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Abstract

Because of the convenience of a text-based format 3D
content is often published in form of a gzipped file that con-
tains an ASCII description of the scene graph. While com-
pressed image, audio, and video data is kept in separate
binary files, polygon meshes and interpolators are usually
included uncompressed into the ASCII description, as there
is no widely-accepted standard for such data.

In this paper we show how to use compressed polygon
meshes and compressed interpolators within a purely text-
based format. Our scheme codes these data-heavy nodes as
ASCII strings that compress well with standard gzip com-
pression. Specifically we demonstrate the efficiency of this
technique on a sparse scene composed of many small poly-
gon meshes. While typical for 3D content on the Web, such
scenes tend to be more difficult to compress.

1. Introduction

Most 3D content found in games, in virtual reality sys-
tems, in high-end visualization applications, and in low-
polygon-count interactive web-viewers is represented by
some kind of hierarchical scene graph structure. In order to
save and distribute the 3D content, this scene graph struc-
ture has to be mapped to a file. The most popular way for
doing this is to store the scene graph hierarchy as a cor-
rectly bracketed ASCII representation (e.g. VRML and its
variants). The advantage of such a description is that it is
very author friendly, in the sense that it remains meaningful
to the human reader. A scene graph represented in a tex-
tual format can be viewed, understood, and modified with
any text editor. Most importantly, anyone can do this, even
without knowledge about the specific software package that
generated the 3D content.

An author editing the scene graph in its ASCII repre-
sentation will usually not modify all parts of the scene.
Namely, he will not modify an individual polygon or an
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Figure 1. Our example VRML scene contains 33 indexed
face sets, 5 position interpolators, and 27 orientation inter-
polators. The size of the gzipped VRML file is 29895 bytes.
With ASCII coded indexed face sets this reduces to 18364
bytes. Additional ASCII coding of all interpolators brings
it down to 12996 bytes.

individual vertex position of a large polygon mesh. Typi-
cal editing operations involve changing the lights in scene,
modifying the material properties of a surface, or scal-
ing/translating/rotating of entire scene graph nodes. Being
able to use cut&paste to merge or to exchange components
of different scene graph files is very convenient.

However, a textual format has two disadvantages com-
pared to a binary format: longer parse times and larger file
sizes. Parsing an ASCII scene is more expensive in terms of
computation because of the required string operations such
as comparisons and conversions. Storing an ASCII scene
is more expensive in terms of memory-usage because the
textual representation of the data tends to be less compact.
Most authors of 3D content seem to value the readability of
a scene over the efficiency in parsing it. However, large file
sizes are considered a serious problem because they hamper
fast transmission of 3D content in a distributed bandwidth-
limited environment such as the Internet.
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The size of a scene graph file is mainly determined by
its data-heavy nodes. These are the nodes that contain tex-
ture images, audio clips, video sequences, polygon meshes,
and the data for interpolation of positions or orientations.
For the VRML scene in Figure 1, for example, these nodes
constitute more than 96 percent of the total file size.

Widely accepted binary compression standards such as
JPEG, GIF, and MPEG are available to compress image,
audio, and video data. Software to read, save, create, and
modify this data is plentiful and easy to use. Text-based
scene graphs APIs like VRML support these compression
standards. Since these formats are binary they cannot be
part of the textual scene graph file. Instead they are stored
as separate binary files that are referenced in the text file.

However, there are no compression standards for the
other two data-heavy components typically found in a scene
graph: polygon meshes and interpolation data. While re-
cent research has aimed at developing compact representa-
tions for this kind of data, attempts to establish a standard-
ized compressed format (e.g. MPEG-4, binary VRML, etc.)
have not yet been successful.

The main obstacle seems to be the complex structure of
the data. Audio data is always a sequence of numbers, im-
age data is always a block of numbers and video data is
always a block of numbers that changes over time. There
are a few control parameters like sampling rate, dynamic
range, or frame size, but these are easy to define. This is
different for 3D data—there is no obvious format to agree
upon. Users have different ideas of how, for example, a
polygon mesh should be represented: Some need triangle
strips and interleaved vertex arrays for fast rendering, oth-
ers want high-level surface descriptions that enable colli-
sion detection, etc. Moreover a polygon mesh can contain
a lot of different data besides positions and triangles. Or
should I say polygons? There can be a layer of texture co-
ordinates. Or two. Maybe three. There are normals (some-
times), colors (rarely), shading groups (one or multiple?),
attached bones (a maximum of three?), and so on. Trying
to establish a standard for compressed polygon meshes that
everyone will accept and more importantly use is difficult.

