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Abstract

The size of geometric data sets in scientific and industrial applications is con-
stantly increasing. Storing surface or volume meshes in standard uncompressed for-
mats results in large files that are expensive to store and slow to load and transmit.
Scientists and engineers often refrain from using mesh compression because cur-
rently available schemes modify the mesh data. While connectivity is encoded in
a lossless manner, the floating-point coordinates associated with the vertices are
quantized onto a uniform integer grid to enable efficient predictive compression.
Although a fine enough grid can usually represent the data with sufficient precision,
the original floating-point values will change, regardless of grid resolution.

In this paper we describe a method for compressing floating-point coordinates
with predictive coding in a completely lossless manner. The initial quantization
step is omitted and predictions are calculated in floating-point. The predicted and
the actual floating-point values are broken up into sign, exponent, and mantissa and
their corrections are compressed separately with context-based arithmetic coding.
As the quality of the predictions varies with the exponent, we use the exponent to
switch between different arithmetic contexts. We report compression results using
the popular parallelogram predictor, but our approach will work with any predic-
tion scheme. The achieved bit-rates for lossless floating-point compression nicely
complement those resulting from uniformly quantizing with different precisions.
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1 Introduction

Irregular surface or volume meshes are widely used for representing three-
dimensional geometric models. These meshes consists of mesh geometry and
mesh connectivity, the first describing the positions in 3D space and the latter
describing how to connect these positions into the polygons/polyhedra that the
surface/volume mesh is composed of. Typically there are also mesh properties
such as colors, pressure or heat values, or material attributes.
The standard representation for such meshes uses an array of floats to specify
the positions and an array of integers containing indices into the position
array to specify the polygons/polyhedra. A similar scheme is used to specify
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Fig. 1. The x-coordinates of this 75 million vertex Double Eagle tanker range from
−4.095 to 190.974. The coordinates above 128 have the least precision with 23
mantissa bits covering a range of 128. There is sixteen times more precision between
8 and 16, where the same number of mantissa bits only have to cover a range of 8.

the various properties and how they attach to the mesh. For large and detailed
models this representation results in files of substantial size, which makes their
storage expensive and their transmission slow.

The need for more compact mesh representations has motivated researchers
to develop techniques for compression of connectivity [24,7,19,6,14,8,10], of
geometry [23,24,6,9,10], and of properties [22,2,15,16]. The most popular com-
pression scheme for triangulated surface meshes was proposed by Touma and
Gotsman [24]. It was later generalized to both polygonal surface and hexa-
hedral volume meshes [8–10]. It tends to give very competitive bit-rates and
continues to be the accepted benchmark coder for mesh compression [11].
Furthermore, this coding scheme allows single-pass compression and decom-
pression for out-of-core operation on gigantic meshes [12].

While connectivity is typically encoded in a lossless manner, geometry com-
pression tends to be lossy. Current schemes quantize floating-point coordinates
and other properties associated with the vertices onto a uniform integer grid
prior to predictive compression. Usually one can choose a sufficiently fine grid
to capture the entire precision that exists in the data. However, the original
floating-point values will change slightly. Scientists and engineers typically dis-
like the idea of having their data modified by a process outside of their control
and therefore often refrain from using mesh compression altogether.

A more scientific reason for avoiding the initial quantization step is a non-
uniform distribution of precision in the data. Standard 32-bit IEEE floating-
point numbers have 23 bits of precision within the range of each exponent (see
Figure 1) so that the least precise (i.e. the widest spaced) numbers are those
with the highest exponent. If we can assume that all samples are equally ac-
curate, then the entire uniform precision present in the floating-point samples
can be represented with 25 bits once the bounding box (i.e. the highest ex-
ponent) is known. But if this assumption does not hold because, for example,
the mesh was specifically aligned with the origin to provide higher precision
in some areas, then uniform quantization is not an option.

Finally, if neither the precision nor bounding box of the floating-point sam-
ples is known in advance it may be impractical to quantize the data prior to
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compression. Such a situation may arise in streaming compression, as it was
envisioned by Isenburg and Gumhold [12]. In order to compress the output
of a mesh-generating application on-the-fly, one may have to operate without
a-priori knowledge about the precision or the bounding box of the mesh.

