the vertices are within-predicted.

mesh predicted % of bpv
name total within across last center within within other

triceratops 2832 2557 272 2 1 90 14.1 20.5
galleon 2372 2007 329 24 12 85 16.9 26.8
cessna 3745 3091 621 22 11 83 11.0 19.8
beethoven 2655 2305 326 16 8 87 21.0 24.2
sandal 2636 2084 525 18 9 79 14.1 22.8
shark 2560 2348 209 2 1 92 9.8 18.7
al 3618 2672 883 42 21 74 18.6 23.6
cupie 2984 2623 343 12 6 88 17.0 21.5
tommygun 4171 3376 678 78 39 81 10.9 19.5
cow 2904 0 2901 2 1 0 – 20.6
cow poly 2904 2391 510 2 1 82 18.0 21.6
teapot 1189 1016 170 2 1 85 14.9 22.7
average 84 15.1 22.0

Table 1: This table reports how many vertices are predicted which
way and the ratio between within prediction and other predictions.
The bit rates in bits per vertex (bpv) for within-predicted versus
otherwise predicted vertices are given for a precision of 12 bits.

3.3 Arithmetic Compression of Corrective Vectors

The parallelogram prediction produces a sequence of correctors that
has less variation than the sequence of positions. Namely, the cor-
rective vectors are expected to spread around the zero vector. This
sequence of correctors has a lower information entropy than the
original sequence of positions and can therefore be compressed
more compactly. The entropy for a sequence of n symbols is
−

∑
n

(
pi log2(pi)

)
, where the ith symbol occurs with probability

pi. Given sufficiently long input an adaptive arithmetic coder [37]
converges to the entropy of the input. We use such a coder to com-
press the correctors into a compact bit-stream.

The correctors produced by within predictions tend to be smaller
than those produced by across, last, and center predictions. That
implies that the entropy of the within correctors will be lower than
that of the others. For entropy coding it is beneficial not to spoil
the lower entropy of the within correctors with the higher entropy
of the other correctors. Therefore we use two different arithmetic
contexts [37] depending on whether a corrector is the result of a
within prediction or not. The results in Table 1 confirm the benefit
of this approach: the arithmetic coder compresses the correctors of
within predictions on average 30 percent better than the others.

For quantization with k bits of precision we map the position
coordinates to a number between 0 and 2k − 2. We chose this in-
stead of the more intuitive 0 and 2k − 1 range because it simplifies
efficient arithmetic coding of the correctors. The chosen range al-
lows us to express each corrective coordinate as number between
−2k−1 − 1 and +2k−1 − 1, which can be specified using a sign
bit and k − 1 value bits. The values of the correctors are expected
to be spread around zero without preference for either sign. The
value bits give a symmetric and sign-independent measure of the
prediction error. The high-order bits are more likely to be zero than
the low-order bits. The highest order bit, for example, will only be
set if the prediction error is half the extend of the bounding box or
more. It benefits from almost all predictions. The lowest order bit,
on the other hand, can be set whenever there is a prediction error. It
benefits only from the few exact predictions.

For memory-efficient arithmetic compression we break the se-
quence of k − 1 value bits into smaller sequences. This prevents
the probability tables from becoming too large. For a precision of
k = 12 bits, for example, we break the sequence of 11 value bits
into sequences of 5, 3, 2, and 1 bits (plus the sign bit). Currently
we initialize the arithmetic tables with uniform probabilities and
use an adaptive coder that learns the actual distribution. An addi-
tional coding gain could be achieved by initializing the table with
the expected distribution.

Compressing Polygon Mesh Geometry, Isenburg, Alliez 3 appeared in Visualization ’2002



4 IMPLEMENTATION AND RESULTS
Most geometry compression schemes that are actually used in
industry-strength triangle mesh coders are those with simple and
robust implementations. For example Deering’s delta coder [7]
is used for geometry compression in Java3D [15], Taubin and
Rossignac’s spanning tree predictor [33] will be used in the upcom-
ing MPEG-4 standard [27], and Touma and Gotsman’s parallelo-
gram predictor [34] is used by Virtue3D’s compression engine [36],
which is licensed by several others companies.