Nevertheless, compressed 3D content has found its way
onto the Web inside the proprietary file formats of vari-
ous CAD and Web3D companies. Usually they compress
the entire scene graph into a compact binary representation
in the moment the content is ready to be published. They
can afford to do so because they provide the tools needed
to read, modify, and write this format to their customers.
Since only their own software needs to be able to read the
compressed format, they can tailor the compressor to their
specific scene graph structure for maximal compression.

Since 1996 geometry compression for VRML has been
an important item on the wish-list of the Web3D Consor-
tium [2]. It was widely understood that a binary format

would be required to allow compressed geometry. This lead
to the formation of the Compressed Binary Format work-
group [18], which (a) created a binary format for all VRML
nodes and (b) proposed new compressed versions of five
data-heavy nodes that would only exist in binary. Despite
excellent compression results, in the end the proposal was
rejected. Some felt it was the sentiment against an unread-
able binary format from the author-side and the reluctance
to support two VRML formats from the browser company-
side that influenced the decision.

We have recently proposed a mesh compression tech-
nique that does not require a binary file format. In [8] we
show how to code textured polygon meshes as a sequence
of ASCII symbols that compresses well with standard gzip
compression. One benefit of this approach is that it elimi-
nates the binary requirement. In order to add compressed
polygon meshes to VRML (or now X3D) we no longer
have to wait for a binary standard. The other benefit is that
complete conformance between the ASCII version and the
(eventual) binary version of a VRML scene would be pos-
sible. Translating back and forth between the two versions
will not require invoking compression or decompression al-
gorithms. Furthermore the same coding technique could be
used to inflate a compressed node, no matter if it was stored
in an ASCII VRML file or in a binary VRML file.

In this paper we (a) show that the concept of coding with
ASCII can be extended to other data-heavy node types and
(b) describe in detail the techniques we used to compress
the scene shown in Figure 1. The main contents of this
scene are described in Table 1, 2, and 3. They are typical for
3D scenes destined for instant playback in a Web-browser:
many individual meshes each textured and of low-polygon
count plus a lot of animation and control data.

All data-heavy nodes of this scene are replaced with
ASCII coded versions that can remain inside the text-based
file (see Figure 3). The intuition is that these parts of the
scene are not read and edited anyways. And coding these
parts with ASCII does not affect the ability to read and edit
the other parts of the scene. This allows authors of 3D con-
tent to use compression without changing their work-flow:
they can continue to publish gzipped ASCII scene files.

We describe proof-of-concept implementations of ASCII
coding for three scene graph nodes: the indexed face set, the
position interpolator, and the orientation interpolator node.
However, the concept of ASCII coding is independent from
the particular compression techniques used in this paper. On
the contrary, many other compression algorithms could be
adapted to produce ASCII instead of a binary bit-stream.
Our particular choice comes from the additional require-
ment for extreme lightweight decoding algorithms. Our de-
coders have been developed to be used with the Shout3D
scene graph API [14]. This API implements a plugin-less
Web player for 3D content that downloads all required java
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classes on demand. Therefore it is important that the ad-
ditional java classes required for decoding are as small as
possible, since they have to be transmitted as well. After all,
reducing the amount of data that needs to be downloaded
was the sole motivation for compression in the first place.

Our lightweight decoders can be distributed at minimal
additional cost. The sizes of the java classes for decoding
the indexed face set, the position interpolator, and the ori-
entation interpolator node are 5420 bytes, 1578 bytes, and
1705 bytes respectively and only a total of 4924 bytes if
included into a zipped archive of java class files.

2. Coding Indexed Face Sets

VRML and other scene graph APIs specify polygon
meshes in form of indexed face set. In the scope of this
paper we will be concerned with polygon meshes that have
one (optional) layer of texture coordinates. The indexed
face set representation of such a mesh contains two arrays
of floats and two arrays of integers. Given a mesh with p po-
sitions, t texture coordinates, and f faces that have a total
of c face corners, these arrays will contain the following:

� An array of 3p floats that specifies the x, y, and z co-
ordinate for each of the p positions.