In this paper we investigate how to compress 32-bit IEEE floating-point coordi-
nates with predictive coding in a completely lossless manner. The initial quan-
tization step is omitted and predictions are calculated in floating-point arith-
metic. The predicted and the actual floating-point values are broken up into
sign, exponent, and mantissa and their corrections are compressed separately
with context-based arithmetic coding [25]. As the quality of predictions varies
with the exponent, we use the exponent to switch between different arithmetic
contexts. We report compression results for single-precision floating-point co-
ordinates predicted with linear predictions. However, our coding technique can
also be used for other types of floating-point data or in combination with other
prediction schemes. The achieved bit-rates for lossless floating-point compres-
sion nicely complement those resulting from uniformly quantizing with differ-
ent precisions. Hence, our approach is a completing rather than a competing
technology that can be used whenever uniform quantization of the floating-
point values is—for whatever reason—not an option.

Compared to the preliminary results of this work that were reported in [13] we
achieve improved bit-rates, faster compression and decompression, and lower
memory requirements. Furthermore we include a detailed comparison between
the proposed compression scheme, simpler predictive approaches, and non-
predictive gzip compression. This comparison shows that current predictive
techniques are not always the best choice. They are outperformed by gzip on
data sets that contain frequently reoccuring floating-point numbers.

The remainder of this paper is organized as follows: In the next section we
give a brief overview of mesh compression. In the Section 3 we describe how
current predictive geometry coding schemes operate. In Section 4 we show
how these schemes can be adapted to work directly on floating-point num-
bers. In Section 5 we report compression results and timings. The last section
summarizes our contributions and discusses current and future work.

2 Mesh Compression

The three-dimensional surfaces and volumes that are used in scientific simu-
lations or engineering computations are often represented as irregular meshes.
Limited transmission bandwidth and storage capacity have motivated re-
searchers to find compact representations for such meshes and a number of
compression schemes have been developed. Compression of connectivity and
geometry are usually done by clearly separated, but often interwoven tech-
niques. The connectivity coder [24,7,19,6,14,8,10] is usually the core compo-
nent of a compression engine and drives the compression of geometry [23,24,6,9,10]
and properties [22,15,16]. Connectivity compression is lossless due to the com-
binatorial nature of the data. Compression of geometry and properties, how-
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ever, is lossy due to the initial quantization of the floating-point values.

All state-of-the-art connectivity compression schemes grow a region by encod-
ing adjacent mesh elements one after the other until the entire mesh has been
conquered. Most compression engines use the traversal order this induces on
the vertices to compress their (pre-quantized) positions with a predictive cod-
ing scheme. Instead of specifying positions individually, previously decoded
positions are used to predict the next position and only a corrective vector
is stored. Virtually all predictive coding schemes used in industry-strength
compression engines employ simple linear predictors [3,23,24].

Recently we have seen a number of innovative, yet much more involved ap-
proaches to geometry compression. There are spectral methods [17] that per-
form a global frequency decomposition based on the connectivity, there are
space-dividing methods [4] that compress connectivity-less positions using a
k-d tree, there are remeshing methods [18,5] that compress a regularly param-
eterized version instead of the original mesh, and there are high-pass meth-
ods [21] that quantize coordinates after a basis transformation with the Lapla-
cian matrix. We do not attempt to improve on these “lossy” schemes. Instead
we show how predictive geometry compression schemes [23,24,6,9,10] can be
adapted to compress floating-point coordinates in a lossless manner.

3 Predictive Geometry Coding

The reasons for the popularity of linear prediction schemes are that they are
easy to implement robustly, that compression and decompression are fast, and
that they deliver good compression rates. For several years already, the simple
parallelogram predictor [24,9] (see Fig. 2) has been the accepted benchmark
that many recent approaches are compared against. Although better compres-
sion rates have been reported, in practice it is often questionable whether these
gains are justified given the sometimes immense increase in algorithmic and
asymptotic complexity of the coding scheme. Furthermore these improvements
are often specific to a certain type of mesh. Some methods achieve significant
gains only on models with sharp features, while others are only applicable to
smooth and sufficiently densly sampled meshes.

