
Early-Split Coding of Triangle Mesh Connectivity

Martin Isenburg
UC Berkeley

isenburg@cs.berkeley.edu

Jack Snoeyink
UNC Chapel Hill

snoeyink@cs.unc.edu

ABSTRACT

The two main schemes for coding triangle mesh connectivity tra-
verse a mesh with similar region-growing operations. Rossignac’s
Edgebreaker uses triangle labels to encode the traversal whereas the
coder of Touma and Gotsman uses vertex degrees. Although both
schemes are guided by the same spiraling spanning tree, they pro-
cess triangles in a different order, making it difficult to understand
their similarities and to explain their varying compression success.

We describe a coding scheme that can operate like a label-based
coder similar to Edgebreaker or like a degree-based coder similar
to the TG coder. In either mode our coder processes vertices and
triangles in the same order by performing the so-called “split op-
erations” earlier than previous schemes. The main insights offered
by this unified view are (a) that compression rates depend mainly
on the choice of decoding strategy and less on whether labels or
degrees are used and (b) how to do degree coding without storing
“split” offsets. Furthermore we describe a new heuristic that allows
the TG coder’s bit-rates to drop below the vertex degree entropy.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Boundary representations

Keywords: Connectivity compression, label coding, degree cod-
ing, split offsets, Edgebreaker, TG coder, Cut-border Machine.

1 INTRODUCTION

A number of schemes for coding the connectivity of triangular
meshes have been proposed [3, 11, 14]. All these schemes grow a
region on the mesh by including triangle after triangle into a bound-
ary and encode a sequence of symbols that documents this process.
The Edgebreaker scheme [11] and the Cut-border Machine [3] are
label-based approaches. They encode for each triangle how its in-
clusion changes the boundary using one of five labels. The TG
coder [14] is a degree-based approach. It only encodes a symbol if
including the triangle reaches a new vertex, in which case the de-
gree of this vertex is encoded, or if including the triangle splits the
boundary into two loops, in which case a “split” symbol is encoded.

Although label-based and degree-based schemes perform nearly
identical region-growing traversals, it is difficult to compare the en-
codings they produce. While they traverse the vertices along the
same spiraling spanning tree, they process the triangles in a slightly
different order, making it impossible to establish a one-to-one map-
ping between label-based and degree-based encodings. This has
prevented a deeper understanding of what exactly makes one al-
gorithm compress better than another. In this paper we describe a
unifying coding scheme that can produce either a label or a degree
encoding thereby allowing a direct comparison between the two.

The lack of insight how label and degree coding are different and
how they are similar has also hindered the design of a degree coder
that avoids storing explicit “split offsets.” It was speculated that it
would be possible to modify the TG coder to operate without ex-
plicitly storing those integer offsets that are associated with every
“split” symbol and that specify the size of the boundary loop that

gets “split off.” Such speculations come from the fact that Edge-
breaker manages to avoid storing “split offsets,” whereas the other-
wise identical Cut-border Machine stores them explicitly.

Edgebreaker can recover all “split offsets” by performing an ad-
ditional pass over the labels [11] or the mesh [12], or by processing
the label sequence in reverse [6]. For each “split” label S, Edge-
breaker has a corresponding “end” label E that delimits a label sub-
sequence, which implicitly encodes these offsets. The TG coder
does not store “end” symbols that would allow to identify similar
degrees subsequences. However, we have shown that simply adding
“end” symbols is not sufficient to make offsets redundant [8].

Edgebreaker and the Cut-border Machine perform significantly
more boundary splits than the TG coder. They occasionally leave
behind warts, unprocessed triangles that share two edges with the
boundary, that cause additional splits later. Knowledge about these
additional splits constitutes extra information in the label sequence
that is available to Edgebreaker for recovering split offsets but that
is missing in the degree sequence of the TG coder. This observation
serves as further evidence that we need to add extra information be-
yond “end” symbols for making split offsets implicit to the symbol
sequence of a degree coder. In this paper we describe a scheme that
offers a unified view on label-based and degree-based coding and
makes it easy to see what this extra information must be.

The connectivity coding scheme detailed in the following can
produce either labels or degrees. In either mode it performs the
exact same boundary splits and processes vertices and triangles in
the exact same order. This is achieved (a) by performing “split”
operations earlier than the TG coder and Edgebreaker and (b) by
not leaving behind warts. To immediately remove warts that have
formed on the boundary we use a new “wart” operation. It turns out
that the extra information needed for making split offsets implicit
is the knowledge about when this “wart” operation was used.

Our early-split coder can operate similar to Edgebreaker using
one label per triangle without storing offsets, but also similar to the
TG coder using one degree per vertex and explicit offsets. Most im-
portantly, it allows degree coding without offsets by adding “end”
and “wart” symbols to the degree sequence. In fact, our coder can
be made to produce one of six possible symbol sequences: three
label-based and three degree-based. The first of each triple is a se-
quence that contains explicit split offsets and is decoded in a single
forward pass. Here the label-based sequence corresponds to the
Cut-border Machine [3] and the degree-based sequence to the TG
coder [14]. The second sequence does not contain explicit offsets
and can be decoded in two passes. Here the label-based sequence
corresponds to Edgebreaker [11] and the degree-based sequence is
new. The third sequence does not contain explicit offsets and can be
decoded in one reverse pass. The label-based sequence corresponds
to Spirale Reversi [6] and the degree-based version is also new.

