
Streaming Connected Component Computation for Trillion Voxel Images

Martin Isenburg
LAStools

Jonathan Shewchuk
UC Berkeley

ABSTRACT

We describe a highly scalable algorithm for computing connected
components in large binary 3D grids. We employ a streaming ver-
sion of the union-find algorithm that—as it processes the voxel
grid row-by-row and layer-by-layer—only maintains the compo-
nent structure along a single layer of active rows. We can process
voxel grids whose sizes are three orders of magnitude larger than
what the best previously reported method is capable of and still use
less than half the memory. For example, given a random binary grid
of 10,000×10,000×10,000 (= one trillion) voxels our method can
count the number of components and report the volume and surface
area of each using no more than 350 MB of main memory.

Keywords: connected components, image labeling, streaming
union-find, finalization, large data sets, out-of-core algorithms

1 INTRODUCTION

Imagine a regular grid of binary numbers in three dimensions where
a binary 1 corresponds to a solid voxel and where a binary 0 corre-
sponds to an empty voxel or vice versa. Now consider the following
questions: How many solid connected components are there? What
is their volume? What is the area of their boundary surface?

These are just some of the questions that arise in typical im-
age analysis applications. For example, in order to study cracks in
concrete that is stressed to failure, Landis et al. [12] create high-
resolution three-dimensional images of concrete specimens under
load with microtomographic scanning. They threshold these im-
ages into binary grids and detect crack opening by measuring the
increase in crack volume over the increase in crack surface area.

The common approach for finding connected components among
a set of elements is to use a union-find or disjoint-set data struc-
ture [4]: process the elements one at a time, loop over all processed
elements that are connected to the current element, find their com-
ponent, and merge the current element with their component. Em-
ploying tree-based union-find structure with path compression and
union-by-rank heuristic leads to linear run-times in practice.

The structured nature of binary grid of voxels can be exploited to
make the algorithm even more efficient. The number of necessary
adjacency checks and union-find operations can be significantly re-
duced by using run-length encoding as the first step [7]: group adja-
cent solid voxels of the same row into runs and perform adjacency
checks and union-find operations per run rather than per voxel.

Franklin and Landis [6] describe a concise union-find data struc-
ture for finding connected components in large binary 3D images.
It is implemented as a single array of voxel run records that index
each other as the union operations merge them into components.
On difficult random input where half the voxels are solid and the
average run-length is two, their algorithm is capable of processing
images of nearly 9003 voxels before exhausting 2 GB of memory.

After Franklin and Landis’ algorithm has processed the entire
image it stores all runs and how they are connected in main mem-

ory. Only then it starts discovering and reporting connected com-
ponents. This makes it possible to output a description for each
component, for example in form of a labeled image or as a list of
voxels. But this also means that the memory requirements are pro-
portional to the number of runs in the input, effectively limiting this
approach to binary 3D grids in the billion elements range.

We describe a streaming approach to computing connected com-
ponents that pushes the scalability up by three orders of magni-
tude. Our implementation can process random binary grids with up
to 10,0003 voxels—putting us in the trillion element range—on a
standard laptop using no more than 350 MB of main memory.

The key idea is to employ a streaming version of the union-find
algorithm. As we process the voxel grid row-by-row and layer-
by-layer we only maintain the component structure along a single
layer of active rows. We finalize an active row when we know that
its voxels cannot not be adjacent to any future row. In this moment
we deallocate (or recycle) all data structure that will not part take in
future union-find operations. We find a connected component when
we delete the last reference to a root node. We immediately output
its volume and surface area. Hence, after a single processing pass
over the entire grid we have reported all components. Several other
image processing queries can also be answered this way.

If necessary, we can also output a description of components in
form of a labeled image by operating in three passes: two passes
of the streaming connected component algorithm over the whole
image and one pass over a (typically smaller) temporary file.

