
On the Non-Redundancy of Split Offsets in Degree Coding

Martin Isenburg
isenburg@cs.unc.edu

Jack Snoeyink
snoeyink@cs.unc.edu

University of North Carolina at Chapel Hill

Abstract
The connectivity coder by Touma and Gotsman encodes

a planar triangulation through a sequence of vertex de-
grees and occasional “split” symbols that have an asso-
ciated offset value. It has been speculated that the split
offsets might be redundant information that can be de-
rived from the degree sequence, especially as this is true
for similar split offsets used in other coding schemes.

In this paper we show that the split offsets of the TG
coder are in general not redundant. We give examples
of degree sequences that have two different decodings if
the split offsets are not specified. Surprisingly, such ex-
amples are rare and a large number of encodings remain
unique. The few encodings that are not unique have only
a small number of valid decodings so that their split off-
sets could be replaced by one or two bits that specify the
actual triangulation among all possible ones.

We investigate how the omission of explicit split infor-
mation affects the uniqueness of four alternate offset-less
encodings. One stores split and end symbols, one only
split symbols, one stores only the number of splits, and
one stores no split information at all. As we find valid de-
codings through exhaustive search that reaches exponen-
tial complexity, our work is mainly of theoretical interest
and does not lead to new practical encoding algorithms.

Key words: Connectivity coding, mesh compression, split
offsets, TG coder.

1 Introduction

Recent years have seen a number of schemes that com-
pactly encode triangle mesh connectivity by a sequence
of symbols that specify how to grow a “compression
boundary” enclosing an already encoded region, one tri-
angle at a time. A popular scheme is the Triangle Mesh
Compression method by Touma and Gotsman [14], or TG
coder for short. For planar triangulations, the TG coder
generates a sequence of vertex degrees that usually con-
tains a few “split” symbols with associated offset values.

There has been speculation that it might be possible to
modify the TG coder to operate without explicitly stor-
ing the offsets values that associated with each “split”

symbol. Such speculations are motivated by the fact
that Edgebreaker [12] manages to avoid storing such off-
sets, whereas the otherwise almost identical Cut-border
Machine [3] explicitly includes them. Similarly, Face-
Fixer [7] avoids storing offsets, whereas the Dual-Graph
Method [10] includes them.

In an information theoretic sense, the split offsets used
by the Cut-border Machine and the Dual-Graph Method
are redundant because they are implied in their symbol
sequence. Edgebreaker and Face Fixer recreate these off-
sets by decoding either in two passes [12, 13] or in re-
verse [7, 8]. In both schemes, each “split” symbol S has
a corresponding “end” symbol E that signals the comple-
tion of a compression boundary. Given a traversal that
always completes one boundary part before continuing
on the “split off” parts, the symbols S and E form nested
pairs, each of which encloses a subsequence of symbols.
In Edgebreaker and Face-Fixer, such a symbol subse-
quence is a self-contained encoding of the portion of the
mesh enclosed by that boundary part. Obviously, this also
determines the length of that boundary part, which is ex-
actly what is specified by the split offset.

It was less clear whether the split offsets used by the
TG coder would also be redundant. For one thing, the
symbol sequences produced by the TG coder do not con-
tain explicit “end” symbols because the completion of a
compression boundary is automatically detected. There-
fore it is not easy to identify the subsequences of sym-
bols that complete a particular boundary part. But simply
adding “end” symbols does not make things much eas-
ier, because the split offsets of the TG coder cannot be
derived from a subsequence of symbols alone.

Unlike the symbol subsequences of Edgebreaker and
Face Fixer, the symbol subsequences of the TG coder
are not self-contained encodings of some portion of a
mesh. Decoding also depends on the state of the com-
pression boundary at the beginning of the subsequence.
This is illustrated in Figure 1 at the example of one de-
gree subsequence that encodes two different submeshes
following a “split”. The TG coder stores significantly
more state information on the compression boundary than
Edgebreaker or Face Fixer. It maintains slot counts that

