
Streaming Compression of Triangle Meshes (abstract)

Martin Isenburg∗

University of North Carolina
at Chapel Hill

Peter Lindstrom
Lawrence Livermore
National Laboratory

Jack Snoeyink
University of North Carolina

at Chapel Hill

Figure 1: The original triangle orderings of lucy (28 million triangles), david (56 million triangles), and st. matthew (372 million triangles).

1 Introduction and Previous Work
Current mesh compression schemes completely disregard the orig-
inal triangle and vertex order of the input mesh. They encode the
triangles in an order that is derived from systematically traversing
the connectivity graph and the 3D positions associated with the ver-
tices in the order they are first encountered. The main compression
gain comes from coding the mesh connectivity with only 1 to 2 bits
per triangle. Standard indexed formats, in contrast, store three in-
dices per triangle that each require at least log2(v) bits where v is the
number of vertices. Such formats not only specify the connectivity
but also a particular permutation of the mesh elements as vertices
and triangles can be listed in any order. By bringing the mesh el-
ements into a more “canonical” order these compression schemes
eliminate the costs for specifying the permutation.

Although such compression strategies achieve the best known
bit-rates for connectivity coding, they struggle with large meshes.
Before compression can start they need to construct data structures
that support the topological adjacency queries that are needed for
traversing the connectivity graph. For meshes that contain hun-
dreds of millions of triangles, such as the 3D scans of Michelan-
gelo’s statues [Levoy et al. 2000], the construction of these tem-
porary data structures with the limited main memory available on
common PCs is difficult. Either the meshes must be cut into smaller
pieces [Ho et al. 2001] or external memory data structures [Isenburg
and Gumhold 2003] must be used. But both these approaches are
IO-inefficient and require large amounts of temporary disk space.An executable

of compressor
and
decompressor
as well as a
MSVC 6.0
project library
of our
compression
API is available
on the demo
webpage.

Another drawback of current compression schemes is that they
always expect the entire mesh as input. This means that a newly
generated mesh needs to be stored at least once in uncompressed
form (i.e. in order to hand it to the compressor) and that compres-
sion of a mesh cannot start until its generation is completed.

void set bbox(float* min, float* max);
void set num verts(int nverts);
void set num faces(int nfaces);

bool open(FILE* file, int bits, int delay=0);
bool write vertex(float* v pos);
bool write triangle(int* t idx, bool* t final);
bool close();

bool compress(FILE* file,
int bits,
int nverts,
int nfaces,
float* v positions,
int* t indices);

Figure 2: An API for streaming (left) versus standard (right) compression.

2 Streaming Compression
We radically depart from the traditional approach to mesh compres-
sion and propose a scheme that incrementally encodes a mesh in the
order it is given to the compressor while using only minimal mem-
ory resources. This makes the compression process basically trans-
parent to the user and practically independent of the mesh size. This
is especially beneficial for compressing large meshes where previ-
ous approaches spend significant amounts of memory, disk space,

∗isenburg@cs.unc.edu http://www.cs.unc.edu/ ˜ isenburg/smc

mesh ordering
delay = 0 = 250 = 10,000 ooc-compressor [IG2003]

rate time RAM rate time rate time rate prepr. compr. RAM disk

lucy
original 13.6 1 37 12.1 2 8.5 2 1.9 19 5 128 0.9
breadth 3.5 1 1.6 2.6 1 3.4 2 bpv min min MB GB

david1mm
original 15.9 2 4.8 4.9 3 3.8 4 1.8 36 14 192 1.7
spectral 14.3 2 1.8 6.6 3 5.9 4 bpv min min MB GB

st. original 15.6 14 5.2 4.8 20 3.9 28 1.8 7 4 384 11
matthew spatial 13.6 15 4.0 6.6 23 5.3 29 bpv hrs hrs MB GB

Table 1: Comparing connectivity rates [bpv], timings [min], and memory
use [MB] of our streaming compressor with [Isenburg and Gumhold, 2003].

CPU time, and file I/O on pre-processing, whereas our scheme can
start compressing after having been given the first few triangles.

We have implemented a writer (see Figure 2) and a correspond-
ing reader through which compressed meshes can be written and
read in increments of single vertices and triangles. The only re-
quirement is that vertices are written before being referenced by a
triangle and that vertices are finalized with the triangle that refer-
ences them for the last time (e.g. simply by a boolean flag).

In Table 1 we compare our streaming compressor to that of Isen-
burg and Gumhold [2003]. For the “St. Matthew” they spend 7
hours creating an 11 GB data structure on disk before actual com-
pression begins, which takes another 4 hours and uses 384 MB of
RAM on a 2.8 GHz Pentium IV. In contrast, running on a 1.1 GHz
mobile Pentium III we compress this model in 15 minutes using
only 6 MB of RAM and no temporary disk space. Vertices are writ-
ten before their first triangle and triangles are written in the origi-
nal order (see Figure 1) and one alternative order. While geometry
compression rates (not reported) are similar, their 11 hour/11 GB
effort pays off with superior, state-of-the-art connectivity compres-
sion rates. But so far we have not reordered a single triangle.

When our compressor follows the exact triangle order in which
the mesh is written, it generally needs to store at least log2(width)
bits per triangle, where width is the number of previously refer-
enced, yet unfinalized vertices. We can significantly improve com-
pression by employing a small delay buffer within which the com-
pressor locally reorders triangles. It greedily brings them into a
vertex-connected order that often allows avoiding those log2(width)
bits. A delay buffer of 10,000 triangles, for example, gives average
connectivity rates of 4 to 5 bits per vertex [bpv] while slowing com-
pression by a factor of two (not optimized yet) and increasing the
memory footprint by only 5 MB.

References
HO, J., LEE, K., AND KRIEGMAN, D. 2001. Compressing large polygonal models.

In Visualization’01 Proceedings, 357–362.
ISENBURG, M., AND GUMHOLD, S. 2003. Out-of-core compression for gigantic

polygon meshes. In SIGGRAPH 2003 Proceedings, 935–942.
LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,

L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND

FULK, D. 2000. The Digital Michelangelo Project. In SIGGRAPH 2000, 131–144.