Predictive geometry compression schemes work as follows: First all floating-
point positions are converted to integers by uniform quantization with a user-
defined precision of for example 12, 16, or 20 bits per coordinate. This intro-
duces a quantization error as some of the floating-point precision is lost. Then
a prediction rule is applied that uses previously decoded integer positions to
predict the next position. Finally, an offset vector is stored that corrects the
difference between predicted and actual integer position. The values of these
corrective vectors tend to cluster around zero. This reduces the variation and
thereby the entropy of the sequence of numbers, which means they can be
efficiently compressed with, for example, an arithmetic coder [25].

The simplest prediction method predicts the next position as the last posi-
tion, and was suggested by Deering [3]. While this technique, also known as
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Fig. 2. The parallelogram predictor uses the vertices of a neighboring triangle to
predict the next vertex. Only a small correction (here: the red arrow) needs to be en-
coded. The coordinates are broken up into sign, exponent, and mantissa components
and differences between actual and predicted value are compressed separately using
context-based arithmetic coding. The three components for actual and predicted x,
y, and z coordinates are reported in hexadecimal. The function calls refer to the
pseudo code from Figure 4. Compressing the difference between a vertex coordinate
and its prediction requires between three and five calls to the arithmetic coder.

delta-coding, makes as a systematic prediction error, it can easily be imple-
mented in hardware. A more sophisticated scheme is the spanning tree pre-
dictor by Taubin and Rossignac [23]. A weighted linear combination of two,
three, or more parents in a vertex spanning tree is used for prediction. By far
the most popular scheme is the parallelogram rule introduced by Touma and
Gotsman [24]. A position is predicted to complete the parallelogram that is
spanned by the three previously processed vertices of a neighboring triangle.

The first vertex of a mesh component has no obvious predictor. We predict its
position using the position that was processed last or – if this is the first vertex
of the entire mesh – as zero. There will be only one such null prediction per
mesh component. Also the second and the third vertex of a mesh component
cannot be predicted with the parallelogram rule. We predict their position as
that of a previously processed vertex to which they connect by an edge. There
will be only two such delta predictions per mesh component. For all following
vertices of a mesh component we use the parallelogram predictor. To maximize
compression it is beneficial to compress correctors of the less promising null
and delta predictions with different arithmetic contexts [9]. For meshes with
few components this hardly makes a difference, but the Power Plant and the
Double Eagle tanker each consist of millions of components.

Predictive compression does not scale linearly with increased precision. Such
techniques mainly “predict away” the higher-order bits. If more precision (i.e.
low bits) is added the compression ratio (i.e. the compressed size in proportion
to the uncompressed size) increases. This is demonstrated in Table 3, which re-
ports bit-rates for parallelogram predicted geometry at different quantization
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Fig. 3. The non-uniform distribution of floating-point numbers implies that the
same absolute prediction error of, for example, 0.2 results in differences that vary
drastically with the magnitude (i.e. the exponent) of the predicted numbers.

levels: the achieved compression ratios increase with increasing precision.
The initial quantization step that maps each floating-point number to an in-
teger makes predictive coding simple. The differences between predicted and
actual numbers are also integers and the same absolute prediction error always
result in the same difference. When operating directly in floating-point, predic-
tive coding is less straight-forward. The non-uniform distribution of floating-
point numbers makes compression of the corrective terms more difficult in two
ways: First, the difference between two 32-bit floating-point numbers can in
general not be represented by a 32-bit floating-point number computed using
floating-point arithmetic without loss in precision. Second, the same absolute
prediction error results in differences that vary drastically with the magnitude
of the predicted number, as illustrated in Figure 3. For the largest numbers
there will only be a difference of a few bits in the mantissa, but for smaller
numbers this difference will increase. Especially when the sign or the exponent
were miss-predicted we can not expect any correlation between the mantissas.
Miss-predictions of the exponent become more likely for numbers close to zero.
Here also the sign may often be predicted incorrectly.