1 of 8 submitted, april 2005

5

5

L
S R

L

R R
L R

L
C

R C

C
R

R R

R

L

C

R

RR

S
R

E
E7

6

6

5

S

L C
R C

C
R

R R

R

L

C

R

RR

S
R

E
E7

6

6

5

… S 7 6 5 6 …

after the “split” the
right submesh is
encoded
first

“split”

the degree subsequence
following the “split”

“split”

Figure 1: The degree sub-
sequence of the TG coder
shown above can encode
two different submeshes.
Unlike the label subse-
quences of Edgebreaker
(shown in grey), it is not a
self-contained encoding but
also depends the distribution
of slots along the boundary.

specify how many unprocessed edges are still incident to
each boundary vertex. The split offsets also specify how
to split these counts, not just the boundary vertices. The
value of each count and their order around the boundary
depends on all preceeding symbols. Therefore is it im-
possible to derive the split offsets with computations re-
stricted to subsequences of symbols or by processing the
symbols in reverse.

We have implemented a decoding scheme that “tries
out” all possible split offsets in a brute-force manner,
backtracking as soon as it notices that it cannot com-
plete a triangulation. This is slow due to the exponen-
tially increasing search space and therefore impractical
as a decoding algorithm. But this approach does find
counter-examples that establish the non-redundancy of
the offsets—namely, symbol sequences that lead to more
than one valid decoding if different split offsets are used.

In practice, our implementation finds that only few sets
of split offsets actually lead to valid decodings. For ex-
ample, of the 290, 898 possible encodings of the well-
known horse model (see Table 1), 290, 889 are unique
when both split and end symbols are stored, and the re-
maining 9 have only two valid decodings each. For those
we could replace all the split offsets with a single bit that
specifies which one of the two decodings it is. In fact, we
explore how often a unique triangulation is obtained un-
der four different encodings without explicit offsets: The
first stores both split and end symbols, the second stores
split symbols only, the third stores only the number of
splits, and the fourth stores vertex degrees alone. As ex-
pected, we find that omitting more split information re-
sults in more possible decodings, but it is surprising how
many still have unique triangulations.

Unfortunately we do not have efficient algorithms for
finding all possible valid decodings. We currently achieve

this by exhaustive search through all potential splits and
the complexity of this search increases quickly. For the
encodings that store split and end symbols we can sig-
nificantly prune the search tree and solve even relatively
large triangulations in reasonable time. But for encod-
ings that do not store end symbols and especially for
those encodings that do not even store split symbols we
have to limit our experiments to very small triangulations.
Hence, our work is mainly of theoretical interest and does
not lead to new practical encoding algorithms.

The remainder of this paper is organized as follows:
The next section reviews how the TG coder encodes a tri-
angulation and reports several invariants of the encoding
process. Section 3 describes the four different offset-less
encodings and gives counterexamples that (a) prove that
offsets are not redundant and (b) show that the encodings
have more possible decodings as less split information is
retained. Section 4 describes the algorithms that search
for all valid decodings. Experimental results are reported
in Section 5 for a set of well known triangle meshes and
a set of randomly generated triangulations. We conclude
with a discussion of related issues.

We must mention that there are several incentives to in-
clude explicit split offsets in the encoding. They allow de-
coding in a single forward pass over the symbol sequence,
which makes it possible to decompress in a streaming
fashion [5]. They give the freedom to choose a mesh
traversal that is not recursive. The Cut-Border Machine
and the TG coder can easily be modified to operate in a
breadth-first manner, which leads to more coherent mesh
layouts [6]. However, note that for a breadth-first traver-
sal order even the offsets of the Cut-Border Machine are
no longer redundant. Finally, explicit split offsets often
result in better overall compression rates because they al-
low to incorporate heuristics for predictive compression
of the vertex degrees [9].

2 Connectivity coding with the TG Coder

A triangulation, for the purpose of this paper, is a maxi-
mal, three-connected, planar graph in which every face is
a triangle. To encode a triangulation, the TG coder [14]
performs a region-growing process by maintaining one or
more compression boundaries into which it includes tri-
angle after triangle. It usually includes the triangle that
is adjacent to the gate edge, which advances in clockwise
order around the focus vertex as illustrated in Figure 2.
However, it will immediately include any triangle that
shares two edges with the compression boundary, even
if neither of these two edges is the gate.