The proposed geometry compression scheme can be seen as a
natural extension of the Touma and Gotsman [34] predictor to the
polygonal case. Aside from an additional switch statement and a
second set of probability tables, our algorithm has the same simple
implementation. However, the results listed in Table 3 show that
our generalization to polygon meshes gives an immediate improve-
ment of more than 20 percent in the geometry compression rates.
Note that for a purely triangular model (e.g. the cow model) we
get roughly the same bit-rates as the Touma and Gotsman coder.
This validates that our improvement really comes from using the
polygonal information.

Our approach improves on the Touma and Gotsman [34] sim-
ilarly at 8, 10, and 12 bits of precision. This demonstrates that
the coding gains are independent from the chosen level of quanti-
zation. However, the relative percentage of compression achieved
by a geometry coder is strongly dependent on the number of pre-
cision bits. This is clearly demonstrated in Table 2, which reports
geometry compression gains at different quantization levels: with
increasing precision the achieved compression ratio decreases.

This means that predictive compression does not scale linearly
with different levels of precision. Such techniques mainly predict
away the high-order bits. If more precision (= low bits) is added
the compression ratio (e.g. the compressed size in proportion to
the uncompressed size) decreases. In order to make a meaningful
statement about the average compression rates of a geometry coder
it is necessary to clarify at which quantization they were achieved.
In Table 2 we report the performance of our geometry compression
scheme at commonly used levels of precision.

mesh 8 bit 10 bit 12 bit 14 bit 16 bit
name bpv gain bpv gain bpv gain bpv gain bpv gain

triceratops 6.7 72 10.7 64 14.8 59 19.0 55 23.0 52
galleon 8.6 64 13.2 56 18.4 49 23.8 44 28.9 40
cessna 4.8 80 8.2 73 12.5 65 17.3 59 22.3 54
beethoven 9.8 59 15.4 49 21.4 41 27.4 35 33.4 30
sandal 7.2 70 11.2 63 15.9 56 21.4 49 26.9 44
shark 4.7 80 7.3 76 10.6 71 13.9 67 17.3 64
al 8.7 64 14.1 53 19.9 45 25.8 39 31.7 34
cupie 6.7 72 11.7 61 17.5 51 23.5 44 29.6 39
tommygun 5.9 75 8.9 70 12.5 65 16.7 60 20.7 57
cow 8.9 63 14.6 51 20.6 43 26.6 37 32.7 32
cow poly 7.4 69 12.7 58 18.7 48 24.6 41 30.7 36
teapot 6.6 73 11.1 63 16.1 56 21.2 50 26.2 46
average 7.2 70 11.5 62 16.6 54 21.8 48 27.0 44

Table 2: This table reports geometry compression rates in bits per
vertex (bpv) at different quantization levels and the corresponding
gain compared to the uncompressed geometry. The latter is simply
three times the number of precision bits per vertex.

5 SUMMARY AND DISCUSSION
We have presented a simple technique that allows to exploit polyg-
onal information for improved predictive geometry compression
with the parallelogram rule. Our scheme is a natural generaliza-
tion of the geometry coder by Touma and Gotsman [34] to polygon
meshes and gives compression improvements of up to 40 percent. A
proof-of-concept implementation of the proposed geometry coder is
available in the form of an interactive Java applet on our Web page.

Can we further improve the polygonal geometry compression
rates using only a simple linear predictor? Assume a parallelogram
prediction is performed within a regular polygon (e.g. a planar and
convex polygon with unit-edge lengths) of degree d. The predic-
tion within regular quadrilaterals (d = 4) is perfect, but for higher-
degree polygons (d > 4) the prediction error grows with the degree.
Measurements on our test meshes show a similar behavior: pre-
dictions within quadrilaterals have the smallest average prediction
error and the error becomes larger as the degree increases.