We report representative compression rates for all six ap-
proaches. The results suggest that for maximal compression it is
less important whether an encoding uses label or degrees. What
matters most is whether decoding is done forward with offsets, for-
ward without offsets, or in reverse. Forward decoding without off-
sets consistently gives the worst compression rates. Because de-
coding is done in two passes the decoder has relatively little con-
text for predicting the next symbol whereas the other decoders can
base their predictions on a partially reconstructed mesh. The best
compression is always achieved by reverse decoding, while forward

Early Split Coding, Isenburg and Snoeyink 1 of 9 appeared in Graphics Interface’06

decoding with offsets is a close second. For the latter, which is of
particular interest because it allow one-pass encoding and decod-
ing, using degrees was always the better than using labels—mainly
because it allows employing a novel heuristic.

Our final contribution is this novel heuristic that improves com-
pression rates of degree-based forward decoding with offsets. In
particular, this heuristic can also be used with the original TG coder,
allowing it—for the first time—to achieve compression rates be-
low the entropy of the vertex degree sequence. Previously this had
only been achieved by reverse decoding [13]. Despite its simplic-
ity, our heuristic gives bit-rates that beat those achieved with the
much more complex adaptive-conquest heuristic of Alliez and Des-
brun [1], which is still bound by the vertex degree entropy.

2 TG CODER – CUT-BORDER MACHINE – EDGEBREAKER

Independently developed, the TG coder [14], the Cut-border Ma-
chine [3], and Edgebreaker [11] perform a nearly identical region-
growing process to encode a mesh. The schemes maintain a com-
pression boundary into which they include triangle after triangle.
While all three coders process the vertices in the same order, the
TG coder processes the triangles in a slightly different order than
the other two. Edgebreaker and the Cut-border Machine always in-
clude the triangle that is adjacent to the gate edge, which advances
in clockwise order around the focus vertex (see Figure 1). For the
most part the TG coder does the same. However, it will immedi-
ately include any triangle that shares two edges with the compres-
sion boundary, even if neither of these two edges is the gate. The
Cut-border Machine and Edgebreaker allow such triangles, which
Rossignac has termed warts [10], to remain on the boundary. As
we want our coder to process triangles in the same order—in both
label and degree mode—we will not allow it to leave warts behind.

R

C
C

R

CR

CC
R

wart

wart

focus

gate

Figure 1: Edgebreaker and the Cut-border Machine always include the triangle
at the gate into the boundary. Occasionally this leaves behind triangles that

share two edges with the boundary (warts) that cause additional “splits” later.

Including a triangle that shares only one edge with the compres-
sion boundary (i.e. the gate) usually makes this triangle’s third
vertex a new boundary vertex. Occasionally, however, this third
vertex will already be on the boundary elsewhere. In this case the
boundary splits into two loops, one of which is temporarily stored
on a stack while encoding continues on the other. All three cod-
ing schemes perform these “split operations,” but they occur much
more frequently for the Cut-border Machine and Edgebreaker. The
reason is those warts left behind along the boundary that eventually
lead to additional splits (see Figure 1). For the TG coder a “split op-
eration” only occurs if both resulting boundary loops still enclose
unprocessed vertices. Each of these “splits” also occurs for the Cut-
border Machine and Edgebreaker. But in addition these two coders
have many split operations that merely split off a wart.

The only real difference between the Cut-border Machine and
Edgebreaker is that the Cut-border Machine stores an explicit off-
set with the symbol that encodes a “split” operation whereas Edge-
breaker does not. This offset specifies the number of vertices in
clockwise or counterclockwise direction along the boundary that

are between the gate and the third vertex of the triangle causing
the split. Having these explicit offsets enables the decoder of the
Cut-border Machine to replay the encoding process. The decoder
of Edgebreaker, on the other hand, needs to perform two passes or
operate in reverse to recover the offsets, which are implicitly stored
in label subsequences and are therefore in some sense redundant.

The TG coder also stores an explicit offset for every split oper-
ation. For quite some time it was not clear whether it would also
be possible to omit these offsets. Yet, the TG coder does not store
explicit “end” symbols that act as the delimiters for the symbol sub-
sequences from which Edgebreaker derives each split offset. This
seemed to suggest that the TG coder would at least need to store
“end” symbols in order to operate without offsets. However, we
have shown that simply adding “end” symbols to the degree se-
quence is not yet sufficient to make the split offsets redundant [8].

R

C

E
L

R
R

L

R
R

R
C

7

5

S

R

C

E
L

R
R

L

R
R

R
C

7

5

L
S R

L

R R
L R

“split”

Figure 2: For the TG coder, the
subsequence of degrees that en-

codes the right boundary loop af-

ter the “split” is always V7 and

V5. Unlike the Edgebreaker la-

bels this is obviously not a self-

contained encoding for these re-

gions but also relies on the slot

counts around the boundary.

Unlike the label subsequences of Edgebreaker, the degree subse-
quences of the TG coder are not self-contained encodings of some
portion of a mesh. Decoding also depends on the state of the com-
pression boundary. The TG coder maintains much more state infor-
mation than Edgebreaker keeping slot counts that specify how many
unprocessed edges are incident to each boundary vertex. These slot
counts enable the TG coder to omit explicit “end” symbols: The
completion of a boundary loop is detected as the moment that all
slot counts are zero. They also enable the TG coder to detect and
remove warts without an explicit symbol: A wart is detected when
the slot count at some vertex other than the focus drops to zero. The
value and the order of the slot counts around the boundary depend
on all preceding symbols. Therefore it is impossible to derive split
offsets solely from subsequences of degrees (see Figure 2).

To have our coder produce self-contained degree subsequences
we must keep boundary loops completely free of zero-slots. This
requires removing zero-slots that correspond to warts left behind on
the boundary as in Figure 1, as well as avoiding zero-slot creation
when splitting the boundary as in Figure 2. To remove warts when
operating like the TG coder we simply check for zero-slots. To re-
move warts when operating like Edgebreaker we store a new “wart”
label W that explicitly tells us when to remove a wart. To avoid
creating zero-slots when splitting the boundary we “split” earlier,
before zero-slots can form. The new “wart” symbol corresponds to
the extra information we need to store in addition to “end” symbols
to have degree subsequences be self-contained encodings and make
split offsets implicit. As for Edgebreaker, the split offsets can then
be recovered either in two passes or in a single reverse pass.