� An array of 2t floats that specifies the u and v coordi-
nate for each of the t texture coordinates.

� An array of c+f integers that specifies a position index
for each corner of each face. The indices of the corners
are listed in (usually) counterclockwise order around
the face followed by a special value of �1 that acts as
a face delimiter. Thus, the array contains c position
indices and f face delimiters.

� An array of c+ f integers that specifies a texture coor-
dinate index for each of the c face corners. The order
on the corners follows that of the position index array
and the face delimiters are also used the same way.

The excerpt of the VRML scene file shown in Figure 3
contains a typical example of an indexed face set.

The array of position indices and the array of texture co-
ordinate indices can be encoded in a very compact man-
ner without affecting the quality of the polygon mesh (e.g.
lossless coding). Encoding the positions and texture coordi-
nates, on the other hand, does affect the quality of the mesh.
In order to efficiently code these floating-point values they
are quantized to a user-specified number of bits, which in-
troduces quantization error (e.g. lossy coding).

2.1. ASCII Coding of Position Indices

Many schemes were proposed to code the position in-
dices of triangular [3, 16, 17, 4, 13, 1] or polygonal [6, 5, 11]

meshes. These schemes do not code the position indices di-
rectly. Instead they code only the connectivity graph of the
mesh and then change the order in which the positions are
stored in the position array. The positions are arranged in
the order in which their corresponding vertex is encountered
during encoding and decoding of the connectivity graph.

This reduces the information needed for storing all posi-
tion indices to whatever is required to code the connectivity
graph of the mesh. Our ASCII coder uses the Face Fixer
scheme [6] to code the connectivity graph, because it han-
dles arbitrary polygon meshes, has a simple and lightweight
implementation, and produces a symbol stream that easily
maps into a compressable ASCII string.

The Face Fixer scheme encodes a polygonal connectiv-
ity graph as a sequence of labels R, L, S, E, Mi;k;l, Fn, and
Hn. The connectivity graph is decoded by processing the
sequence of labels in reverse. For the details on the encod-
ing and decoding process we refer the reader to the origi-
nal references [6, 8]. The ASCII coding of the connectivity
graph is any unique ASCII representation of the reversed
label sequence. We choose a simple mapping from labels
to white-space separated integer numbers for two reasons:
On one hand it makes the conversion from the ASCII string
to an array of integer numbers really simple (i.e. efficient
conversion routines already exist). And on the other hand
the decoder can use the integer value of a label directly for
subsequent computation (i.e. as a counter).

2.2. ASCII Coding of TexCoord Indices

The indexed face set representation uses a texture coordi-
nate index for every face corner. However, there is usually a
strong correlation between position indices and texture co-
ordinate indices. Namely there is either one or more tex-
ture coordinate index for every position index. All proposed
methods for encoding texture coordinate indices [4, 15, 6, 7]
exploit this correlation.

Around every vertex of the connectivity graph is an or-
dered cycle of face corners. We say a corner is a smooth
corner if it uses the same texture coordinate index as the
(counterclockwise) previous corner, otherwise we call it a
crease corner. A smooth vertex has only smooth corners; it
has one texture coordinate index that is used by all corners.
A crease or corner vertex has two or more crease corners;
it has two or more different texture coordinate indices each
used by a set of adjacent corners.

There is a one-to-one mapping from smooth vertices and
crease corners to texture coordinate indices. In order to
specify all texture coordinate indices it is sufficient to code
this mapping and then re-order the texture coordinates ap-
propriately. In [6] we suggested the use of vertex bits and
corner bits to code this mapping. One bit per vertex is
needed to distinguish smooth vertices from crease and cor-
ner vertices. In addition we need for all corners around a

Coding with ASCII, Isenburg, Snoeyink 3 appeared in 3DPVT ’2002



indexed content characteristic quantization code
face sets positions posindices texcoords texindices polygons holes components pos bits tex bits words