The encoder starts with an initial compression bound-
ary of length two that is defined around an arbitrary edge
of the triangulation. One of the two boundary edges be-

Non-Redundancy of Split Offsets, Isenburg, Snoeyink 2 of 8

focus

gate

6
a

6

gate

b
focus

--

--

new
vertex

gategate

stack gate

stack focus
c

focus

gate

split offset

b

c

5

6

9

boundary slots

2

a

focus

focus

processed
region

unprocessed
region

4

10

11

1

boundary

0

gate

focus

gate

3

7
8

12

13

14 15

split
vertex

S15

focus

zero
slot

gate

focus --

gate

Figure 2: a) An “add” operation includes a triangle at the gate that reaches a
new vertex. The vertex degree is recorded. The zero slot that was created is
immediately removed by including the triangle that shares two edges with the
compression boundary. b) The boundary ends when it has length three and only
zero slots. c) A “split” operation includes a triangle at the gate that connects
to some other boundary vertex. A split symbol and an offset, which equals the
number of slots on the boundary part that is pushed onto the stack, are recorded.

comes the gate and its target vertex becomes the focus.
The encoder records the degree of the two initial bound-
ary vertices in an agreed-upon order and sets their slot
count to be one less than their degree. Throughout the
encoding process these slot counts are constantly updated
and always reflect the number of unprocessed edges inci-
dent to the respective boundary vertex.

Whenever all boundary vertices have a slot count of
one or higher, the triangle adjacent to the gate shares
only one edge with the compression boundary. In this
moment the encoder will perform either an “add” or a
“split” operation and record the corresponding symbols.
Usually the third vertex of the triangle at the gate is a
previously unprocessed vertex. In this case the encoder
simply “adds” this vertex as a new boundary vertex and
records its degree, as illustrated in Figure 2a. Occasion-
ally, however, the third vertex of this triangle is already
on the boundary. In this case the encoder splits the com-
pression boundary into two loops, temporarily stores one
on a stack, and continues encoding on the other. Then the
encoder records a split symbol together with the number
of slots that are on the boundary part that is stored on
the stack. This split offset specifies how many slots are
clockwise along the boundary between the gate and the
split vertex, as illustrated in Figure 2c.

Whenever the slot count of a boundary vertex drops
to zero, there is a triangle that shares two edges with
the compression boundary. The encoder immediately
includes such triangles into the compression boundary
without recording anything. The special case that all
boundary vertices have a slot count of zero indicates the
completion of this boundary1. This happens only for a

1The end of a compression boundary can also be detected as the

boundary of length three as illustrated in Figure 2b. Then
the encoder either continues on the boundary that was
most recently stored on the stack or terminates if the stack
is empty. There is no other scenario in which two or more
adjacent boundary vertices can have a slot count of zero.

It is important to note that there are two pieces of infor-
mation contained in the split offset. It specifies both the
length of the boundary part that is pushed onto the stack
and how to divide the remaining slots at the split vertex
among the two boundary parts. In comparison, the split
offsets used by the Cut-Border Machine only contain one
piece of information, namely the the length of the bound-
ary part that is pushed onto the stack.

Counts and Invariants
There are several invariants that are maintained during a
valid decoding; these can help us recognize early when
we have attempted a wrong choice of split or split offset.
If b is the number of boundary edges and s is the number
of slots, we can count the number of unprocessed edges
by their contributions to vertex and face degrees to obtain:

∑

fk⊂U
deg(fk) − b =

∑

vk⊂U
deg(vk) + s, (1)

where ⊂ U means unprocessed. In particular, this invari-
ant individually holds for the edge and slot counts of each
compression boundary together with the face and vertex
degree counts of the enclosed mesh region [4]. Since
all our faces are triangles we can re-write equation 1 as
3t − b = d + s where t is the number of unprocessed
triangles and d is a shortcut for the sum of degrees of

moment in which all boundary vertices have a slot count of one. This
way the last vertex degree of each boundary part can also be omitted [9].