We should mention that there are several incentives to include
explicit offsets in the encoding. They allow decoding in a single
forward pass over the symbol sequence, which makes it possible to

Early Split Coding, Isenburg and Snoeyink 2 of 9 appeared in Graphics Interface’06

gate
stack gate

stack focus

R

c

C

7

S

W

one
slot

zero
slot

C
a

C

6 R
W

focus

gate

chords

b

C
5

R
R

E

focusone
slots

chords

chord

focus

gate

V6

R

--

W

W

W

W

zero
slot

C

V5

R
R

--

R

--

E

E

C

V7

S8

S8

split offset

b

c

4

5

6

boundary slots

2

a

focus

focus

processed region

unprocessed region

3

7

8

1

boundary

new
vertex

new
vertex

gate

chord vertex
0

gate

focus

gate

Figure 3: Three frame sequences that illustrate the scenarios that can arise during encoding.
a) The C operation creates three chords that are removed with one R and two W operations.

For degree coding the W symbols are only needed if no split offsets are stored, otherwise the

degree V6 alone is sufficient. b) The C operation creates three chords that are removed with
three R and one E operation. c) The C operation creates one chord that is removed with an
S operation. The offset that (only for replay decoding) is stored explicitly with each “split”

specifies the number of boundary vertices between the new vertex and the chord vertex.

decompress in a streaming fashion [4]. Furthermore storing split
offsets allows non-recursive mesh traversals. Moving the focus in
a breadth-first rather than a depth-first manner, for example, leads
to more coherent mesh layouts [5]. While the Cut-border Machine
and the TG coder can easily be modified to operate this way, Edge-
breaker cannot because it requires a recursive traversal in order for
the omitted offsets to be implicit to the symbol sequence.

3 ENCODING

Our early-split coder does two things differently from Edgebreaker
and the TG coder. It performs “split” operations earlier and it imme-
diately removes “warts.” These two modifications allow our coder
to be either label-based or degree-based, yet still traverse triangles
in the exact the same way, providing us with a one-to-one mapping
between label and degree coding and the insights that come along
with this. As we describe our encoding scheme, we point out where
it is identical and where it is different from previous schemes.

Like most schemes, our encoder grows a region on the connec-
tivity graph of the mesh by maintaining one or more compression
boundaries. It uses five different operations to update these bound-
aries. We refer to them as C, R, W, S, and E operations and also as
add, right, wart, split, and end operations—loosely following the
nomenclatures of Rossignac [11] and Touma and Gotsman [14].

The encoder starts with an initial compression boundary of
length two that is defined around an arbitrary edge of the mesh.
One of the two boundary edges becomes the gate, its target ver-
tex becomes the focus and its origin vertex becomes the pre-focus.
Then the encoder includes triangle after triangle into the boundary.

In the common case the encoder includes the triangle adjacent to
the gate, which either adds a new vertex to the boundary or com-
pletes the focus. In some situations, however, the encoder either
includes a triangle that is not adjacent to the gate or splits the cur-
rent boundary into two loops without including a triangle. It does
this to remove so-called chord edges that have formed on the bound-
ary. The immediate removal of these chords is the main difference

between our early-split coder and Edgebreaker or the TG coder.
A chord is an edge of the unprocessed mesh region that connects

two vertices of the boundary. Such chord edges can form whenever
a new vertex is included into the compression boundary (i.e. after
an “add” operation in [14], after a “new vertex” operation in [3],
or after a “C” operation in [11]). A chord always connects this new
vertex to some other vertex on the boundary called the chord vertex.

We distinguish three types of chord edges and consequently have
three different operations for removing them: The R or right oper-
ation and the W or wart operation remove a chord by including a
triangle into the boundary. The S or split operation removes a chord
by splitting the boundary into two. In Figure 3 we show example
situations that demonstrate how chord edges of the three types can
form, together with the operations that are used for removing them.

The R or right operation is used when a chord connects the
new vertex to the next possible vertex in counterclockwise direc-
tion along the boundary. Such a chord separates the triangle at the
gate from the remaining unprocessed region of the mesh. We in-
clude this triangle and move the focus to the chord vertex. This
operation corresponds to the “connect-forward” operation from [3]
and the R operation from [11]. The TG coder implicitly performs
this operation whenever the slot count at the focus drops to zero.

The W or wart operation is used when a chord connects the new
vertex to the next possible vertex in clockwise direction. Such a
chord also separates a triangle from the unprocessed region. We
include this triangle but focus and gate remain where they are. Nei-
ther the Cut-border Machine nor Edgebreaker perform wart opera-
tions. They ignore these type of chords, leaving behind “warts” on
the boundary. The TG coder, however, also performs wart opera-
tions whenever the corresponding slot count drops to zero.

The S or split operation is used when a chord connects the new
vertex to some other vertex on the boundary. Such a chord separates
the unprocessed region into two unprocessed regions that both con-
tain unprocessed vertices. Unlike the right and the wart operation,
the split operation does not include a triangle. It merely splits the
compression boundary into two loops, one of which is pushed onto

Early Split Coding, Isenburg and Snoeyink 3 of 9 appeared in Graphics Interface’06

a stack for later processing. The chord vertex and the chord become
the focus and the gate for the boundary pushed onto the stack and
we continue with the current focus and the current gate.