2 CONNECTED COMPONENTS AND LABELING

Computing connected components is a fundamental task in image
processing. Applications in pattern recognition or computer vision,
for example, often start out by labeling all connected components in
an image. A report by Wu, Otoo, and Suzuki [3] gives a good sum-
mary on recent work in connected component labeling. Labeling
connected components not only involves finding connected compo-
nents, but also producing a description of each component, usually
in form of a labeled image where all voxels of the same component
are given the same color or simply as a list of voxels.

A typical image processing task may want a list of the locations
of all connected components above a certain size. Or the location
and orientation of the largest three components. Or the centroids of
all components whose bounding box has an aspect ratio below a cer-
tain cutoff. Using Matlab’s Image Processing Toolbox one would
use the function bwlabel or bwlabeln to create an image where
connected components are labeled and the function regionprops
to generate an array containing the area, centroid, and/or orienta-
tion of each component. In a final loop over this array one would
then report the desired outputs.

Our streaming connected component approach can answer these
and similar queries in one pass over the image and without ex-
plicitely constructing a labeled image.

2.1 Preliminaries

The answer to how many solid connected components there are de-
pends on which neighboring cells we consider as being connected.
Our implementation supports 6-connectivity (i.e. only solid cells
that share a face are connected) as well as 26-connectivity (i.e. solid

cells that share a vertex are connected) for 3D images. A single
solid cell has a volume of one unit and a surface area of six units.
Our implementation also supports the special case of 2D data. The
corresponding scenarious are 4-connectivity and 8-connectivity and
cells have an area of one unit and a boundary length of four units.

The outside of the grid can be considered either empty or solid.
We consider the outside to be empty so that components end at the
boundary of the grid. In the other case all components that touch
the boundary of the grid would be connected.

3 FRANKLIN AND LANDIS’ ALGORITHM

The algorithm of Franklin and Landis [6] reads and processes the
grid one row at a time in row-by-row and layer-by-layer order. Each
read row (x,y) is decomposed into a sequence of runs (x,y,zlo,zhi)
of connected solid cells. These runs start out as roots of single-
run components. The runs are then merged with the components of
overlapping runs from previously processed, adjacent rows. Which
rows are considered adjacent depends on which type of connectivity
that is to be computed. For 6-connectivity these are rows (x−1,y)
and (x,y−1) given that they exist. For 26-connectivity these are in
addition rows (x−1,y−1) and (x−1,y+1).

The run sequences of two rows are checked for overlap in pairs
of runs. The check starts at the two runs that have the smallest zhi
value in their respective sequence. After each check the sequence
whose current run has the smaller zhi value is advanced. When an
overlap between the runs is detected the find() function is used
to find their components. If the runs already belong to the same
component their actual overlap is subtracted from the running total
for surface area (note: for 26-connectivity the rows may not actually
have an overlap in surface area). Otherwise the union() function is
used to merge the components with their running totals for surface
area being summed and their actual overlap being deducted.

The find() and union() functions of the tree-based union-find
data structure are implemented with a single array of run records. In
addition to x, y, zlo, and zhi the records contain a parent field. This
number is either negative marking the run as root of a component
and specifying the running total for its surface area or is positive
and indexes the parent of this run in the array of run records.

After the last row was processed the array of runs records con-
tains c (extremely shallow) trees of runs that correspond to the c
connected components. Another pass over the run array computes
the volume of each component and compresses all paths (i.e. each
run either indexes or is the root). In the final pass the volume and the
surface area of each component is reported (note: the implementa-
tion by Franklin and Landis first sorts the components by volume).
Because all runs are stored in memory the algorithm can optionally
output a description of each component as a list of runs.

4 STREAMING CONNECTED COMPONENTS

Just like Franklin and Landis we process the grid row after row and
decompose each row into a sequence of runs. The main difference is
that we immediately delete data structures that will not part take in
future union-find operations. At any time we only keep in memory a
layer of active rows that are composed of active runs plus a varying
number of active nodes that describe how active runs are connected
with each other by the rows that have been processed before.