This observation suggests two ways of improvement: On one
hand one could traverse the mesh such that a maximal number of
vertices are predicted within a quadrilateral or a low-degree poly-
gon. On the other hand one could change the linear prediction rule
depending on the degree of the polygon a vertex is predicted within.

The parallelogram rule can be written as the linear combination
P = α ∗ A + β ∗ B + γ ∗ C where α = γ = 1 and β = −1.
It has the advantage that it can be implemented with pure integer
arithmetic. If we allowed α, β, and γ to be floating point numbers,
we could formulate a pentagon rule or a hexagon rule. Such rules
would not be limited to base their predictions on only three vertices.
The prediction of the last unknown vertex within a hexagon, for
example, could use a linear combination of all five vertices.

The challenge is then to find generic coefficients that improve
compression on all typical meshes. We tried to compute such coef-
ficients for various polygonal degrees by minimizing the Euclidean
error over all possible predictions in our set of test meshes. During
compression we then switched the coefficients α, β, and γ based
on the degree of the polygon we predicted within. This approach
slightly improved the compression rates on all meshes; even on
those that were not part of the set used to compute the coefficients.

Also predictions across polygons can be improved by switching
between different floating point coefficients based on the degrees
of the two polygons involved. Initial experiments show that such
degree-adapted prediction rules result in small but consistent im-
provements in compression. However, these gains are bound to be
moderate because on average more than 70 percent of the vertices
are predicted within a quadrilateral. We found that the best linear
predictor for these vertices is the standard parallelogram rule.

6 ACKNOWLEDGEMENTS
Many thanks go to Costa Touma for providing us an executable bi-
nary of his compression algorithm. The first author thanks Jack
Snoeyink, Olivier Devillers, Agnès Clément Bessière, and Jean-
Daniel Boissonnat for arranging his stay in France. This work was
done while both authors were at the INRIA, Sophia-Antipolis and
was supported in part by the ARC TéléGéo grant from INRIA.

References
[1] P. Alliez and M. Desbrun. Progressive encoding for lossless transmission of 3D

meshes. In SIGGRAPH’01 Conference Proceedings, pages 198–205, 2001.

[2] P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3D meshes.
In Eurographics’01 Conference Proceedings, pages 480–489, 2001.

[3] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and transmission
of arbitrary triangular meshes. In Visualization’99, pages 307–316, 1999.

[4] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression of arbitrary
triangular meshes with properties. In DDC’99, pages 247–256, 1999.

[5] D. Cohen-Or, R. Cohen and R. Irony. Multi-way geometry encoding. TR-2002.

[6] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary
triangular meshes. In Visualization’99 Conf. Proc., pages 67–72, 1999.

[7] M. Deering. Geometry compression. In SIGGRAPH’95, pages 13–20, 1995.

[8] O. Devillers and P.-M. Gandoin. Geometric compression for interactive trans-
mission. In Proc. of IEEE Visualization 2000, pages 319–326, 2000.

Compressing Polygon Mesh Geometry, Isenburg, Alliez 4 appeared in Visualization ’2002



mesh number of holes, handles mesh connectivity geometry (8 bits) geometry (10 bits) geometry (12 bits)
name vertices & polygons & components name TG IA gain TG IA gain TG IA gain TG IA gain