3 of 8 submitted, april 2005

the unprocessed vertices. Euler’s relation for a triangu-
lation with t triangles, v vertices and a single boundary
of length b tells us that t + b = 2v − 2. Substituting v
with b + i where i is the number of internal vertices and
solving for t gives us t = 2i+ b− 2. Substituting the t of
the rewritten equation 1 results in a new invariant

6i + 2b = d + s + 6 (2)

that relates the length b and slot count s of an individual
compression boundary and the number of unprocessed
vertices i and their total degree d.

Splitting a boundary of length b with slot count s cre-
ates two boundaries of length b1 and b2 with slot counts
s1 and s2 such that b+1 = b1+b2 and s−4 = s1+s2. At
the same time the i unprocessed vertices with degree total
d are seperated into i1 and i2 vertices with corresponding
degree totals d1 and d2 where i = i1+i2 and d = d1+d2.
Hence, after the split we have to replace the old invariants
with two new invariants 6i1 + 2b1 = d1 + s1 + 4 and
6i2 + 2b2 = d2 + s2 + 4. These invariants are related
so that if the old invariant was true and one of the new
invariants is true, the other new invariant is also true.

There also exists a useful inequality between the num-
ber of unprocessed triangles t that are enclosed by the
compression boundary and the current length b of this
boundary. The fact that completing a boundary of length
b requires a minimum of b triangles gives us the following
invariant

t ≥ b (3)

which turns into an equality in the moment the boundary
encloses only a single unprocessed vertex.

7

5 8

4

8

55

7

5
4

7 5 8 4 7 5 8 5 4 5 S4 5 S6 3 4 4 4
7 5 8 4 7 5 8 5 4 5 S 5 S 3 E 4 4 E 4

7 5 8 4 7 5 8 5 4 5 S 5 S 3 4 4 4

7 5 8 4 7 5 8 5 4 5 5 3 4 4 4 (2 splits)
7 5 8 4 7 5 8 5 4 5 5 3 4 4 4

S6

S4
5

A
B
C

D

Figure 3: The original TG encoding of this triangulation with
15 vertices has two splits with offsets 4 and 6. In the following
we investigate the uniqueness of four offset-less encodings: A)
with split and end symbols, B) with split symbols, C) with the
number of splits, and D) without any split information.

3 Encodings without explicit offsets

This work originated with the intention to find small
counterexample that would show that – unlike the offset’s

used by the Cut-Border Machine – the offsets used by the
TG coder are not redundant. Several coffee refills later,
after having produced a pile of scrap paper covered with
larger and larger examples of carefully constructed trian-
gulations, we realized that finding a counterexample was
more difficult than anticipated. However, an implementa-
tion of an exhaustive search through randomly generated
triangulations was more successful.

Theorem. For the TG coder without split offsets, but with
end symbols, there exist two different triangulations that
have the same offset-less encoding.

In the following we actually consider four alternate
offset-less encodings that include less and less informa-
tion about the split operations that occur during the en-
coding process. Figure 3 shows an example of a stan-
dard TG encoding (with explicit split offsets) and the
four offset-less variations (A-D). In this example, all four
offset-less encoding are unique. Since there are examples
for which the strongest encoding (A) is not unique, there
are examples for which all four are not unique. We in-
clude all four, nevertheless, because it is interesting to see
how the small counterexamples get smaller and the likeli-
hood that a particular offset-less encoding is non-unique
increases as we omit more and more split information.

4

3

3
4 4

34

3

… S 4 3 E 4 3 E
i1 = 2

d1 = 7
i2 = 2

d2 = 7

6 6 5 6 6 5 6 … 5 7 5 6 6 6 5 … 4 8 5 6 7 5 5 …

b = 6 s = 16

gate

focus

i = 4 d = 14

t = 12

Figure 4: The smallest scenario where an offset-less encod-
ing with split and end symbols is not unique. This scenario can
occur in triangulations having as few as 11 vertices. Note, how-
ever, that the top-right example has only one valid decoding that
results in a three-connected triangulation, despite the compres-
sion boundary having reached the same state.