Runs are active as long as their rows are active. The record for
an active run (shown in Figure 2) contains a parent pointer to an
active node that is zero until the run merges with another run and
two indices zlo and zhi that specify the z coordinate of where the
voxel run starts and ends. The x and y coordinate of each run are
implicit due to the order in which the rows are processed.

Rows become active in the moment they are processed and re-
main active as long as they are adjacent to some unprocessed row.

10101 0 1 1

0 0 100101

0 0

10

B C DA 10101 0 1 1

0 0 100101

0 0

10

after processing row

10101 0 1 1

0 0 100101

1 0 101100

0 0

10

11

B C

E

D

B D

A

A

10101 0 1 1

0 0 100101

1 0 101100

0 0

10

11

A 2
6

B 2
6

D 3
9

B DA

Standard Streaming

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

0 0

10

11

10

B C D

B D

B DF

A

A

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

0 0

10

11

10

B 4
10 D 7

16

B D

D

0

1

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

0 0

10

11

10

00

B C D

B D

B DF

F D D

A

A

G

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

0 0

10

11

10

00

F 2
6

D 9
20

F D D

D

2

3

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

01011 1 1 1

0 0

10

11

10

00

0 1

B C D

B D

B DF

F D D

DF

A

A

G

G

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

01011 1 1 1

0 0

10

11

10

00

0 1

F 5
12

D 10
22

DFG

G 3
8

D

4

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

01011 1 1 1

0 0 000011

0 0

10

11

10

00

0 1

10

B C D

B D

B D

D D D

DD

G F D H

A

A

G

G

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

01011 1 1 1

0 0 000011

0 0

10

11

10

00

0 1

10

D 19
40

G 5
10

G F D

F D

D

D

5

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

01011 1 1 1

0 0 000011

0 0

10

11

10

00

0 1

10

B C D

B D

B D

D D

D

D H

H

A

A

10101 0 1 1

0 0 100101

1 0 101100

1 0 100001

1 0 111011

01011 1 1 1

0 0 000011

0 0

10

11

10

00

0 1

10

H 2
6

H

D

D

D

D

D

6

volume

surface area

G

G

G

G

G 7
12

G

Figure 1: Computing connected components of a 10 by 7 grid with
standard (left) and streaming union-find (right). Standard union-find
merges all runs into components. Streaming union-find maintains
only active runs and active nodes: (0) first row is read. it has 4 runs.
there is no adjacent row yet. (1) second row has also four runs. the
first three merge with runs from the previous row creating nodes A,
B, and D. the first row is finalized. its third run is reported as a
single cell component. (2) the third row has three runs. the first
merges with node B, the third merges first with D and then with a
previously unmerged run from the previous row. the second row is
finalized. this finalizes root node A and a two cell component with a
surface area of six is reported. (3) the fourth row has four runs. one
merges with F and two merge with D. the third row is finalized. this
finalizes root node B and a four cell component with a surface area
of 10 is reported. (4) the fifth row has three runs that merge with
G, F, and D respectively. the fourth row is finalized. (5) the sixth
row has four runs. the second run merges into F. the third run first
merges into F and then merges F into D. the fifth row is finalized.
(6) the seventh row has two runs that merge into G and H. the sixth
row is finalized. this finalizes node F and root node D and a nineteen
cell component with a surface area of 40 is reported. now shown is
finalizing the last row where two more components are output.

After their last adjacent row was processed we finalize an active
row. In this moment we can usually delete a fair amount of data
structure (or rather recycle it for the next row that we read). The

maximal number of rows that have to be active at the same time
is one layer worth of rows plus one (or plus two when we compute
26-connectivity). That is in 3D—in 2D the maximal number is two.

Nodes are active as long as they are pointed to by an active run
or by another active node. An active node record (see Figure 2)
contains two numbers vol and area for the running totals in volume
and surface area of the connected runs for which this node is the
root. It also contains a parent pointer that points to another active
node if this node is not the root and a ref count that counts how
many runs and nodes reference this node as their parent.