Jo Hip 17 104 27 104 26 1 1 6 5 95
Jo Leg1 R, Jo Leg1 L 20 144 20 – 36 – 1 7 6 57
Jo Leg2 R, Jo Leg2 L 23 168 23 – 42 – 1 6 6 66
Jo Foot R, Jo Foot L 22 124 22 – 31 1 1 5 5 56
Jo Chest 64 496 88 496 124 – 1 6 6 375
Jo Arm1 R, Jo Arm1 L 26 192 31 192 48 – 1 6 5 107
Jo Arm2 R, Jo Arm2 L 13 72 18 72 48 1 1 6 6 53
Jo Hand R, Jo Hand L 13 88 30 88 22 – 1 5 5 115
Jo Hair 148 936 164 936 234 5 4 6 8 585
Os Hip 18 128 26 128 36 – 1 6 6 112
Os Leg1 R, Os Leg1 L 26 192 26 – 48 – 1 7 6 75
Os Leg2 R, Os Leg2 L 20 144 20 – 36 – 1 6 6 57
Os Foot R, Os Foot L 22 124 22 – 31 1 1 6 5 56
Os Torso 51 392 68 392 98 – 1 8 8 299
Os Arm1 R, Os Arm1 L 26 192 26 – 48 – 1 7 6 75
Os Arm2 R, Os Arm2 L 19 120 19 – 30 1 1 6 5 52
Os Hand R, Os Hand L 13 88 30 88 22 – 1 5 5 115
Os Head 68 464 74 464 116 1 1 7 7 289
Os Brow 18 96 18 – 24 1 1 10 6 45
Os Jaw 96 576 113 576 144 4 4 9 8 434
Os Eyes 12 40 12 – 40 1 1 12 6 25

Table 1. This table lists various statistics for the 33 indexed face sets of the example scene: Their content, which is number of
positions, of position indices, of texture coordinates, and of texture coordinate indices. Their characteristic, which is number
of polygons, of holes, and of connected components. Their quantization, which is the number of bits used to quantize
positions and texture coordinates. And finally the total number of code words that encode all indices is reported. Indexed
face set without texture coordinate indices have a per-vertex texture coordinate mapping.

crease or corner vertex one bit to distinguish smooth cor-
ners from crease corners. For ASCII coding we simply map
vertex bits and corner bits to integer values that are already
frequently used for other things. This reduces the entropy
of the ASCII stream for better gzip compression results.

2.3. ASCII Coding of Positions and TexCoords

The ASCII format of an indexed face set specifies the x,
y, and z coordinate of each position and the u and v compo-
nent of each texture coordinate as an ASCII representation
of a floating point number. Although it would be possible
to represent them at the full precision of an IEEE 32 bit
floating point number, in practice one finds fixed point rep-
resentation that use between 3 and 6 decimal digits.

The common approach for coding positions and texture
coordinates first quantizes the floating-point numbers uni-
formly and then applies some form of predictive coding.
Quantization with k bits of precision maps each floating-
point value to an integer value between 0 and 2k � 1. Sub-
sequent predictive coding reduces the variation and thereby
the entropy of the resulting sequence of k bit numbers.
Rather than specifying each position individually, previ-
ously decoded information is used to predict the next co-
ordinate and only a correcting term is stored. The simplest
method predicts the next position as the last position and
was suggested by Deering [3]. This is also known as delta
coding. Other popular methods are the spanning tree pre-
dictor by Taubin and Rossignac [16] and the parallelogram
predictor by Touma and Gotsman [17], which give better
compression.

For the sake of simplicity our prototype implements delta
coding on the two arrays of quantized positions and tex-
ture coordinates. The order in which positions and tex-
ture coordinates are stored in the array makes a difference
for the delta coder. Ideally subsequent entries are close
to each other so that the correction deltas are small. This
will be true for the positions, since neighboring position en-
tries usually correspond to vertices that are connected by an
edge. Unfortunately this will not always be true for neigh-
boring texture coordinate entries. Two texture coordinates
used around a crease vertex are stored one after the other in
the texture coordinate array. However, they can address a
completely different location in the texture image.

3. Coding Position Interpolators

An interpolator node is used to drive an animation. Typ-
ically it receives a time (e.g. a fractional value between 0:0

and 1:0) from a time sensor node that specifies the current
time of the animation cycle. The interpolator then deter-
mines the values corresponding to that time for the param-
eters it interpolates. Usually these are then routed to the
appropriate fields of the nodes it animates.

Interpolators are defined by a list of k key frames, each
of which consists of a key and a key value. The keys spec-
ify the times at which the interpolated parameter should
have the corresponding key values. The values at all other
times are computed by (usually) linear interpolation be-
tween neighboring key values.