4 Predictive Floating-Point Compression

In order to compress a floating-point coordinate using a floating-point predic-
tion without loss we split both numbers into sign, exponent, and mantissa and
then treat these components separately. For a single-precision 32-bit IEEE
floating-point number [1], the sign s is a single bit that specifies whether the
number is positive (s = 0) or negative (s = 1), the exponent e is an eight
bit number with an added bias of 127 where 0 and 255 are reserved for un-
normalized near-zero and infinite values, and the mantissa m is a twenty-three
bit number that is used to represent 223 uniformly-spaced numbers within the
range associated with a particular exponent.
We compress the differences in sign, exponent, and mantissa between a floating-
point number and its prediction component by component with a context-
based arithmetic coder. Especially for the mantissa, the success of the predic-
tion is tied to the magnitude (i.e. the exponent) of the number (see Figure 3).
The same absolute prediction error results in a smaller difference in mantissa
for numbers with larger exponents. In particular, this difference doubles/halves
when the exponent is decreased/increased by one. This is because the spac-
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ing between consecutive floating-numbers changes with the exponent, so that
more/less of these spacings are required to express that difference. We account
for this by switching arithmetic contexts based on the exponent. This prevents
the high-entropy correctors from predictions for numbers with small exponents
from spoiling the potentially lower entropy of correctors from predictions for
numbers with higher exponents.

ArithmeticCoder* arithmetic coder;
ArithmeticContext* signexpo[256];
ArithmeticContext* exponent;
ArithmeticContext* mantissa k[256];
ArithmeticContext* mantissa bits[23];

void encode(float actual, float predicted)
{

int a sign = get sign(actual);
int a expo = get exponent(actual);
int a mant = get mantissa(actual);
int p sign = get sign(predicted);
int p expo = get exponent(predicted);
int p mant = get mantissa(predicted);

bool same sign = (a sign == p sign);
bool same expo = (a expo == p expo);

comp signexpo(same sign, a expo, p expo);

if (same sign && same expo) {
comp mantissa(a expo, a mant, p mant);

} else {
comp mantissa(a expo, a mant, 0x0);

}
}
#define DIFFERENT SIGN 0
#define SAME EXPONENT 4
#define OTHER EXPONENT 8

void comp signexpo(bool same, int a, int p)
{

if (same) {
int d = a - p;
if (-3 <= d && d <= 3) {

compress(signexpo[p], SAME EXPONENT+d);
} else {

compress(signexpo[p], OTHER EXPONENT);
compress(exponent, a);

}
} else {

compress(signexpo[p], DIFFERENT SIGN);
compress(exponent, a);

}
}

void comp mantissa(int expo, int a, int p)
{

// c will be within [1-223 ... 223-1]
int c = a - p;
// wrap c into [1-222 ... 222]
if (c <= -(1<<22)) c += 1<<23;
else if (c > (1<<22)) c -= 1<<23;
// find tightest [1-2k ... 2k] containing c
int k = 0;
// loop could be replaced with faster code
int c1 = (c < 0 ? -c : c);
while (c1) { c1 = c1 >> 1; k++ }
// adjust k for case that c is exactly 2k

if (k && (c == 1<<(k-1))) k--;
// compress k that is now between 0 and 22
compress(mantissa k[expo], k);
// compress lowest k+1 bits of corrector c
if (k < 12) {

// translate c into [0 ... 2k+1-1]
c += ((1<<k) - 1);
// compress c with appropriate context
compress(mantissa bits[k], c);

} else {
// break the k+1 bits into two smaller chunks
int k1 = k - 11;
// store lower k1 bits in c1
// store higher 12 bits in c
if (c < 0) {

c1 = (-c) & ((1<<k1) - 1); c = -((-c) >> k1);
} else {

c1 = c & ((1<<k1) - 1); c = c >> k1;
}
// translate c into [0 ... 212-1]
c += ((1<<11) - 1);
// compress c and c1 with appropriate context
compress(mantissa bits[11], c);
compress(mantissa bits[k], c1);

}
}

void compress(ArithmeticContext* ac, int sym)
{

arithmetic coder->compress(ac, sym);
}

Fig. 4. Pseudo code illustrating the proposed scheme for lossless compression of
predicted floating-point numbers. We first compress the common case of a correctly
predicted sign and a (nearly) correct predicted exponent while switching contexts
based on the predicted exponent. Occasionally we need to compress the exponent
explicitly. Then we correct the mantissa. If sign or exponent were not predicted
correctly we adjust the mantissa’s prediction to zero. Next we compress the number
of significant corrector bits while switching contexts based on the actual exponent.
Finally these bits are compressed in one or two chunks depending on their number.