We create a new active node whenever we merge two active runs
that have not merged with any run before (i.e. whose parent point-
ers are both zero). We initialize the active node with the com-
bined volume and surface area (minus the overlap) of these two
runs. We merge two active nodes whenever we merge two runs
that have these two nodes as their respective root. We delete an ac-
tive node when its reference count reaches zero. In case this active
node is the root of a component (i.e. its parent pointer is zero) we
have completely traversed a connected component and we record—
or preferably immediately output—its volume and its surface area.
The small 2D example in Figure 1 illustrates the difference between
standard and streaming connected component computation.

We implement two standard heuristics to assure the total run-
time of union find can be expected to be linear: path compression
and weighted merge. Whenever we find() the root node of an
active run we perform path compression. Whenever we merge()
two root nodes we pick the node with the larger volume or the node
with the larger surface area as the new root. The pseudocode in
Figure 3 illustrates the entire algorithm for the 2D case. Note that
this code does not include path compression or weighted merge.

struct ActiveRun {
ActiveNode* parent;

unsigned short z lo;

unsigned short z hi;

};
struct ActiveRow {

int num;

int allocated;

ActiveRun* runs;

};

struct ActiveNode {
ActiveNode* parent;

unsigned int area;

unsigned int vol;

unsigned int ref count;

};

Figure 2: Data structures used for streaming connected components.

5 RESULTS

We compare our streaming connected component implementation
(that is available here [1]) to that of Franklin and Landis (that is
linked here [2]). For a more fair comparison we modified their im-
plementation so that it would neither sort the components nor out-
put them so that both algorithms only report component statistics.

We run both implementations on the largest test case used by
Franklin and Landis, a binary grid with dimensions 1,024 by 1,088
by 1,088 totalling 1,212,153,856 voxels. About 50 percent of the
voxels are solid and runs have an average length of 30 voxels. Our
code is about 25 percent faster, taking only 15.3 instead of 19.7
seconds to process the data. Our code also uses about 50 times less
memory, with the total footprint being only 3.5 instead of 240 MB.

Random input constitutes a near worst-case scenario in terms of
memory requirements for non-streaming approaches. With half the
voxels being solid and the average run length being two voxels,
Franklin and Landis have to allocate one run record for every four
voxels in the input. Given 2 GB of main memory and each run
using 12 bytes they can store at most 178 million runs which limits
processing of random grids to a size of 8943 voxels.

void sconnect2d(FILE* file, int nx, int ny) {
ActiveRow rows[2];

read row of bits as runs(file, nx, rows[0]);

for (y = 1; y < ny; y++) {
read row of bits as runs(file, nx, rows[y&1]);

connect row(rows[y&1],rows[(y-1)&1]);

finalize row(rows[(y-1)&1]);

}
finalize row(rows[(ny-1)&1]);

};
void connect row(ActiveRow& new, ActiveRow& old) {

int n = 0, o = 0;

while (n < new.num && o < old.num) {
check adjacency(new.runs[n], old.runs[o]);

if (new.runs[n].z hi < old.runs[o].z hi) n++;

else o++;

}
};
void check adjacency(ActiveRun &n, ActiveRun &o) {

if ((n.z hi-o.z lo) < 0 || (o.z hi-n.z lo) < 0)

return;

ActiveNode* nroot = (n.parent ? find(n.parent) : 0);

ActiveNode* oroot = (o.parent ? find(o.parent) : 0);

if (nroot == 0 && oroot == 0) {
nroot = n.parent = o.parent = new ActiveNode;

nroot->vol = n.z hi-n.z lo+1+o.z hi-o.z lo+1;

nroot->ref count = 2;

} else if (nroot == 0) {
n.parent = oroot;

oroot->vol += n.z hi-n.z lo+1;

oroot->ref count++;

} else if (oroot == 0) {
o.parent = nroot;

nroot->vol += o.z hi-o.z lo+1;

nroot->ref count++;

} else if (nroot != oroot) {
oroot.parent = nroot;

nroot->vol += oroot->vol;

nroot->ref count++;

if (oroot->ref count == 1) delete oroot;

else oroot->ref count--;

