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Abstract—As more and more data is being processed in High
Performance Computing (HPC) systems scaling up in terms of
the processing power and the amount of data to process, slow
I/O can become a major performance bottleneck. Therefore, HPC
systems usually use distributed parallel file systems which can
lead to high I/O performance. However, it is still possible to
enhance the performance of distributed parallel file systems by
tuning the parameters or choosing the best configurations. To
improve the performance of distributed parallel file systems, we
first analyzed and compared the major ones being widely used
in HPC environments. Then we focused on the Lustre file system
for a further analysis because Lustre is one of the major ones
due to its high performance. We evaluated Lustre in the direct
I/O mode with various configurations and different parameter
settings. Our experimental study suggests that we can obtain up
to 114% performance improvements by modifying the numbers
of Portal RPC threads in the OSS (Object Storage Server) and
client.

I. INTRODUCTION

Recently the computing power and the amount of data to
process in HPC environments have increased tremendously,
the researchers in the HPC community and government offi-
cials in some countries have started preparing for the era of
exascale computing. It is expected that file I/O will be one
of the major performance bottlenecks especially in exascale
systems because today’s file and storage systems are not being
developed with sufficient consideration of the requirement of
performing a huge number of I/O requests efficiently even
though the amount of data to process is increasing rapidly. To
meet this requirement, distributed parallel file systems which
can lead to high I/O performance are usually used in HPC
systems.

However, it is still possible to enhance the performance
of distributed parallel file systems by tuning the parameters
or choosing the best configurations. Since Lustre [1], GPFS
[2], and OrangeFS [3] are typical distributed parallel file
systems widely being used in HPC environments, we first
analyzed and compared these distributed parallel file systems
in order to eventually figure out how much performance gain
could be obtained based on the difference in performance and
mechanism among them.

We focused on Lustre because it is being developed quite
actively as an open-source project. Before analyzing the per-
formance of Lustre, we followed the development trends in the
Lustre developer community. As a file system cluster becomes
huge, the metadata server is likely to become a performance

bottleneck; Lustre had supported the use of only one metadata
server for a long time until recently, when the use of multiple
metadata servers was proposed in the community [4]. To
remove the metadata bottleneck, the developers are trying to
distribute the metadata. In this paper, we present major efforts
made in the community to improve the Lustre performance
by removing its bottlenecks. To analyze the performance bot-
tlenecks in Lustre, we evaluated its performance with various
configurations and different parameter settings. We performed
our experiments in the direct I/O mode because there have
not been many studies conducted to find the bottlenecks
when using direct I/O. We found some characteristics as the
numbers of Lustre clients and I/O threads were changed. The
throughput increases as the number of Lustre clients or I/O
threads increases. For read operations, the throughput in the
case of using two clients is lower than that in the case of using
a single client, but with a sufficient number of clients the read
throughput becomes high again. And small stripe counts (such
as 1 and 2) may lead to low throughput even when the number
of clients is large.

The Lustre distributed file system consists of MDSes (Meta-
Data Servers), OSSes (Object Storage Servers), and Lustre
clients. They use RPC (Remote Procedure Call) to commu-
nicate with one another. Every Lustre cluster has Portal RPC
processes. These processes take charge of transmission of data
between the server and client using the RPC protocol and
recovery of erroneous transfers.

The number of Portal RPC threads in a node matches up
with the number of CPU cores in that node by default. In
an HPC environment, a Lustre client is actually a compute
node where computation is performed usually to solve com-
pute intensive problems. Therefore, we thought that a larger
number of Portal RPC threads than necessary would disturb
the computation jobs. We evaluated Lustre with the numbers
of Portal RPC threads in OSSes and clients changed. Our
experimental study suggests that we can obtain up to 114%
performance improvements when the number of Portal RPC
threads in the OSS is 8 (which is about 2/3 of the number
of CPU cores) and the number of Portal RPC threads in the
client is 4 (which is about 1/5 of the number of CPU cores).