The smallest examples for which all four offset-less
encodings are non-unique can be found in triangulations
with 11 vertices as illustrated in Figure 4. There are two
possible ways of splitting the boundary of length 6 that
has its 16 slots distributed in this particular configura-
tion and where both resulting boundary parts still enclose

Non-Redundancy of Split Offsets, Isenburg, Snoeyink 4 of 8

4 10 4 6 5 8 5 5 4 5 …8 6 4 6 4 8 5 5 5 5 …

3

… S 3 4 3

i1 = 2
d1 = 7

i2 = 1
d2 = 3

9 5 4 6 4 8 5 5 4 6 …

b = 9 s = 20

gate

focus

i = 3 d = 10

t = 13

3

4

3

4
3

i1 = 1
d1 = 3

i2 = 2
d2 = 7

Figure 5: The smallest scenario where an offset-less encoding
in no longer unique without end symbols. Triangulations need
to have a minimum of 13 vertices for this scenario to occur.
Again, the top-right example has only one valid decoding.

two unprocessed vertices of degree 3 and 4. However,
there are not always two valid decodings in this scenario.
Sometimes the focus is already connected to other ver-
tices of the boundary through previously decoded trian-
gles. This places additional constraints on the possibili-
ties for splitting the boundary. The top-right triangulation
from Figure 4, for example, has only one valid decoding.

In the following we demonstrate that the offset-less en-
codings are less likely to be unique as we omit more split
information. Initially, we thought that already dropping
the end symbols would make it so unlikely for encod-
ings to be unique that it would be easy to find encodings
that are unique with end symbols but non-unique without
them. Another coffee shop session with pencil and paper
taught us that finding such an example was again much
harder than anticipated. However, an implementation of
a backtracking search quickly finds the examples shown
in Figure 5. Omitting the end symbol makes these encod-
ing non-unique because of the added flexibility in having
different numbers of vertices inside each boundary part.

The next step was to drop the split symbols and re-
tain only the information about the total number of split
operations. Having learned the futility of the paper and
pencil approach we turned directly to a search algorithm.
The anticipated example encodings that are unique with
split symbols but become non-unique without are shown
in Figure 6. Omitting the split symbol makes these en-
coding non-unique because of the added flexibility in per-
forming the splits at an earlier or at a later moment.

In the last step we also omitted the information on the
number of split operations and as expected this makes
the encodings even less likely to be unique. In this case a

5

3

… 3 5 3 3 (1 split)

i1 = 1
d1 = 3

i2 = 3
d2 = 11

5 7 4 7 4 8 4 7 … 4 8 4 7 5 7 4 7 … 3 9 4 8 4 7 4 7 …

b = 6 s = 16

gate

focus

i = 4 d = 14

t = 12 i1 = 1
d1 = 3

i2 = 1
d2 = 3

3
3 53

3

3

Figure 6: The smallest scenario for which an offset-less encod-
ing becomes non-unique after dropping the split symbols while
retaining their total number. The smallest triangulation in which
this occurs has 12 vertices. The top-right encoding is unique de-
spite an identical boundary state because of the non-boundary
edges that connect the focus to other boundary vertices.

triangulation needs only 10 vertices for its encoding to be
non-unique as shown in Figure 7. The encoding, which is
now simply a sequence of vertex degrees, can be decoded
without a split operation or with a single split operation.

4 Searching for valid decodings

In order to find all valid decodings of an offset-less en-
coding we search through all possibilities of perform-
ing split operations. The more split information is con-
tained in the encoding the fewer possibilities need to be
searched. For the offset-less encodings A and B that ex-
plicitly store split symbols our decoder iteratively tries to
split the current boundary in every possible way when-
ever it reaches a split symbol. For encodings C and D our
decoder does the same whenever the boundary allows a
split. For each attempt it recursively starts to decode the
first boundary part and in case this is successful does the
same for the second. Only if both recursions are suc-
cessful it returns a success, otherwise it tries out the next
possibility or returns a failure if there are none left. A
few observations help us to immediately eliminate some
splits from further consideration.