}
}
void finalize row(ActRow &row) {

for (r = 0; r < row.num; r++)

if (row.runs[r].parent)

if (row.runs[r].parent->ref count == 1)

finalize node(row.runs[r].parent);

else

row.runs[r].parent->ref count--;

else

print(‘‘component with vol %d’’,

row->runs[r].z hi-row->runs[r].z lo+1);

}
void finalize node(ActiveNode* node) {

if (node->parent)

if (node->parent->ref count == 1)

finalize(node->parent);

else

node->parent->ref count--;

else

print(‘‘component with vol %d’’, node->vol);

delete node;

}

Figure 3: Illustrative code for streaming connected component com-
putation in 2D. The key ideas are the finalize row function and
the ref count counters. We only compute the number of voxels for
each component. Not shown is the path compression code that also
decrements ref count counters and deallocates nodes.

size of components avg. utilized resources per billion cells
grid total singleton area time RAM time RAM

1,0003 8,967,435 87.7 % 167.4 49 sec 4.8 MB 49 sec 4.8 MB
3,0003 241,074,040 87.7 % 168.1 23 min 36 MB 52 sec 1.4 MB
9,0003 6,485,028,164 87.8 % 168.6 10 hrs 296 MB 51 sec .41 MB

10,0003 8,911,264,999 87.7 % 168.3 14 hrs 350 MB 51 sec .35 MB

Table 1: Results for streaming connected component computation
with 6-connectivity on random binary grids of increasing size. We re-
port the total number of components, the percentage of components
consisting of a single cell, the average surface area of the components,
run-time and main memory use in total as well as per billion cells.

size of components utilized resources per billion cells
grid total singleton time RAM time RAM
50,0002 164,441,796 47.5 % 86 sec 0.9 MB 34 sec 587 KB

100,0002 1,292,871,491 50.2 % 6 min 1.7 MB 31 sec 176 KB
500,0002 56,461,513,430 50.0 % 113 min 4.5 MB 27 sec 18 KB

1,000,0002 237,918,756,449 50.0 % 7 hrs 7.8 MB 26 sec 8 KB

Table 2: Same measurements as done in Table 1 but for 2D images.

In Table 1 we demonstrate the scalability of our implementation
on random binary voxel grids ranging from one billion to one tril-
lion elements. The images are not read from disk but generated on
the fly using repeated calls to the rand() function. In addition to
the totals for run time and main memory requirement, we report
timings and memory use per one billion processed elements. All
experiments were run on a laptop with a 2.13 GHz Intel Pention
processor and 1GB of main memory running Windows XP.

As expected, our computation costs grow linearly with the size
of the problem whereas the amount of memory used only grows
logarithmically. The CPU runs continuously at 100 percent for the
one billion as well as the one trillion element grid.

For completeness we report in Table 2 scalability results for 2D
images. Streaming connected components in 2D scales to incredi-
bly large images in terms of memory requirements. In contrast to
the 3D case where the memory footprint grows more or less with
the size of one layer of rows of voxel runs, in 2D we only need to
keep two rows of voxel runs in memory at any time.

For the worst case scenario in terms of memory footprint we
must consider the maximum number of runs and nodes that could
potentially be active at the same time. The number of active runs
is maximal when each active row consists of single solid voxels
separated by single empty voxels. The maximal number of active
nodes is not as obvious. Because of path compression nodes have
at least two nodes or runs pointing at them—unless they are root
node of a single active run. That means the maximal number of
active nodes either is the number internal nodes of a binary tree
with as many leaves as there are active runs or it equals the maximal
number of active runs. Both numbers are the same.

6 EXTENSIONS

The algorithm we have described so far can compute and output
per component properties. We have described how to do this for
volume and surface area, but other properties such as the bounding
box, the center of mass, etc. could also be computed this way.

As presented our approach cannot report a per-voxel description
of each component. Most runs that contribute to a component have
long been finalized and deallocated by the time the root node of
that component is finalized. We describe here how to make our
algorithm report a per-voxel description.