The position interpolator node is used to move objects
along a path in 3D. The interpolated parameter is a position
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and each key value is a 3D coordinate. The position inter-
polator node contains two arrays of floats. For an animation
with k key frames, these arrays will contain the following:

� An array of k strict monotonically increasing floats be-
tween 0:0 and 1:0 that specify the k keys.

� An array of 3k floats containing the x, y, and z coor-
dinate for the interpolated positions that specify the k

key values.

The array of keys can often be quantized in a lossless
manner. Common modeling packages use an integer scale
that counts in frames per second to time an animation.
On export the times are converted into the VRML-style
floating-point range 0:0 to 1:0. Often the original timing
can be recovered. In our example scene the original integer
scale was 160, which can easily be reconstructed from the
spacing of subsequent keys. For all interpolators we report
the minimal and maximal increase between keys together
with the number of key frames in Tables 2 and 3.

We convert the keys back to their original integer scale
and apply delta coding with delta prediction. We predict
the keys to be evenly spaced; hence we always predict the
next delta as the remaining time divided by the number of
remaining keys. We then record the difference between the
predicted and the actual delta. An interesting aside: con-
verting the keys back to their original integer scale did not
only allow lossless coding, in our case it actually repaired
them. This is not a feature of our method, but points at a
weakness in the specification of VRML. The requirement
for keys to be on a floating-point scale invites a systematic
rounding error when exporting animations to VRML.

The array of key values (e.g. positions) is uniformly
quantized and then delta coded. Quantization is uniform
based on the largest range using a user-defined number of
bits. The ranges for the x, y, and z coordinate of each inter-
polated position are reported in Table 2.

position # key keys positions
interpolators frames min incr max incr range x range y range z
Jo Dummy 22 0.0063 0.1125 6.3690 – 0.6066
Jo Hip 53 0.0063 0.0376 – 2.0616 5.8100
Jo Hair 7 0.0063 0.6000 0.0942 0.0655 0.1270
Os Dummy 22 0.0063 0.1125 6.3680 – 0.6065
Os Hip 53 0.0063 0.0376 – 1.8549 5.8430

Table 2. This table lists for all position interpolators the
number of key frames, the minimal and maximal increment
of subsequent keys, and maximal range of x, y, and z com-
ponent for the interpolated position.

4. Coding Orientation Interpolators

The orientation interpolator node is used to rotate an
object in 3D. The interpolated parameter is an orientation

and each key value is a 3D rotation axis and a rotation an-
gle. The orientation interpolator node contains two arrays
of floats. For an animation with k key frames, these arrays
will contain the following:

� An array of k strict monotonically increasing floats be-
tween 0:0 and 1:0 that specify the k keys.

� An array of 4k floats containing the x, y, and z coordi-
nate of the rotation axis and the rotation angle � for the
interpolated orientations that specify the k key values.

The keys are coded the same way it was done for posi-
tion interpolators. The rotation axii and the rotation angles
are quantized and delta coded. However, they are treated
differently. A rotation axis is a normalized direction vec-
tor. How to quantize such vectors has been treated exten-
sively for the compression of shading normals. The most
complete and sophisticated scheme has been proposed by
Deering [3], but its implementation is quite complicated.
He exploits the symmetries on the unit sphere to define an
almost perfectly uniform sampling of all normal directions.
Another approach reported Taubin et al. [15] maps normals
to a discrete set of normals using an index of 3 + 2n bits.
Each such index addresses a single triangle of an n times
recursively subdivided octagon that represents a normal di-
rection. While conceptually simple, this addressing scheme
does not naturally include the most common normals (like
those in unit direction, for example) and it is not obvious
how to extend the concept in an elegant way. Furthermore
the proposed indexing scheme does not allow efficient delta
coding, as neighboring normals often have very different in-
dices. For lightweight decoding we require a simpler com-
pression scheme:

One approach would be to quantize and delta-code only
two of the three components, for example the y and z co-
ordinate, of every rotation axis. The absolute value of the
x coordinate could then be computed as the one that com-
pletes the unit length and only its sign would need to be
stored. Its simple implementation makes this quantization
scheme a tempting choice, but this simplicity comes with
some serious drawbacks: It results in a highly non-uniform
quantization of all directions. For small values of y and z

the directions are sampled dense, but as y2+ z
2 approach 1

the sampling becomes very sparse.
Imagine a regular distribution of directions over the unit

sphere. The above scheme projects them along the x-axis
into the y-z plane where they are uniformly sampled. This
sampling will have a fairly uniform density near the poles
but as we come closer to the equator it becomes sparser and
increasingly non-uniform. On or very near the equator we
can expect numerical instabilities for this method. However,
compared to other methods [3, 15] it is much simpler to
implement and there is a way to fix the main problem: We
simply remove the equator (or plant new poles).
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Depending on the direction to be quantized we choose
one of three projections: along the x-axis, the y-axis, and
the z-axis. We choose the projection axis with which the
considered direction encloses the smallest angle. Intuitively
this selects the component with the largest absolute value as
the one, which is computed from the other two. The chosen
projection axis has to be stored as well. We combine the
information about the chosen projection axis and about the
sign of the computed component into one number between
0 and 5. The other two components are uniformly quantized
and delta-coded.

The rotation angles are also uniformly quantized and
delta-coded. The quantization level is chosen such that the
quantization error does not succeed a user-defined toler-
ance. In our example scene the maximal quantization error
was set to one degree for both, the axis and the angle, which
seemed sufficient to avoid (almost) any visual impact.

orientation # key keys orientation
interpolators frames min incr max incr # x # y # z range �

Jo Hip 35 0.0063 0.2250 35 – – 0.437
Jo Leg1 R 33 0.0063 0.1125 33 – – 1.108
Jo Leg2 R 33 0.0063 0.1125 33 – – 2.010
Jo Foot R 25 0.0063 0.2437 25 – – 0.842
Jo Leg1 L 39 0.0063 0.0563 39 – – 1.533
Jo Leg2 L 38 0.0063 0.0563 38 – – 4.092
Jo Foot L 30 0.0063 0.1125 30 – – 0.745
Jo Chest 55 0.0063 0.0188 6 49 – 2.317
Jo Arm1 L 17 0.0063 0.7313 – 17 – 1.403
Jo Arm2 L 19 0.0063 0.6000 19 – – 0.682
Jo Arm1 R 55 0.0063 0.0188 19 10 26 1.441
Jo Arm2 R 49 0.0063 0.1125 49 – – 2.352
Jo Hair 15 0.0063 0.2250 5 10 – 0.667
Os Hip 35 0.0063 0.2250 34 – – 0.437
Os Leg1 L 37 0.0063 0.1125 37 – – 1.655
Os Leg2 L 51 0.0063 0.0563 47 4 – 4.048
Os Foot L 27 0.0063 0.2437 21 6 – 0.627
Os Leg1 R 48 0.0063 0.0563 48 – – 1.425
Os Leg2 R 54 0.0063 0.0375 51 3 – 6.125
Os Foot R 35 0.0063 0.1125 25 10 – 0.754
Os Torso 55 0.0063 0.0188 26 29 1 1.460
Os Arm1 L 55 0.0063 0.0188 41 6 8 1.220
Os Arm2 L 53 0.0063 0.0375 53 – – 1.975
Os Arm1 R 26 0.0063 0.3563 – 26 – 0.483
Os Arm2 R 53 0.0063 0.4875 – – 14 0.788
Os Hand R 26 0.0063 0.3563 – 7 19 0.692
Os Head 29 0.0063 0.1125 27 2 – 0.687

Table 3. This table lists for all orientation interpolators the
number of key frames, the minimal and maximal increment
of subsequent keys, how many times x, y, and z projec-
tions were used to quantize the rotation axii and the max-
imal range of the rotation angle � over the course of the
entire animation.

5. Implementation and Results
We have implemented a set of extremely lightweight

decoders based on the coding schemes described in this
paper. Our prototype implementation uses the Shout3D
pure java API [14] and extends the nodes IndexedFace-
Set, PositionInterpolator, and Orientation Interpolator to
the nodes CodedIndexedFaceSet, CodedPositionInterpola-
tor, and CodedOrientationInterpolator respectively. This

Figure 2. This is a screen-shot of the ASCII coder. It was
implemented in form of a Web applet using Shout3D [14]
and can be found on our project page [9]. The example
scene used in this paper was ASCII coded with this applet.

way they can be used as custom nodes of the VRML-based
Shout3D scene graph, which gives us the ability to down-
load the required decoder classes on-demand. The nodes
automatically decode themselves once loading has com-
pleted. The java class files that implement the decoders have
a size of only 5420 bytes, 1578 bytes, and 1705 bytes re-
spectively. If the decoders are included into a zipped archive
of java class files their sizes reduce to roughly half this.