The split vertex must have a minimal slot count of two
and this minimal slot count increases for every bound-
ary vertex with slot count one that is either directly to the
left or to the right of the gate. This is because each of
these one-slots becomes a zero-slot after the split and in-
cluding each of the corresponding triangles consumes an
additional slot at the split vertex. This can drastically re-
duce the number of boundary vertices that are potential

5 of 8 submitted, april 2005

5 5 4 7 5 7 … 4 6 4 7 6 6 … 3 7 4 8 5 6 …

b = 5 s = 13

gate

focus

i = 4 d = 15

t = 11

5

3
34

3

3

4

5

… 3 5 4 3

i = 4
d = 15

i1 = 1
d1 = 3

i2 = 3
d2 = 12

Figure 7: The smallest scenario where an offset-less encoding
without any split information is not unique. It only needs trian-
gulations of 10 vertices for this to occur. The top-right encoding
is unique since the split would lead to an invalid triangulation.

candidates for the split vertex as illustrated in Figure 8.
It also decreases the number of combinations in which

we can connect to a particular boundary vertex. Every
slot such a boundary vertex has more than the minimal
slot count provides another way for distributing the re-
maining slots between the two resulting boundaries.

For the offset-less encodings A with end symbols we
have additional constraints that allow our backtracking
decoder to further prune the search. Since the symbol
subsequences that correspond to each boundary part can
be identified exactly, we can compute the numbers of
vertices i1 and i2 that each boundary part contains as
well as their total degree d1 and d2. We can then elimi-
nate all those splits from further consideration that have
a combination of b1 and s1 that violates the invariant
6i1 + 2b1 = d1 + s1 + 4. This constraint significantly re-
duces the number of potential splits as shown in Figure 9.

Once the current choice for a split satisfies all appli-
cable contraints the decoder starts a recursion to decode
the first boundary part. There are several invalid states
this decoding process may encounter in which case it re-
turns a failure: (a) the boundary is completed before the
end symbol is reached, (b) the end symbol is reached be-
fore the boundary is completed, (c) the slot count of two
neighboring boundary vertices drops to zero, (d) a split
symbol is encountered but all possible ways of splitting
the boundary fail, (e) the boundary can not be completed
with the remaining triangle budget.

The last of these failures is based on equation 3. If we
know either the exact or the maximal number of unpro-
cessed triangles that a compression boundary encloses,
we have an additional invariant to detect failures of the

focusgate

vertex has
five slots

4

4
5

1

1
2

3 2 1

1

11

1

1 1

boundary vertices

split vertex must have
two slots or more

split vertex must have
five slots or more

a)

b)

fewer potential
split vertices

vertex has
one slot

many potential
split vertices

many possible
ways to connect to

potential split
vertices

fewer possible
ways to connect to

potential split
vertices

Figure 8: a) The minumum slot count of the split vertex is
two. Twelve boundary vertices satisfy this criteria resulting in
twenty-five potential split configurations. b) The three vertices
with a slot count of one that surround the gate increase the mini-
mum slot count to five. In this case only three boundary vertices
qualify with a total of four potential split configurations.

decoding process earlier. This early failure is most effec-
tive for the offset-less encodings A because end symbols
allow us to compute the exact number of triangles.

Once we made the choice how to split the current
boundary into loops of length b1 and b2 we can com-
pute the number of triangles t that each boundary loop
encloses as 2i1+b1−2 and 2i2+b2−2 because the num-
ber of unprocessed vertices i1 and i2 that each loop con-
tains is known. We then give this value t as an additional
parameter to the recursive decoding calls and decrement
it for every decoded triangle. Should this value ever be-
come smaller than the current length of the boundary the
decoding process returns an early failure.

The absence of explicit end symbols means that the
decoder can no longer identify the subsequences that cor-
respond to each boundary part. This makes the search for
the split offsets in several ways more expensive. First,
we can no longer use invariant 2 to immediately elim-
inate some splits from further consideration, which re-
sults in more recursive calls. Second, we can no longer
fail because an end symbol is reached too early or too
late, which makes each recursive call more expensive as it
takes longer for the decoding process to reach an invalid
state. Third, we can not compute the exact number of
triangles t that the boundary loops enclose, which signif-
icantly weakens the efficiency of our second invariant—
especially for the recursion on the first boundary part.