The pseudo code in Figure 4 illustrates how we compress the differences in sign,
exponent and mantissa. First, we compress a number between 0 and 8 that
specifies: 0 the signs are different, 1-7 the exponents are within plus/minus
three, and 8 the exponents differ by more than three. When compressing this
number we switch contexts based on the predicted exponent. For cases 0 and
8 we have to explicitly compress the exponent, which is done with a separate
context. Then we compress how to correct the mantissa. If both signs and
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exponents were in agreement we use the predicted mantissa as the actual
mantissa’s prediction or 0 otherwise. We compute the signed corrector that is
the shortest modulo 223 and the number k that specifies the tightest interval
(1-2k, 2k) into which this corrector falls. Next, this number k, which ranges
between 0 to 22 is compressed while switching contexts based on the actual
exponent. Finally the k + 1 significant bits of the corrector are compressed.
This is done in one chunk of k +1 bits given that k is smaller than a threshold
t and in two chunks of t bits and k − t + 1 bits otherwise.
The particular choice for the threshold t that splits the k+1 significant bits of
the corrector into two chunks is mainly a trade-off between keeping the size of
the arithmetic tables small and the number of chunks to compress low. In the
worst case k is 22 so that there are 23 significant corrector bits to compress.
Using a large t means that we often need to compress only one chunk but
results in higher memory requirements and slower updates for the arithmetic
tables. We found that the best trade-off is achieved for a t of either 12 or 13.
Using t = 12 results in the smallest tables but requires more often to compress
two chunks than t = 13. For the results in the paper we used t = 12.

Fig. 5. The distribution
of exponents among all
x-coordinates for the david
(2mm), the lucy, and the
power plant model as per-
centages of the total. The
power plant’s exponents of 143
belong to a building situated
far from the main complex. 0
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In order to illustrate that the approach of switching contexts based on the ex-
ponent is indeed reasonable, we show in Figure 5 the distribution of exponents
for some of our test models and in Figure 6 the average number of significant
corrector bits k + 1 that need to be compressed during predictive coding of
the mantissa for numbers with that exponent. The first set of plots shows that
only a few exponents are used frequently in typical models. The second set
of plots confirms that mantissa predictions are better for the more frequent
numbers with large exponents since they result in correctors that have fewer
significant bits. These plots also confirm that thresholds t of 12 or 13 assure
that a large number of correctors are compressed with a single chunk.
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A simpler prediction scheme

We have also implemented a simpler predictive scheme for lossless floating-
point compression for which we give pseudo code in Figure 7. This scheme
simply breaks the actual and the predicted floating-point number into several
chunks ci that are bi bits long, computes for each chunk ci a corrector modulo
2bi , and then compresses those with different arithmetic tables. One objec-
tive for having this simpler scheme is to validate if and when the additional
correlations that our scheme tries to exploit are worthwhile this effort.

ArithmeticCoder* arithmetic coder;
ArithmeticContext* chunks[32];

int num = 3;
int bit[]= {10, 11, 11};

// int num = 3;
// int bit[]= {9, 12, 11};
// int num = 4;
// int bit[]= {8, 8, 8, 8};
// int num = 8;
// int bit[]= {4, 4, 4, 4, 4, 4, 4, 4};

void compress(ArithmeticContext* ac, int sym)
{

arithmetic coder->compress(ac, sym);
}

void comp chunk(int i, int a, int p)
{

int c = a - p;
if (c < 0) c += (1 << b[i]);
compress(chunks[i], c);

}

void encode(float actual, float predicted)
{

unsigned int a cast = (unsigned int&)actual;
unsigned int p cast = (unsigned int&)predicted;
for (int i = num-1; i >= 0; i--) {

int mask = ((1 << bit[i]) - 1);
comp chunk(i, a cast & mask, p cast & mask);
a cast = a cast >> bit[i];
p cast = p cast >> bit[i];

}
}

Fig. 7. Pseudo code illustrating a simple scheme for lossless compression of predicted
floating-point numbers. The number and its predictor are broken into several chunks
and corrected chunk-wise using a different arithmetic context for each chunk. We
refer to variations of this scheme in Tables 1 and 2 by indicating into which set of
chunks the floating-point numbers were broken into (i.e. 8-8-8-8 or 9-12-11).