Our split operation is quite different from the split operation per-
formed by Edgebreaker, the TG coder, and the Cut-border Machine.
The rationale behind the re-design of the split operation is the same
as the rationale for introducing the wart operation: we want the
boundary loops to remain free of zero-slots so that the two sym-
bol subsequences that encode the two unprocessed regions resulting
from a split are self-contained encodings of these regions, both for
the label-based and for the degree-based sequences.

Chords are removed by performing R operations before W op-
erations and finally S operations. For the latter we start with the
first chord that is found when searching clockwise around the new
vertex. This gives the invariant that the boundary is free of zero-
slots (and free of chords) if the next operation is to include a new
vertex. Similarly, it guarantees that all boundaries on the stack are
zero-slot free (and chord free), which assures that the first operation
after popping a boundary from the stack is always a C operation.

For label-based coding we store the labels of all operations. For
the degree-based coding we only store the degree of newly added
vertices and either only split symbols (but also their associated off-
sets) or split, wart, and end symbols (but no offsets). The first two
vertex degrees are encoded on initialization. If we store offsets they
correspond to the number of vertices k that are in clockwise direc-
tion between the new vertex and the chord vertex (see Figure 3).
For the degree-based decoder we encode in addition which slot the
chord connects to at the new vertex and at the chord vertex. More
exactly, we encode how many of the slots at these vertices move
over to the boundary part that is pushed onto the stack. At each
vertex there must be at least one slot that moves over, otherwise the
stack boundary would have a chord, which violates our invariant.

This describes our encoding algorithm for the case of a closed,
single-component, genus-zero triangle mesh. Such a mesh is home-
omorphic to a planar triangulation. The necessary extensions for
dealing with general meshes containing holes and/or handles are
similar to those used in other schemes [14, 3]. Following the exam-
ple in Figure 5 should make it easy to implement this algorithm.

4 DECODING

The early-split coder can produce six different symbol sequences
that encode the connectivity—three of them are label-based and
three of them are degree-based. Hence, there are three decoding
methods that consume a label sequence and three that consume a
degree sequence. They either operate forward with offsets, for-
ward without offsets, or in reverse. The reverse decoder requires
the coder to perform a second pass over the produced symbols for
compressing them in reverse order. It also operates without offsets.

The six different symbol sequences are illustrated in Figure 4 for
a small example triangulation. For decoding from the forward se-
quences with offsets we perform an exact replay of the encoding
process. For decoding from the forward sequences without offsets
we first create a special vertex spanning tree from which the tri-
angulation is reconstructed in a second step. For decoding from
the reverse sequences we perform the boundary updates that have
happened during encoding in the exact reverse order.

The remainder of this section provides details that are impor-
tant for implementing the six different decoding methods. To gain
a quick understanding of how these decoding algorithms work the
reader may skip this section for now and first follow the examples
in Figures 5, 6, and 7 where we give an annotated step-by-step il-
lustration of reconstructing the mesh shown in Figure 4 from all six
symbol sequences. Coming back to this section later will be helpful
for learning how we compress the symbols into a bit-stream. From
a more theoretical point of view, some readers may also find the
method of decoding through closure of a leaf-tree interesting.

v

E V3 E V4 S V5 V5 W V8 V4 V6 V6 V5 V5

E R C E R R C S C R C W R C R C R C R C C C C
1

2

3

4

5
6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

12

13

14

15

11

16

17

18

19
20

reverse:gate

focus

V5 V4 V5 V5 V6 V6 V4 V8 W V5 V5 S V4 E V3 E

C C C C R C R C R C R W C R C S C R R E C R E

forward without offsets:

V5 V4 V5 V5 V6 V6 V4 V8 V5 V5 S1,0,0

C C C C R C R C R C R W C R C S1 C R R E C R E

forward with offset:

Figure 4: Starting from the gate edge the early-split coder processes vertices

and triangle in the enumerated order. It can produce either of the six symbol

sequences shown on the right. They correspond to three different decoding

methods that are either label-based (upper line) or degree-based (lower line).

4.1 Forward with Offsets

For forward sequences with explicit split offsets the decoding pro-
cess is an exact replay of the encoding process. For the label-based
sequence, our decoder is similar to the Cut-border Machine [3] and
implements ideas from Gumhold [2] and Szymczak [13] to improve
compression of the labels. For the degree-based sequence, our de-
coder is similar to the TG coder [14] but includes a novel heuristic
that allows us to further improve the compression. This makes it for
the first time possible to compress the degree sequence with fewer
bits than the entropy of the vertex degree distribution dictates.

At first glance, explicitly encoding the split offsets would seem
to inflate the compression rates. But this is more than compensated
by the ability to immediately reconstruct the mesh and use partial
information about the connectivity to predict the next symbol.

Labels Our label-based forward decoder with offsets uses C,
R, W, Sk, and E. When the length of the current boundary b is three,
only labels C and E are possible. They are compressed with a two-
entry table that is switched based on the current degree of the focus
vertex. When b is larger than three, only labels C, R, W, and S
are possible. They are compressed with a four-entry table that is
switched based on a combination of the current focus degree and the
previous label. Labels of type C that immediately follow a label of
type E do not need to be compressed explicitly. This happens once
for each split operation S: each such operation pushes a boundary
onto the stack and the first operation after this boundary is popped
from the stack is of type C. The offset value k associated with every
label of type S can be compressed using log2(b) bits where b is the
current length of the boundary.

Degrees Our degree-based forward decoder with offsets uses
Vk and Sk,l,m. It maintains a slot count with each boundary vertex.
Should the slot count at the focus drop to zero it performs a right
operation. Should the slot count at the focus−2 (that is, the second
vertex counting clockwise from the focus) drop to zero is performs
a wart operation. Otherwise it checks the slot count at the pre-
focus: if it is less than three the next operation must be an “add.”
Else it explicitly decodes whether the next operation is an “add” or
a “split” using a binary arithmetic context. The decoder switches
between different contexts based on the degree of the pre-focus as
split operations are more likely to involve vertices of higher degree.