triceratops 2832 2834 – – 1 triceratops 767 421 45 2990 2362 21 4936 3798 23 7095 5226 26
galleon 2372 2384 – – 12 galleon 619 621 0 3666 2555 30 5436 3920 28 7396 5470 26
cessna 3745 3927 – – 11 cessna 1165 1191 -2 3776 2269 40 6075 3824 37 8943 5856 35
beethoven 2655 2812 10 – 8 beethoven 793 698 12 3589 3247 10 5607 5119 9 8072 7106 12
sandal 2636 2953 14 12 9 sandal 699 697 0 2996 2364 21 4648 3692 21 6709 5253 22
shark 2560 2562 – – 1 shark 484 242 50 2345 1515 35 3859 2346 39 5703 3384 41
al 3618 4175 – – 21 al 952 1099 -1 4732 3957 16 7413 6369 14 10344 8997 13
cupie 2984 3032 – – 6 cupie 784 612 22 3003 2505 17 5017 4361 13 7315 6535 11
tommygun 4171 3980 – 6 39 tommygun 1077 1178 -9 4415 3076 30 7040 4653 34 10197 6517 36
cow 2904 5804 – – 1 cow 682 647 5 3096 3244 -5 5153 5316 -3 7397 7487 -1
cow poly 2904 3263 – – 1 cow poly 667 554 17 3114 2673 14 5178 4628 11 7417 6776 9
teapot 1189 1290 – 1 1 teapot 158 168 -6 1392 981 30 2209 1650 25 3127 2387 24

average 10 24 24 23

Table 3: The table reports the number of vertices, polygons, holes, handles, and components for each mesh. The resulting compression rates
in bytes for connectivity and geometry for the Touma and Gotsman coder (TG) and our coder (IA) are listed side by side. The coding gains
of our coder over the TG coder are reported in percent. The results for geometry compression are given at three different precision levels of
8, 10, and 12 bits. Note that for purely triangular models (e.g. the cow) we get roughly the same bit-rates as the Touma and Gotsman coder.
This validates that our improvement really comes from using the polygonal information.

Compressing Polygon Mesh Geometry, Isenburg, Alliez 5 appeared in Visualization ’2002



0

1

2

3

4
5

6

7

b de

0 0

1
0 1

0

2

0

1

2 3

0

1

2

0

1

2

3

0

1

2

3

0

1

2

3

4

4

0

1

2

3

4

5

0

1

2

3

4
5

across

0

1

2

3

4
5

6

0

1

2

3

4
5

6

7

0

1

2

3

4
5

6

7

0

1

2

3

4
5

6

7

8

8

lastlastcenter

within

1

within across

0

1

2

3

4
5

6

within within 0

1

2

4
5

6

7

8
3

9

within 0

1

2

4
5

6

7

8
3

9 ...

0

Figure 3: The decoding process is an exact replay of the encoding process. Here a small decoding example that demonstrates in which order
the connectivity decoder traverses the vertices and which parallelogram predictions the geometry decoder uses to decode their position. The
parallelogram used for prediction is shown in dark grey and the corrective vectors are shown in red. The light-grey arrows stand for one or
more steps of the connectivity decoder. They are not important here (but are described in [12] using the same example). The black arrows
with numbers denote a step of the geometry coder. They are described here: (0) The decoder predicts vertex 0 as the center of the bounding
box. (1) The decoder predicts vertex 1 as vertex 0. (2) The decoder predicts vertex 2 as vertex 1. (3) The decoder across-predicts vertex 3
as completing the parallelogram spanned by vertices 0, 1, and 2. (4) The decoder within-predicts vertex 4 as completing the parallelogram
spanned by vertices 0, 2, and 3. (5) The decoder within-predicts vertex 5 as completing the parallelogram spanned by vertices 2, 3, and 4. (6)
The decoder across-predicts vertex 6 as completing the parallelogram spanned by vertices 5, 0, and 4. (7) The decoder within-predicts vertex
7 as completing the parallelogram spanned by vertices 5, 4, and 6. (8) The decoder within-predicts vertex 8 as completing the parallelogram
spanned by vertices 6, 4, and 3. (9) The decoder within-predicts vertex 9 as completing the parallelogram spanned by vertices 8, 3, and 2.
And so on ...

[9] O. Devillers and P.-M. Gandoin. Progressive and lossless compression of arbi-
trary simplicial complexes. In SIGGRAPH’02, pages 372–379, 2002.