We ASCII coded the VRML scene shown in Figure 1,
which contains 33 indexed face sets, 5 position interpo-
lators, and 27 orientation interpolators. The size of the
gzipped original VRML file is 29895 bytes. With ASCII
coded indexed face sets this reduces to 18364 bytes. Ad-
ditional ASCII coding of all interpolators brings it down to
12996 bytes. The size of the scene file is reduced by more
than 50 percent. Even when the download of the required
decoding software (4924 bytes) is taken into account the
compression is significant. The time consumed for decod-
ing is small compared to the time needed to download and
parse the scene.

Coding the indexed face resulted in the biggest gain and
can always be done without visible loss in quality. Cod-
ing the interpolators gave a smaller gain and the effects of
quantization seem slightly noticeable. While we limited
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the quantization error of each individual orientation inter-
polator to maximally one degree, the hierarchical structure
of the interpolators probably requires a global quantization
strategy. The interpolator for Jo’s hand, for example, was
quantized with the same precision as the interpolator of her
hip. Yet, the first influences only the hand, while the other
influences the entire character. In fact the final position and
orientation of the hand is result of the combined animations
of hand, lower arm, upper arm, chest, and hip. However,
correct quantization of deep animation hierarchies is not
topic of this paper.

In [8] we reported compression results for ASCII coding
simple scenes each of which contained one large textured
polygon model. On such scenes we were able to achieve
compression by a factor of six and more. Here we demon-
strated that ASCII coding is also effective for sparse scenes
composed of many small polygon meshes (see Table 1),
which are usually considered difficult to compress. You can
find an interactive java implementation of the encoder and
the decoder together with several example scenes (including
the one used in this paper) on our project Web page [9].

6. Current Work

There is still a significant gap between the compression
rates that are achievable with coders that compress into bi-
nary bit-streams and the ASCII coders we have presented
here. The main reason is that binary coders use entropy cod-
ing to squeeze the produced symbol streams into as few bits
as possible. Arithmetic coding, for example, will always
outperform gzip coding, because it gives optimal compres-
sion in respect to the information entropy of a symbol se-
quence [12].

We can combine the advantages of arithmetic coding
with that of non-binary coding by letting the arithmetic
coder produce an ASCII string of zeros and ones instead
of a binary bit-stream. Standard gzip coding is able to ag-
gressively compress the resulting ASCII string of zeros and
ones, as it only contains two different symbols. We have
implemented an arithmetic coder that compresses to from
ASCII and initial results are promising. The disadvantage
of this approach is the additional computation and the addi-
tional java classes required for the arithmetic decoding.

However, this additional effort may be well worth it. Re-
cently we have developed a better compression scheme for
coding polygonal connectivity. Our degree duality coder [5]
achieves the best compression rates for polygon mesh con-
nectivity reported so far, but requires the use of a context-
based arithmetic coder to achieve this. We have a proof-
of-concept java implementation of this connectivity coder
that already demonstrates the ASCII producing arithmetic
coder we mentioned above. This interactive demo can also
be found on the respective project Web page [10].

These results suggest that it will be possible to achieve

compression rates that approach those of binary coders,
while retaining the advantages of a text-based approach.
Furthermore, should one day a binary standard for VRML
(or X3D) be accepted to co-exist with the ASCII standard
our technique will allow complete conformance between
the two versions. Translating back and forth between the
two versions will not require invoking compression or de-
compression. The same coding technique can then be used
to inflate a compressed node, no matter if it was stored in
an ASCII VRML file or in a binary VRML file. In this pa-
per we do not argue against a binary version of VRML. A
binary format will reduce parse time and also allow stor-
ing compressed nodes even more compact. In this paper we
argue for doing compression today without waiting for its
binary specification.
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original scene