In case of an “add” operation the corresponding vertex degree is
decoded. Should, however, the slot count of each of the b boundary
vertices be one, then the new vertex degree must equal b and can be
omitted. This happens every time a boundary ends and is illustrated
in Figure 3(b). Hence, the last vertex degree plus one additional
vertex degree for every split operation can always be omitted.

The following heuristic takes this trick one step further: A slot
count of one at the focus, the pre-focus, or their immediate neigh-
bors gives us an additional constraint on the encoded vertex degree.
This is illustrated in Figure 3(a) where we have three such one-slots.
They imply that the new vertex must have a degree of six or more

Early Split Coding, Isenburg and Snoeyink 4 of 9 appeared in Graphics Interface’06

since it must be incident to (a) the four unprocessed triangles along
the boundary and (b) to at least two more triangles for there not
to be a chord. Eliminating degrees that are not possible from our
context tables during arithmetic coding will often lower the total
coding costs below the entropy of the vertex degree distribution.

In case of a split operation, the offset k, which represents a dis-
tance in vertices along the boundary, can be specified with log2(b)
bits where b is the current length of this boundary. The counts l and
m, which indicate how many slots move over to the split-off bound-
ary part at the two vertices shared by both boundary parts, can be
specified with log2(s− 2) bits where s is the current slot count at
the respective vertex. Further optimization for coding the offset k is
possible by taking into account that it references a vertex with a slot
count of two or higher. Skipping boundary vertices that only have a
slot count of one typically gives us a smaller offset k2 that can then
be specified with log2(b2) bits where b2 is the current number of
vertices with a slot count of two or higher on the boundary.

4.2 Forward without Offsets

For offset-less forward decoding we could try to adapt either of
the two approaches [11, 12] proposed for Edgebreaker’s CLERS
sequence. Like the original decoder [11], we could perform two
passes over the sequence. The first pass would pre-compute all
split offsets by adding up changes in boundary length induced by
the symbols between corresponding pairs of S and E. These offsets
would then be used in a second pass over the symbols for decoding
with offsets as described in the previous section.

For our label sequence this offset computation could be done by
maintaining a running total to which we add and subtract a value
based on the label type. However, there is no obvious correspond-
ing approach for our degree sequence. It is not possible to simply
precompute these offsets by adding up some value for every vertex
degree as the order in which they appear makes a difference too.

Alternatively, like the Wrap&Zip decoder [12], we could per-
form an initial pass that constructs a triangle spanning tree and
gives each unmatched edge a “zip” orientation. Then, in a sub-
sequent pass, we would identify pairs of unmatched edges based
on their “zip” direction. Adapting the Wrap&Zip technique to our
label sequence seems straightforward, but there is again no obvious
corresponding method for also doing this with the degree sequence.

In order to emphasize the duality of the two symbol sequences
we propose a new two-pass decoding scheme that works similarly
for both the label and the degree sequence. In the first pass it con-
structs a vertex spanning tree that has specially marked leaf nodes
attached. In the second pass it reconstructs the triangles by extend-
ing these leaves to attach to a vertex of the spanning tree.

We say that our decoding algorithm constructs a leaf-tree from
which the triangulation can be reconstructed through a closure op-
eration. A leaf-tree is a rooted planar tree of n nodes with 2n−5 leaf
nodes that are attached in a particular manner. Any vertex spanning
tree of a triangulation can be converted into a leaf-tree by walking
around the vertex spanning tree and attaching a leaf whenever the
walk crosses for the first time an edge that is not part of the span-
ning tree (a similar tree can be constructed by attaching a leaf on
the second crossing [7]). The closure operation repeatingly extends
eligible leaves into edges by attaching them to a vertex so that a
triangle is formed. Eligible leaves are those that are directly fol-
lowed (in walk direction) by two consecutive edges that are either
part of the spanning tree or have already been formed. The vertices
that eligible leaves are extended to are the ones at the other end of
these two consecutive edges. By keeping track of eligible leaves the
closure operation can reconstruct the triangulation in linear time.

The concept of a leaf-tree is inspired by Turan’s early work on
coding of planar graphs [15]. His algorithm walks around a span-
ning tree and attaches two leaves of different type for each of the
two crossings of a non-spanning tree edge. For the first crossing the

leaves are of type opening bracket and for the second crossing they
are of type closing bracket. The original planar graph can be recon-
structed by matching up corresponding pairs of brackets. For fully
triangulated graphs we may drop either the opening or the closing
brackets, which gives us a leaf-tree [7]. The leaves of the leaf-tree
we use for decoding correspond to Turan’s opening brackets.

The planar two-tree that is used in Poulalhon and Schaeffer’s
work on optimal coding of triangulations [9] is also a leaf-tree, al-
beit a special kind. Poulalhon and Schaeffer construct these two-
trees by walking around a very particular vertex spanning tree for
which the walk crosses at each node exactly two non-spanning tree
edges for the first (or for the second) time. Hence, their two-trees
are special leaf-trees for which (nearly) each node has two leaves.

Both the label sequence and the degree sequence describe the
construction of a leaf-tree that can be followed by a closure oper-
ation to reconstruct the triangulation. For the degree sequence we
do not construct a leaf-tree with all leaves fully grown (i.e. it’s not
in full bloom), but create a leaf tree that grows leaves as the closure
progresses by storing a leaf growth potential with each node.

The compression rates of these two-pass decoders (see Table 1)
are comparatively poor. This is due to the lack of a partially recon-
structed mesh when decompressing the symbol sequence. There is
no partially connectivity as context for predicting the next symbol.