5 Results

In Table 1 we compare our predictive scheme with simpler predictive schemes
and standard gzip in terms of compression performance. Our scheme outper-
forms the simpler schemes by a difference of up to 10 bits per vertex. However,
this gain shrinks to just above one bit per vertex as the meshes become large.
The simpler schemes “9-12-11” and “10-11-11” are nearly identical in com-
pression performance, but “10-11-11” is slightly faster and uses less memory.

mesh name
number of predictive compression gzip -9 unique coordinates

vertices 4-4-..-4 8-8-8-8 9-12-11 10-11-11 new xyzx.. x..y..z.. x y z

golf club 209,779 47.3 43.1 38.4 38.4 29.0 62.0 50.3 8.2% 12% 8.0%

hip 530,168 53.3 51.6 48.3 48.3 37.9 73.0 67.0 11% 10% 12%

happy buddha 543,652 55.6 53.2 52.8 52.9 47.4 55.8 50.0 40% 29% 42%

david (2mm) 4,129,614 38.2 36.0 36.1 36.1 33.7 56.1 47.1 53% 38% 22%

power plant 11,070,509 36.9 31.8 28.8 28.9 27.2 23.7 8.7 4.4% 1.5% 2.0%

lucy 14,027,872 45.4 44.8 44.9 44.9 43.7 78.7 73.8 49% 82% 77%

Table 1
This table illustrates the compression performance of our predictive scheme in com-
parison to simpler schemes and standard gzip compression. For “xyzx..” the vertex
coordinates are stored alternating into a single file. For “x..y..z..” the vertex coordi-
nates are multiplexed into three different files. The last three columns list for each
coordinate the percentage of floating-point coordinates that are actually different.

The biggest surprise is the superb performance of standard gzip on the power
plant model. This can be explained with the high reoccurance of floating-point
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numbers by the vertex coordinates. This results in repeating byte pattern that
suit gzip compression but cannot be exploited by traditional predictive coders.
On the contrary, the application of prediction rules may increase the entropy
of the mesh geometry if the corrective values have a distribution with a wider
spread than the original positions.
If the compression engine is allowed to produce separate streams or files for
each of connectivity, x coordinates, y coordinates, z coordinates, and addi-
tional properties, then it would be easy to substitute the predictive geometry
compressor with gzip or bzip2 compressor whenever suitable. However, in order
to create single-stream encodings it will be necessary to incorporate capabil-
ities into a predictive coder that allow it to deal with data sets that have a
high reoccurance rate of sparsely scattered floating-point numbers.

mesh name
8-8-8-8 10-11-11 old [13] new

rate t enc
dec s enc

dec rate t enc
dec s enc

dec rate t enc
dec s enc

dec rate t enc
dec s enc

dec

golf club 43.1
0.16 1,355

38.4
0.12 1,741

33.7
0.18 1,162

29.0
0.14 1,551

0.26 821 0.23 910 0.34 625 0.22 974

hip 51.6
0.36 1,492

48.3
0.28 1,893

43.5
0.46 1,151

37.9
0.38 1,391

0.78 679 0.71 746 0.85 622 0.66 802

happy buddha 53.2
0.34 1,596

52.9
0.30 1,837

49.9
0.46 1,180

47.4
0.38 1,448

0.69 792 0.65 835 0.88 620 0.63 862

david (2mm) 36.0
2.44 1,693

36.1
2.07 1,997

34.7
3.29 1,257

33.7
2.48 1,663

4.82 856 4.59 897 6.28 657 4.02 1,028

power plant 31.8
6.69 1,656

28.9
5.59 1,979

29.1
9.41 1,175

27.2
6.93 1,596

14.46 765 13.31 831 17.45 634 11.32 978

lucy 44.8
8.67 1,618

44.9
7.38 1,901

44.4
11.86 1,183

43.7
9.11 1,539

17.91 783 17.60 796 21.70 646 15.77 889

36 tables 47KB 27 tables 188KB 363 tables 1350KB 217 tables 210KB

Table 2
This table lists compression rates (rate) in bits per vertex, compression and de-
compression times (t) in seconds and compression and decompression speed (s) in
thousand vertices per second for four predictive floating-point compression schemes:
predicting in 4 chunks of 8 bits, predicting in 3 chunks of 10, 11, and 11 bits, using
the old scheme of [13], and using the new scheme proposed here. Time measurements
are taken on a computer with a 3 GHz Pentium 4 and 1 GB of RAM running Win-
dows XP. The bottom most row reports for each compression scheme the number
of range tables used and the total amount of memory needed for storing them.