[10] S. Gumhold and W. Strasser. Real time compression of triangle mesh connectiv-
ity. In SIGGRAPH’98 Conference Proceedings, pages 133–140, 1998.

[11] H. Hoppe. Efficient implementation of progressive meshes. Computers &
Graphics, 22(1):27–36, 1998.

[12] M. Isenburg. Compressing polygon mesh connectivity with degree duality pre-
diction. In Graphics Interface’02 Conference Proc., pages 161–170, 2002.

[13] M. Isenburg and J. Snoeyink. Face Fixer: Compressing polygon meshes with
properties. In SIGGRAPH’00 Conference Proceedings, pages 263–270, 2000.

[14] M. Isenburg and J. Snoeyink. Compressing the property mapping of polygon
meshes. In Pacific Graphics’01 Conference Proceedings, pages 4–11, 2001.

[15] Java3D. http://java.sun.com/products/java-media/3D/.

[16] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In SIG-
GRAPH’00 Conference Proceedings, pages 279–286, 2000.

[17] Z. Karni and C. Gotsman. 3D mesh compression using fixed spectral bases. In
Graphics Interface’01 Conference Proceedings, pages 1–8, 2001.

[18] A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schroeder. Near-optimal connec-
tivity encoding of 2-manifold polygon meshes. to appear in GMOD, 2002.

[19] A. Khodakovsky and I. Guskov. Normal mesh compression. preprint, 2001.

[20] A. Khodakovsky, P. Schroeder, and W. Sweldens. Progressive geometry com-
pression. In SIGGRAPH’00 Conference Proceedings, pages 271–278, 2000.

[21] D. King, J. Rossignac, and A. Szymczak. Connectivity compression for irregular
quadrilateral meshes. Technical Report TR–99–36, GVU, Georgia Tech, 1999.

[22] B. Kronrod and C. Gotsman. Efficient coding of non-triangular meshes. In
Proceedings of Pacific Graphics, pages 235–242, 2000.

[23] B. Kronrod and C. Gotsman. Optimized compression of triangle mesh geometry
using prediction trees. In Proceedings of 1st International Symposium on 3D
Data Processing, Visualization and Transmission, pages 602–608, 2002.

[24] E. Lee and H. Ko Vertex data compression for triangle meshes. In Pacific Graph-
ics’00 Conference Proceedings, pages 225–234, 2000.

[25] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-quad mesh codec.
to appear in Eurographics’02 Conference Proceedings, 2002.

[26] J. Li, C. C. Kuo, and H. Chen. Mesh connectivity coding by dual graph approach.
Technical report, March 1998.

[27] MPEG4. http://mpeg.telecomitalialab.com/.

[28] R. Parajola and J. Rossignac. Compressed progressive meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 6(1):79–93, 2000.

[29] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5(1):47–61, 1999.

[30] D. Shikhare, S. Bhakar, and S.P. Mudur. Compression of 3D engineering models
using discovery of repeating geometric features. In Proceedings of Workshop on
Vision, Modeling, and Visualization, 2001.

[31] A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-based efficient com-
pression scheme for connectivity of regular meshes. In Proceedings of 12th
Canadian Conference on Computational Geometry, pages 257–264, 2000.

[32] G. Taubin, A. Guéziec, W.P. Horn, and F. Lazarus. Progressive forest split com-
pression. In SIGGRAPH’98 Conference Proceedings, pages 123–132, 1998.

[33] G. Taubin and J. Rossignac. Geometric compression through topological surgery.
ACM Transactions on Graphics, 17(2):84–115, 1998.

[34] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Inter-
face’98 Conference Proceedings, pages 26–34, 1998.

[35] Viewpoint. Premier Catalog (2000 Edition) www.viewpoint.com.

[36] Virtue3D. http://www.virtue3d.com/.

[37] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compres-
sion. Communications of the ACM, 30(6):520–540, 1987.

Compressing Polygon Mesh Geometry, Isenburg, Alliez 6 appeared in Visualization ’2002