Labels Our label-based forward decoder without offsets uses
C, R, W, S, and E. The decoder initializes the leaf-tree as two nodes
connected by an edge and starts reading the labels. When it reads a
C it adds a new node to the tree and a leaf on its left. When it reads
an R it adds a leaf on the left. When it reads a W it adds a leaf on
the right. When it reads an S it adds a branching point and a leaf on
the right. When it reads an E it jumps to the most recent branching
point or terminates if there are none left. The label sequence is
compressed using an order-4 adaptive arithmetic coder.

Degrees Our degree-based forward decoder without offsets
uses Vd , W, S, and E. The decoder initializes the leaf-tree as two
nodes connected by an edge. When it reads a Vd it adds a new
node to the tree, sets its leaf growth potential to d-2 and adds a
leaf on the left. When it reads a W it adds a leaf on the right and
decrements the leaf growth potential by one. When it reads an S it
adds a branching point and a leaf on the right and decrements the
leaf growth potential by two. When it reads an E it jumps to the
last branching point or terminates if there are none left. The degree
sequence is compressed using an order-2 adaptive arithmetic coder.

4.3 Reverse

For decoding from the reverse sequences we perform a reversed
replay of the encoding process. For both the label and the degree
sequence our decoder is essentially an adapted Spirale Reversi de-
coder [6]. We use ideas from Szymczak [13] to improve compres-
sion of the symbols. The reverse decoders consistently achieve the
best compression rates. This is in agreement with Szymczak’s re-
sults [13] that reverse decompression of Edgebreaker labels out-
performs both the TG coder [14] and its variation by Alliez and
Desbrun [1], that are both bound by the vertex degree entropy.

Labels Our label-based reverse decoder uses C, R, W, S, and
E. We decompress the next label using a context that depends on the
last label and the current degree of the focus. We distinguish only
degrees between 2 to 11 and clamp higher degrees to 11. Since
the first operation after popping a boundary from the stack must
be a C operation the corresponding label is not explicitly encoded.
Similarly, the first operation following an E operation must be an R
operation and the corresponding label can be omitted.

Degrees A degree-based reverse decoding uses Vk, W, S, and
E. We decompress the next operation using a context that depends
on the last label and the current degree of the focus. We distinguish
only degrees between 2 to 11 and clamp higher degrees to 11.

Early Split Coding, Isenburg and Snoeyink 5 of 9 appeared in Graphics Interface’06

meshes operations without offsets with offsets reverse degree TG coder
name vertices warts splits labels degrees labels degrees labels degrees entropy before after

horse 48,485 1,976 137 1.63 1.61 1.47 1.38 1.37 1.36 1.42 1.43 1.37
dinosaur 56,194 3,549 310 1.90 1.98 1.76 1.66 1.63 1.62 1.65 1.66 1.63
rabbit 67,039 2,860 142 1.71 1.74 1.58 1.51 1.49 1.48 1.55 1.55 1.50
igea 134,345 4,461 163 1.58 1.51 1.40 1.34 1.32 1.31 1.39 1.40 1.33
armadillo 172,974 10,101 664 1.84 1.97 1.79 1.72 1.67 1.65 1.74 1.74 1.70
isis 187,644 5,540 218 1.55 1.54 1.42 1.36 1.34 1.33 1.44 1.44 1.35

Table 1: For each mesh we list the number of vertices
and the number of wart and split operations performed by
the the early-split coder. We report compression rates in
bits per vertex (bpv) that are achieved by the six possible
label or degree sequences. For comparison we also give the
entropy of the vertex degree distribution. The last column
lists the performance of the original TG coder [14] before
and after integrating our novel heuristic for improving the
compression of vertex degrees.

5 COMPRESSION RESULTS

Our implementation of the early-split coder produces a superse-
quence containing the labels, degrees, and offsets for all six decod-
ing methods. We have implemented six compressors that take this
sequence as input but compress only those symbols used by their
respective decompression schemes. The schemes that operate on
forward sequences with offsets and on reverse sequences make use
of a partially reconstructed mesh for context-based compression of
the symbols. To create the same context that is available at decom-
pression time, the compressor simulates the decoding process.

We have run experiments on triangle meshes with vertex counts
between 50 and 200 K. We limit our test set to single-component
meshes of sphere topology to save us from implementing the treat-
ment of holes and handles for six different coders. This can be done
in various ways but has little impact on the total compression rate.

In Table 1 we report for each mesh its total vertex count and the
number of wart and split operation that occur during early-split cod-
ing. Side by side we list the compression rates for all six encodings
in bits per vertex (bpv). These bit-rates are achieved using all the
optimizations described in the Section 4. For comparison we also
report the entropy of the vertex degree distribution.

Forward decoding without offsets gives the worst compression
rates. Decoding is done in two passes so that is not possible to pre-
dict the next symbol from a partially reconstructed mesh. Reverse
decoding gives the best bit-rates but requires an additional pass to
reverse the symbols. This can be disadvantageous when compress-
ing large meshes [4]. For forward decoding with offsets bit-rates
are slightly better when using degrees instead of labels because of
our new heuristic can only be used in degree-based mode.

6 CONCLUSION

The main goal of this work was to illustrate the duality of label-
based and degree-based coding, not to propose yet another coding
scheme. For this we designed a connectivity coder that can either
produce labels and operate like Edgebreaker and the Cut-border
Machine or produce degrees and operate like the TG coder. In ei-
ther mode it traverses vertices and triangles in the exact same order
allowing a side-by-side comparison of label and degree coding.

One insight of this unified view is that for compression it is more
important which decoding method we use and not whether we code
with labels or degrees. The best rates are achieved by reverse de-
coding, whereas forward decoding without offsets gives the worst
results. Only for forward decoding with offsets the bit-rates sug-
gest that degree coding is a better choice than label coding. This is
due to a novel heuristic that makes use of the slot information along
the boundaries, which is maintained only by a degree-based replay
decoder. We can use same heuristic to bring the compression rates

of the original TG coder below the entropy of the vertex degree se-
quence. This had previously not even been possible with the more
complex adaptive-conquest heuristic of Alliez and Desbrun [1].