#VRML V2.0 utf8
...
...
children[

DEF Jo Hip-POS-INTERP PositionInterpolator f
key[0 0.0188 0.0375 0.0563 0.075 0.0938 0.1125 0.1312 0.15 ... 0.8812 0.9 0.9187 0.9375 0.9562 0.975 0.9937 1.0]
keyValue[0.053 2.077 2.896 0.053 2.096 1.602 0.053 2.116 ... 0.053 2.094 1.44 0.053 2.081 2.799 0.053 2.077 2.896]

g
DEF Jo Hip-ROT-INTERP OrientationInterpolator f

key[0 0.0188 0.1125 0.1312 0.15 0.1687 0.1875 0.2062 0.225 ... 0.5813 0.6 0.6187 0.6375 0.8625 0.8812 0.9937 1.0]
keyValue[1.0 0 0 -1.571 1.0 0 0 -1.532 1.0 0 0 -1.335 ... 0 -1.396 1.0 0 0 -1.405 1.0 0 0 -1.562 1.0 0 0 -1.571]

g
Shape f

appearance Appearance f
texture ImageTexture f
url "images/mod characters/joall2.jpg"

g
g
geometry DEF Jo Hip-FACES IndexedFaceSet f

coord DEF Jo Hip-COORD Coordinate f
point [-0.6759 2.228 -0.5451 -1.354 2.228 0.5072 ... 0.5863 0.1099 0.966 0.3132 -1.315 -0.966 0.3132 -1.315]

g
texCoord DEF Jo Hip-TEXCOORD TextureCoordinate f
point [0.751 0.511 0.797 0.476 0.843 0.476 0.66 ... 0.326 0.43 0.486 0.0040 0.463 0.247 0.125 0.43 0.392 0.43]

g
coordIndex [7 14 16 -1 16 6 7 -1 14 7 8 -1 2 14 8 -1 ... -1 1 14 2 -1 4 15 5 -1 5 15 16 -1 16 1 0 -1 5 16 0 -1]
texCoordIndex [5 6 7 -1 7 8 5 -1 24 25 26 -1 27 24 26 ... 24 27 -1 17 13 18 -1 18 13 7 -1 7 15 16 -1 18 7 16 -1]

g
g

...

...

ASCII coded scene

#VRML V2.0 utf8
...
...
children[

DEF Jo Hip-POS-INTERP CodedPositionInterpolator f
key[0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1.0]
ks 160
keyValue[0.053 2.077 2.896 0 1 -57 0 1 -55 0 1 -28 0 5 4 0 24 ... 0 -1 -33 0 0 -11 0 -1 23 0 0 66 0 -1 60 0 0 4]
pos 0.022784313

g
DEF Jo Hip-ROT-INTERP CodedOrientationInterpolator f

key[0.0 -1 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -4 -4 -5 -5 -6 -7 -9 22 -4 9 1.0]
ks 160
keyValue[0 0 0 -1.571 0 0 0 1 0 0 0 6 0 0 0 1 0 -2 1 -1 0 -1 ... -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 0]
ob 5

g
Shape f

appearance Appearance f
texture ImageTexture f
url "images/mod characters/joall2.jpg"

g
g
geometry DEF Jo Hip-FACES CodedIndexedFaceSet f

coord DEF Jo Hip-COORD Coordinate f
point [-9 -10 14 -9 10 -14 -5 52 0 29 0 0 17 0 20 -3 -30 ... 0 22 40 0 0 -7 -26 -3 -26 0 0 0.966 0.3132 -1.315]

g
pos 0.07298413
texCoord DEF Jo Hip-TEXCOORD TextureCoordinate f
point [-5 -1 -11 0 -3 0 20 0 -4 0 -1 1 -1 14 7 0 -27 0 ... -5 6 3 0 -3 8 2 0 -4 0 -10 0 8 -7 -6 0 0.845 0.218]

g
tex 0.030451613
code [104 3 0 5 0 5 0 5 0 0 5 5 0 5 5 0 0 5 0 5 0 5 5 5 5 ... 5 5 0 0 5 0 5 5 5 0 5 0 0 5 5 5 0 5 5 0 5 0 0 0 2]

g
g

...

...

Figure 3. This figures shows a small excerpt of our example VRML scene before (top) and after (bottom) ASCII coding. The
IndexedFaceSet, the PositionInterpolator, and the OrientationInterpolator node have been replaced with their ASCII coded
counterpart: the CodedIndexedFaceSet, the CodedPositionInterpolator, and the CodedOrientationInterpolator node.
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