There are two ways to specify which voxels are part of which
component: a labeled image of the same dimension as the binary
image where voxels of the same component are given the same
unique color (i.e. the label) or a detailed list of voxels (or runs

of voxels) for each component. Due to the size of the images we
are processing it can be impractical to report every component. For
a labeled image, a very large number of components means a very
large number of unique colors which in turn would require many
bits per voxel to represent the many different colors. Similarly, for
a detailed list of voxels the amount of data produced to describe bil-
lions of tiny components or several components containing billions
of voxels may require many times the storage of the original binary
voxel grid.

6.1 Labeled Image

By running our streaming connected component computation twice
we can output a labeled image. During the first streaming connected
component pass we record all merges between active components
to a temporary merge file. In one reverse pass over this merge file
we create a temporary root file that contains a mapping from active
components to final root components (sorted in reverse order of
creation). During the second streaming connected component pass
we read the root file in reverse: whenever an active component is
created we look up its root so that we can output correctly labeled
voxels whenever a row is finalized.

To create the merge file we maintain an index field with each
active node during the connected component computation. When a
node is created this index field is set to the value of a global counter
and the global counter is incremented. When two nodes merge we
declare the one with the smaller index the root and output both in-
dices to the merge file. In case a root node is finalized whose index
was never output (i.e. it was not merged with any other node) we
write its index twice to the merge file. We also tag indices when
they are written for the first time. When we read the merge file in
reverse these finalization tags tell us that an index has appeared for
the last time.

To create the root file we read the merge file starting at last in-
dex pair. We maintain a hash table where we insert node records
when their index is read for the first time and where we look-up
node records every subsequent time their index is read. The parent
pointer of the first node is set to point to the second node (e.g. the
one it was merged into). When an index is tagged the correspond-
ing node is removed from the hash table and inserted into a priority
queue that is sorted by largest index. After processing an index pair
we check whether the last component with the highest possible in-
dex is now in the priority queue. If yes we find its root by following
its parent pointers and output its index to the root file. The actual
algorithm is given in Figure 4.

To finally create the labeled image we run a second connected
component computation. Whenever a new node is created we find
its final root in the root file. Now, whenever an active row is final-
ized all its runs can already know their final label and we can raster
its labeled voxels to disk.

In order to limit the resolution of the produced labeled image to,
for example, 16 bit per voxel, we may want to label only the 65,335
largest components. To keep track of the size of each component we
enhance the merge file by always outputting the index of a finalized
root node together with the size of the corresponding component.
We transfer this information when we create the root file. We can
find the cutoff size for the smallest large component we want to
keep either with one pass over the root file and a priority queue
that always holds the currently largest 65,335 components or with
repeated passes over the root file doing a binary search.

6.2 List of Voxels

In addition to maintaining the current total of voxels or a current
bounding box with each active root node we could simply keep a list
of run-length encoded voxels that is output when the component is
finalized. However, the memory requirements of such an approach

struct TaggedIdx { struct NodeWithIdx {
unsigned int idx : 31; int idx;

unsigned int tag : 1; NodeWithIdx* parent;

}; };
void merge 2 root(fp* in, fp* out, int n p, int n n) {

TaggedIdx idxs[2];

NodeWithIdx* nodes[2];

while (n p--) {
fseek(in, n p*2*sizeof(TaggedIdx), SEEK SET);

fread(&idxs, sizeof(TaggedIdx), 2, in);

if (idxs[0].idx == idxs[1].idx)

prior->insert(new NodeWithIdx(idxs[0].idx));

else {
for (i = 0; i < 2; i++) {

if (!(nodes[i] = hash->find(idxs[i].idx))) {
nodes[i] = new NodeWithIdx(idxs[i].idx);

hash->insert(nodes[i], idxs[i].idx);

}
if (idxs[i].tag) {

hash->erase(idxs[i].idx);

prior->insert(nodes[i])l

}
}
nodes[0]->parent = nodes[1];