In Table 2 we compare four predictive scheme in terms of compression rates
and speeds. While the simple scheme “10-11-11” is the winner in compression
speed with nearly 2 million vertices per second, the proposed scheme achieves
higher compression rates and has the fastest decompression speeds of up to
1 million vertices per second. The new scheme outperforms our older scheme
from [13] in every respect while using fewer and smaller arithmetic tables.
It should be noted that neither scheme’s implementation is particularly hand-
optimized. The computation speeds are mainly dictated by the efficiency of
the entropy coder, which in our case is a range coder implementation adapted
from [20]. In particular the simple scheme “8-8-8-8” could achieve significant
speed-ups by using an entropy coder optimized for byte-sized symbols. For
large models this could make it therefore an overall better choice.
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mesh name
compression rates [bpv] compression ratio [%]

16 bit 18 bit 20 bit 22 bit 24 bit lossless 16 bit 18 bit 20 bit 22 bit 24 bit lossless

golf club 15.67 20.77 21.56 22.34 25.50 29.05 33 38 36 34 35 30

hip 19.37 25.37 27.14 27.96 33.60 37.90 40 47 45 42 47 39

happy buddha 21.79 26.44 32.15 36.92 43.95 47.42 45 49 54 56 61 49

david (2mm) 12.54 17.81 23.22 28.37 34.13 33.69 26 33 39 43 47 35

power plant 11.57 15.26 18.54 21.48 24.23 27.15 24 28 31 33 34 28

lucy 14.60 20.41 26.51 32.87 39.08 43.74 30 38 44 50 54 46

Table 3
This table lists results for lossless geometry compression in bits per vertex (bpv) side-
by-side with the bit-rates that are obtained by [12] after uniformly quantizing the
geometry with 16, 18, 20, 22, and 24 bits of precision. In addition we list the achieved
gains as the ratio between the compressed and the corresponding uncompressed
bit-rates. These are calculated as three times the precision for the pre-quantized
geometry and as three times 32 bits for the full precision floating-point geometry.

In Table 3 we list the bit-rates of our lossless floating-point geometry com-
pressor side by side with the results of [12] where the bounding box is first
uniformly quantized with 16, 18, 20, 22, and 24 bits. The achieved bit-rates
for lossless compression nicely complement those resulting from quantizing at
different precisions. On various example models, our encoding scheme com-
presses the floating-point data to between 28 % and 49 % of the original 96
bits per vertex (bpv) required for uncompressed storage.

6 Summary and Current Work

In this paper we have described how to efficiently compress floating-point co-
ordinates of irregular meshes using predictive coding. For this we omit the
traditional quantization step, compute a prediction in floating-point, and sep-
arately compress the differences between predicted and actual sign, exponent,
and mantissa using context-based arithmetic coding. We exploit the corre-
lation among these three components by compressing them in the order of
dependency. In particular, we use the exponent to switch contexts between
predictions. This prevents predictions for numbers with smaller exponents,
which are expected to be less accurate, from spoiling the entropy of better
predictions. Furthermore, we use miss-predictions in sign or exponent to ad-
just the prediction of the mantissa.

The presented approach can be seen as a completing rather than competing
technology that can be used whenever uniform quantization of the floating-
point values is for some reason not possible. Our scheme may also be used to
predictively compress floating-point data in other contexts given that reason-
able predictions are available. Without modification our coder also compresses
special numbers such as infinity or zero in an efficient way.

We identified a serious shortcoming of predictive coding schemes that arises
whenever a data set contains many sparse samples of high precision that re-
occur frequently. As evidenced by comparing the gzip compression results for
the power plant from Table 1 with the compression results after quantizing
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from Table 3 this is also the case when performing predictive coding on pre-
quantized data. It seems that it has not been noticed before that current
predictive schemes perform so poorly on such data. This will have to be in-
vestigated more closely in the future.
One benefit of lossless floating-point compression is that it does not require
a-priori knowledge about the precision or bounding box of the data. However,
if the precision in the data is known to be uniform or if it is sufficient to
preserve, for example, only 16 uniform precision bits then it would be wasteful
to losslessly compress the floating-point values. Currently we are designing a
scheme that can quantize and compress a stream of floating-point numbers on-
the-fly (i.e. in a single pass) by learning the bounding box while guaranteeing
a user-specified number of precision bits.
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