The other insight is how to do degree coding without storing ex-
plicit split offsets. We have previously shown that simply adding
“end” symbols is not sufficient to make split offsets implicit to the
symbol sequences produced by a degree coder [8]. With early-split
coding the new “wart” symbol is easily identified as the additional
information that is necessary. For the first time we can present
degree-based decoders—one operating in two passes, the other in
reverse—that, just like Edgebreaker, do not need explicit offsets.

ACKNOWLEDGEMENTS

The horse model is courtesy of Greg Turk’s Large Model Archive at Georgia Tech.
The dinosaur, rabbit, igea, and isis models are courtesy of Cyberware. The armadillo
model is courtesy of Stanford’s 3D Scanning Repository.

REFERENCES

[1] P. Alliez and M. Desbrun. Valence-driven connectivity encoding for
3D meshes. In Eurographics’01 Proceedings, pages 480–489, 2001.

[2] S. Gumhold. Improved cut-border machine for triangle mesh com-
pression. In Erlangen Workshop on Vision, Modeling and Vis., 1999.

[3] S. Gumhold and W. Strasser. Real time compression of triangle mesh
connectivity. In SIGGRAPH’98 Proceedings, pages 133–140, 1998.

[4] M. Isenburg and S. Gumhold. Out-of-core compression for gigantic
polygon meshes. In SIGGRAPH’03 Proc., pages 935–942, 2003.

[5] M. Isenburg and P. Lindstrom. Streaming meshes. In Visualization’05
Conference Proceedings, pages 231–238, 2005.

[6] M. Isenburg and J. Snoeyink. Spirale reversi: Reverse decoding of the
Edgebreaker encoding. In Proceedings of 12th Canadian Conference
on Computational Geometry, pages 247–256, 2000.

[7] M. Isenburg and J. Snoeyink. Graph coding and connectivity com-
pression. draft: http://www.cs.unc.edu/ ˜isenburg/research/.

[8] M. Isenburg and J. Snoeyink. On the non-redundancy of split offsets
in degree coding. draft: http://www.cs.unc.edu/ ˜isenburg/research/.

[9] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of trian-
gulations. In 30th International Colloquium on Automata, Languages
and Programming (ICAZLP), pages 1080–1094, 2003.

[10] J. Rossignac. Just-in-time upgrades for triangle meshes. In 3D Geom-
etry Compression, Course 21, SIGGRAPH’98, pages 18–24, 1998.

[11] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Trans. on Vis. and Computer Graph., 5(1):47–61, 1999.

[12] J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding of planar
triangle graphs. The Journal of Comp. Geom., Theory and Appl., 1999.

[13] A. Szymczak. Optimized edgebreaker encoding for large and regular
meshes. In Data Compression Conference’02, page 472, 2002.

[14] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics
Interface’98 Conference Proceedings, pages 26–34, 1998.

[15] G. Turan. Succinct representations of graphs. Discrete Applied Math-
ematics, 8:289–294, 1984.

Early Split Coding, Isenburg and Snoeyink 6 of 9 appeared in Graphics Interface’06

C

R
E

V5 V4

a

v

4

5

d

V5

C

5

C

c

V5

C
b

5

C

d

V6

C

6

C

6

C

V6

C

R

V4

C R

V8

C

R

R

C

4

8

C

R

W

V5

C

R

V5

C

S1 0 0

S1

C R R E

C R E

C

R

R

E
5

C

R
5

C

e f g h

i j k l

W

m n o p

R

Figure 5: An example of replay decoding from a forward label or degree sequence with offsets. The label-based replay reads symbols C, R, W,
Sk, and E (shown above the arrow). The degree-based replay reads symbols Vd and Sk,i, j (shown below the arrow). The slots on the boundary
are only meaningful for degree-based decoding. Because decoding is an exact replay of encoding this Figure also illustrates the encoding process.

Label-based: (a) The decoder creates the initial boundary using two new vertices. (b) The decoder performs a C operation: it forms a triangle
at the gate using a new vertex. (c–e) Three more C operations. (f) The decoder performs an R operation: it forms a triangle by connecting
focus−1 with focus+1, which becomes the new focus. (g–i) More C and R operations. (j) The decoder performs a W operation: it forms a
triangle by connecting focus−1 with focus−3. (k–m) More C and R operations. (n) The decoder performs an Sk operation: it creates an edge
by connecting focus−1 with focus−(k+3), which becomes the focus of the split-off boundary loop that is temporarily pushed onto a stack. (o)
After performing operations C, R, and R, the decoder performs an E operation. This ends the current boundary loop and the decoder pops a
boundary off the stack. (p) After performing operations C, R, and E, the decoder terminates because the stack is empty.

Degree-based: (a) The decoder reads the first two vertex degrees V5 and V4 and sets the slot count of the initial boundary. (b) The decoder
reads vertex degree V5, performs a C operation, and updates the slots. (c–e) The decoder reads vertex degrees V5, V6, and V6, performs C
operations, and updates slots. (f) The decoder performs an implicit R operation because the slot count at the focus has dropped to zero. (g–i)
Vertex degrees V4 and V6 are processed. (j) The decoder performs an implicit W operation because the slot count of focus−2 reaches zero.
(k–m) Vertex degrees V5 and V5 are processed. (n) The decoder reads Sk,i, j and performs an Sk operation. The numbers i and j specify that

i+1 of the slots at focus−1 and j+1 of the slots at focus−(k+3) should move over to the corresponding vertices on the split-off boundary loop.
(o) The decoder implicitly performs C, R, R, and E because all four boundary vertices have a slot count of one. (p) The decoder implicitly
performs C, R, and E because all three boundary vertices have a slot count of one.