}
while (prior->top()->idx == n n-1) {

nodes[0] = prior->pop();

while (nodes[0]->parent)

nodes[0] = nodes[0]->parent;

fwrite(&(nodes[0]->idx), sizeof(int), 1, out);

delete nodes[0];

n n--;

}
}

}

Figure 4: Illustrative code for streaming computation of how to create
the root file from the merge file.

are proportional to the combined number of runs of all components
that are active at the same time (i.e. including all their already fi-
nalized runs). As long as components are small and and short-lived
(i.e. do not span too many layers) this may be feasible, although the
memory footprint would increase correspondingly. Alternatively, if
there are few large components it is possible to operate in multiple
passes (like discussed in the previous section) and immediately out-
put the runs of those large components to separate files on disk. The
problem cases would be those where many medium sized compo-
nents are active at the same time or where more large components
are active at the same time than there can be open files. However,
in these cases there seems little utility in computing a list of voxels
in the first place.

7 DISCUSSION

We described a streaming implementation for finding connected
components with union-find for extremely large data sets. We
demonstrate the effectiveness of our approach with results on large
binary grids. We push the scalability from input sizes in the 1,0003

range (billion of elements) that were possible before to input sizes
in the 10,0003 range (trillions of elements) on similar data and with
similar memory requirements. An implementation of our algorithm
is available on the Web [1].

Instead of reporting only volume and surface area it is fairly
straigh-forward to modify our implementation to also report the
bounding box, the center of mass, the moments, or the genus of

each component. For multi-signal images it would also be possible
to integrate per connected component over the other signals.

By performing multiple streaming passes we can optionally con-
struct large labeled images out-of-core. In the future we hope to use
extend our streaming algorithm to include some ideas from [11] so
that we can utilize all the computing power of all available cores on
modern CPUs.

Addendum: There is another angle to this research that will
be included in the final paper. We have streaming isosurface ex-
traction software that takes as input a gigantic scalar volume field
(represented either by a regular grid [8] or a by streaming volume
mesh [9, 5]) and outputs an isosurface that corresponds to a partic-
ular isovalue. Using streaming can discard all the small “bubbles”
that we often find in noisy data on-the-fly. Similarly, isolines ex-
tracted from a streaming TIN [10] can be directly cleaned from tiny
contour lines that are usually not of interest.

REFERENCES

[1] http://www.cs.unc.edu/ ˜ isenburg/sconnect/streaming connect.cpp.
[2] http://www.ecse.rpi.edu/Homepages/wrf/.
[3] K. Wu andE. Otoo and K. Suzuki. Two strategies to speed up con-

nected component labeling algorithms. Technical report, 2005. Tech-
nical Report, LBNL-59102.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms (2nd Edition). MIT Press and McGraw-Hill, 2001.
Chapter 21: Data structures for Disjoint Sets, pp.498–524.

[5] C. Courbet and M. Isenburg. Streaming compression of hexahedral
meshes. In Computer Graphics Interface’10 Proceedings, 2010.

[6] W. R. Franklin and E. Landis. Connected components on
1000×1000×1000 datasets. In 16th Fall Workshop in Computational
Geometry, 2006.

[7] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision Volume
I. Addison-Wesley, 1992. pp.28–48.

[8] M. Isenburg and P. Lindstrom. Streaming meshes. In Visualization’05
Proceedings, pages 231–238, 2005.

[9] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Shewchuk. Streaming
compression of tetrahedral volume meshes. In Graphics Interface’06
Proceedings, pages 115–121, 2006.

[10] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Illustrating the
streaming construction of 2d Delaunay triangulations. In Proceedings
of the 2006 Symposium on Computational Geometry, pages 481–482,
2006.

[11] M. Isenburg, P.Lindstrom, and H. Childs. Parallel and streaming gen-
eration of ghost data for structured grids. Computer Graphics and
Applications, 2010.

[12] E. N. Landis, T. Zhang, E. N. Nagy, G. Nagy, and W. R. Franklin.
Cracking, damage and fracture in four dimensions. Materials and
Structures, 40(4):357–364, 2007.