However, we do not completely loose this invariant.
Given the maximal number of triangles t that the current
boundary encloses (i.e. before the split operation) and the

Non-Redundancy of Split Offsets, Isenburg, Snoeyink 6 of 8

i1 = 8 d1 = 42

focusgate

5

i2 = 7 d2 = 36

5

5

6

44
7

4

7

4

4 5
5

6
7

… S 7 5 4 6 5 7 4 4 E 6 5 5 5 4 7 4 E

b = 23 s = 52

6i2 + 2b2 = d2 + s2 + 6

6i1 + 2b1 = d1 + s1 + 6

b + 1 = b1 + b2

s – 4 = s1 + s2

2b1 = s1

b1 = 9
s1 = 18

b1 = 12
s1 = 24

b2 = 15
s2 = 30

b2 = 12
s2 = 24

&

&

Figure 9: End symbols tell the decoder which vertices are en-
closed by each boundary part. This leads to an additional con-
straint that leaves only two choices for splitting the boundary.

length b1 and b2 of the two loops that it is split into, we
know that the first boundary can at most enclose t−b2−1
triangles. Admittingly, this is a rather weak invariant. But
should the first recursion complete with success it will tell
us the actual number of triangles t1 that were decoded.
For recursivly decoding the second boundary part we then
know that there are at most t − t1 − 1 triangles left.

Omitting split symbols really increases the search
space. Whenever decoding is about to perform an “add”
operation and there are remaining splits to perform, it first
tries whether it is possible to perform a “split” operation
instead. This requires a minimal boundary length of five
and a minimal slot count of ten. The boundary is then
split every possible way and the corresponding recursive
calls are tested for success. If we have more than one
“split” operation left, we need to check each possibility
multiple times—once for each way of distributing the re-
maining split operations onto the two recursions.

For the offset-less encodings D the decoder does not
even know the total number of splits. It starts out assum-
ing that the degree sequence can be decoded without any
splits. If this fails we increase the number of splits and
try again. At this point the search space is so immense
that is only completes for a small number of splits

5 Experimental results

Initial experiments seemed to indicate that the split off-
sets of the TG coder might in fact be redundant. On our
standard set of example meshes the search for split offsets
would find the correct answer every run we tried. Table 1
shows that non-unique encoding are surprisingly rare.

We encoded six well-known models in every possible
way (i.e. starting from every half-edge) and checked the

meshes splits non-unique
name vertices encodings min max avg encodings

cow 2,904 17,412 13 22 16.8 0
fandisk 6,475 38,838 0 12 3.3 0
horse 48,485 290,898 7 29 15.4 9
dinosaur 56,194 337,152 27 56 40.4 10
rabbit 67,039 402,222 0 27 9.0 56
armadillo 172,974 1,037,832 36 76 55.2 146

Table 1: The table lists for each mesh the number of vertices
and the number of different encodings. The illustrations show
which percentage of encodings has what number of splits. The
minimum, the maximum, and the average number of splits are
given in the table. Most importantly, we report the number of
offset-less encodings of type A that are not unique.

resulting encodings for uniqueness when both split and
end symbols are used. Table 1 shows that all these en-
codings are unique for the smallest two meshes and that
there are only a few non-unique encodings for the larger
models. For the fandisk, we also verified that all encod-
ings B that only use split symbols are unique. Each of
the non-unique encoding has only two valid decodings,
so while the split offsets of those encodings are not re-
dundant they could be replaced by a single bit.

For experiments on the uniqueness of the other offset-
less encodings we were forced to significantly lower the
complexity of our example models. The search space
virtually explodes as the number of splits increases and
often we had to abort a seemingly endless computation.
We used Poulalhon and Schaeffer’s technique [11] and
to generate one million triangulations of n vertices for
which starting from a random edge produced at least one

7 of 8 submitted, april 2005

split. In Table 2 we list how many offset-less encodings
become non-unique because they have two/multiple de-
codings as we omit more and more split information.

n
splits non-unique encodings

min max avg A B C D
15 1 3 1.0 310/- 344/-
20 1 4 1.1 358/- 459/1
30 1 6 1.5 468/- 654/-
40 1 7 2.0 520/- 855/-
50 1 8 2.6 682/- 1,003/1 to
60 1 9 3.3 848/- 1,257/- be
70 1 11 4.0 947/2 1,388/4 completed
80 1 12 4.7 1,057/1 1,542/2
90 1 14 5.4 1,175/1 1,765/4
100 1 14 6.0 1,368/- 1,990/5
200 2 24 12.9 2,600/- n.a. n.a. n.a.
500 15 52 33.4 6,672/26 n.a. n.a. n.a.