Early Split Coding, Isenburg and Snoeyink 7 of 9 appeared in Graphics Interface’06

a

d

V5

C
c

V5

C
b d

V6 V6

C C

V4 V6

C R C R

W

W

V5 V5

C R C

S

S

V4 E

C R R E

V3 E

C R E

e f g h

i j k l

m n o p

3

C

R

0

0

0

1

0

0

1

2

1

1

1

0

3

2

2

1

1

1

1

0

0

3

2

2

2

1

3

1

0

2

0

3

2

2

3

1

4

1

0

2

0

R

3

2

2

3

1

4

2

0

2

C1

R

R

3

2

2

3

1

4

2

0

C
2

S

3

2

2

3

1

4

2

1

3

2

2

3

1

4

2

C

3W

R

3

2

2

3

1

5

R

R

3

2

2

3

C

1

C5

R

3

2

2

4

C

C
3

2

2

4

3

2

C

Figure 6: An example of leaftree decoding from a forward label or degree sequence without offsets. Decoding happens in two passes: first the
construction of the full leaftree, then the closure of the leaftree. The label-based decoder reads symbols C, R, W, S, and E. The degree-based
decoder reads symbols Vd , W, S, and E. The light-blue leaves are only meaningful for label-based decoding, whereas the numbers on the
vertices are only meaningful for degree-based decoding.

Label-based: (a) The decoder creates the initial leaftree using two new vertices. (b) The decoder reads a C: it uses a new vertex as
the next node and attaches a left leaf. (c–d) More C. (e) The decoder reads an R: it attaches another left leaf to the current node. (f)
More C and R. (g) The decoder reads a W: it attaches a right leaf to the current node. (h) More C and R. (i) The decoder reads an S:
it attaches a right branch and a right leaf to the current node. (j) More C and R, then the decoder reads an E: it continues at the last
branch. (k) More C, R, and then an E: it terminates since there are no other branches. (l) Leaftree closure: a clockwise leaf-edge-edge se-
quence is closed into a triangle. (m) Two more closures. (n) Three more. (o) Four more. (p) Another four and the next five complete the closure.

Degree-based: (a) The decoder creates the initial leaftree using two new vertices. (b) The decoder reads a V5: it uses a new vertex
as the next node, attaches a left leaf, and sets the potential leaf count to 3. (c) Another V5. In addition, the potential leaf count of the
parent node is decremented. (d) Two V6s. (e) Nothing happens (remember: the degree-based encoding does not contain R symbols and the
light-blue leaves are only meaningful for label-based decoding). (f) More Vks. (g) The decoder reads a W: it attaches a right leaf to the current
node. (h) Two more V5s. (i) The decoder reads an S: it attaches a right branch and a right leaf to the current node. (j) After reading an E
the decoder continues at the most recently attached branch. (k) After reading another E the decoder terminates. (l–p) Leaftree closure: nodes
without children or whose children are all without leaves turn their remaining leaf growth potential into left leaves. Intuitively speaking, the
degree-based decoder grows all those blue leaves that it was not explicitly told about just in the moment they are needed for forming a triangle.

Early Split Coding, Isenburg and Snoeyink 8 of 9 appeared in Graphics Interface’06

E

a

E
d

R
c

V3

C
b d

E

E

V4

R R C

S

S

V5

C

V5

R C

W

W

R

V8

C

V4

R C

V6

R C

V6

C

V5

C

V5

C

e f g h

i j k l

m n o p

E
R

C

3

C

E

C

C

R

R4

S C
5

C
5

R

W

R

C

8

C

4 R

C

R
6

6

C

C

5

C

5

Figure 7: An example of reverse decoding from the reversed label or degree sequence without offsets. The label-based decoder reads symbols
C, R, W, S, and E. The degree-based decoder reads symbols Vd , W, S, and E. The reverse decoders perform the boundary updates that happen
during encoding in the exact reverse order:

Label-based: (a) The decoder reads an E: it creates the initial boundary in form of a single triangle. (b) The decoder reads label R: it
creates a triangle at the gate. (c) The decoder reads label C: it creates a triangle that completes the focus. (d) The decoder reads another
label E: it pushes the current boundary on the stack and creates a new boundary in form of a single triangle. (e) The decoder reads labels R,
R, and C and creates triangles accordingly. (f) The decoder reads label S: it pops a boundary from the stack and merges it with the current
boundary. (g–h) More labels R and C are read and processed. (i) The decoder reads label W: it creates a triangle at the edge following the
gate. (j–o) More labels R and C are read and processed. (p) After processing label C the decoder terminates because the boundary has length two.

Degree-based: (a) The decoder reads an E: it creates a triangle. (b) Nothing happens. (c) The decoder reads vertex degree V3: it
creates as many triangles as needed (here: two) so that the focus has a degree of three. (d) The decoder reads another E: it pushes the current
boundary on the stack and creates a new boundary in form of a single triangle. (e) The decoder reads vertex V4: it creates three triangles so
that the focus has a degree of four. (f) The decoder reads an S: it pops a boundary from the stack and merges it with the current boundary.
(g) The decoder reads an V5: it creates as many triangles as needed (here: one) so that the focus has a degree of five. (h) Another V5. (i) The
decoder reads a W: it creates a triangle at the edge following the gate. (j) Nothing happens. (k–o) More vertex degrees are read and triangles
are created accordingly. (p) After processing this V5 the decoder terminates because the boundary has length two.

Early Split Coding, Isenburg and Snoeyink 9 of 9 appeared in Graphics Interface’06