Table 2: This table reports how many offset-less encodings A,
B, C, and D have two/multiple valid decodings for the same
set of one million encodings of random triangulations with n
vertices that start at a random edge and have at least one split.

6 Discussion

There have been attempts to establish a guaranteed bound
on the coding costs of the TG coder. However, the in-
frequently occuring “split” symbols made this a diffi-
cult task. Alliez and Desbrun [1] suggested an adaptive
traversal heuristic that lowered the number of split oper-
ations and the remaining number of “splits” seemed neg-
ligibly small. Therefore the authors restricted their worst
case analysis to the vertex degrees. Surprisingly, the max-
imal entropy of a distribution of n degrees that sum up to
6n − 18 coincides with the information theoretic mini-
mum of 3.24 bits per vertex for planar triangulations that
is due to Tutte’s enumeration work [15].

However, Gotsman [2] has shown subsequently that
the entropy analysis of Alliez and Desbrun includes many
degree distribution that do not correspond to actual tri-
angulations. He incorporates additional constraints on
the distribution that lowers its worst-case entropy below
Tutte’s bound. This means that there are fewer valid per-
mutations of degrees than triangulations and that addi-
tional information is necessary to distinguish between.
So the split information does contribute a small but nec-
essary fraction to the encoding and is therefore not neg-
ligible. Our results also show that the split information
recorded by the TG coder is not redundant and are there-
fore supportive of Gotsman’s findings.

References

[1] P. Alliez and M. Desbrun. Valence-driven connec-
tivity encoding for 3D meshes. In Eurographics’01
Conference Proceedings, pages 480–489, 2001.

[2] C. Gotsman. On the optimality of valence-based
connectivity coding. Computer Graphics Forum,
22(1):99–102, 2003.

[3] S. Gumhold and W. Strasser. Real time compression
of triangle mesh connectivity. In SIGGRAPH’98
Conference Proceedings, pages 133–140, 1998.

[4] M. Isenburg. Compressing polygon mesh connec-
tivity with degree duality prediction. In Graphics
Interface’02, pages 161–170, 2002.

[5] M. Isenburg and S. Gumhold. Out-of-core com-
pression for gigantic polygon meshes. In SIG-
GRAPH’03 Conference Proceedings, pages 935–
942, 2003.

[6] M. Isenburg and P. Lindstrom. Streaming meshes.
In manuscript, pages 1–8, 2004.

[7] M. Isenburg and J. Snoeyink. Face Fixer: Com-
pressing polygon meshes with properties. In SIG-
GRAPH’00 Conference Proceedings, pages 263–
270, 2000.

[8] M. Isenburg and J. Snoeyink. Spirale reversi: Re-
verse decoding of the Edgebreaker encoding. In
Proceedings of 12th Canadian Conference on Com-
putational Geometry, pages 247–256, 2000.

[9] M. Isenburg and J. Snoeyink. Early-split coding of
triangle mesh connectivity. In manuscript, pages 1–
8, 2005.

[10] J. Li and C. C. Kuo. A dual graph approach to
3D triangular mesh compression. In Proceedings
of ICIP’98, pages 891–894, 1998.

[11] D. Poulalhon and G. Schaeffer. Optimal coding and
sampling of triangulations. In 30th International
Colloquium on Automata, Languages and Program-
ming (ICAZLP), pages 1080–1094, 2003.

[12] J. Rossignac. Edgebreaker: Connectivity compres-
sion for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics, 5(1):47–61,
1999.

[13] J. Rossignac and A. Szymczak. Wrap&zip: Linear
decoding of planar triangle graphs. The Journal of
Computational Geometry, Theory and Applications,
1999.

[14] C. Touma and C. Gotsman. Triangle mesh compres-
sion. In Graphics Interface’98, pages 26–34, 1998.

[15] W.T. Tutte. A census of planar triangulations. Cana-
dian Journal of Mathematics, 14:21–38, 1962.

Non-Redundancy of Split Offsets, Isenburg, Snoeyink 8 of 8