II. COMPARISON STUDY AND RELATED WORK

We compared three commonly used file systems in HPC
environments: Lustre, GPFS, and OrangeFS. Hedges et al.



compared the performance of Lustre with that of GPFS [5].
They claimed that GPFS outperforms Lustre by 20% or more
in writing data while the reading performance is almost the
same. In metadata operations, Lustre is faster in most of the
cases. But in the only case of creating many files in a shared
directory, GPFS is faster than Lustre.

Tanimura et al. studied shared storage systems [6]. They
presented the basic I/O throughput of Lustre and OrangeFS.
They found that OrangeFS was better in write throughput and
Lustre was better in read throughput. Roberts compared next
generation file systems for his center [7]. He claimed that
OrangeFS was extremely easy to install while the setup of
Lustre was complex.

Table I shows the result of the comparison in feature among
the popular HPC file systems.

There have been many studies recently conducted to alle-
viate I/O performance bottlenecks in the Lustre file system.
Previously, this file system could utilize only one MDS. But
as the amount of data to process has increased, the use of
a single MDS has become insufficient in performing every
metadata operation. To increase the performance of the Lustre
file system, Lustre developers introduced the DNE(Distributed
NamespacE) technology. The DNE technology was adopted
in two phases. DNE Phase 1 had been supported since Lustre
v2.4 released in 2013. In this phase, Lustre supported multiple
MDSes for different directories. But the content of a directory
should reside in a single server. DNE Phase 2 was introduced
as a preview on Lustre 2.6 In Phase 2, Lustre stripes the
content of a directory and stores the resulting stripes into
multiple MDSes. Crowe et al evaluated the DNE in various
configurations [4]. They found that the metadata performance
measured by mknod was improved by more than 200%.

Fujitsu developed FEFS (Fujitsu Exabyte File System) for
their supercomputer [8]. FEFS is based on Lustre. Fujitsu
made some modifications on it. When there are a huge
number of clients using Lustre, processing the metadata can
be a performance bottleneck. FEFS creates local loopback
file systems for every MPI RANK, and then uses them as
MDTs (MetaData Targets) [9]. In this approach, the file
system cannot be shared among the clients that are using
different MPI RANKs. But FEFS mitigated the performance
bottleneck of processing the metadata, and thus its use led
to 21,571 times performance improvements in the processing
when 9,216 clients used it simultaneously. These performance
improvements were measured by performing the unlink
operations.

When a client reads a file from Lustre, the client first obtains
the metadata of the file from the MDS. Using the metadata,
the client makes a request for the file to a specific OSS.
This mechanism causes a performance problem when a client
requests a large number of small files. In HPC workloads, most
files are large, and thus this is not a big problem. But since
the Lustre file system has been adopted for various purposes,
the performance for small file I/O has become important. To
improve the small I/O performance, Lustre developers suggests
DoM (Data on MDT) [10]. The DoM technique is simply to

store small files on MDTs instead of OSTs (Object Storage
Targets). In this way, the number of network operations
can become much smaller since many accesses to OSSes
can be eliminated in small file I/O. Therefore, performance
bottlenecks regarding metadata can be relieved.

III. PROBLEM & APPROACH

Since Lustre is a distributed parallel file system, it consists
of a large number of machines. The performance of Lustre
depends on its configuration and parameter setting. It is quite
possible to enhance the performance of distributed parallel file
systems such as Lustre by tuning the parameters or choosing
the best configurations. To find the best configuration and
parameter setting, we performed the evaluation with various
configurations and parameter settings. Then we analyzed the
evaluation result, and we found out the configurations and pa-
rameter settings that could lead to performance improvements,
which eventually permits providing guidelines for performance
enhancement.

Lustre accelerates processing data by performing it in par-
allel. To further improve its performance, we take an approach
of evaluating it while varying the degree of distribution. When
multiple clients use the file system simultaneously, the perfor-
mance can be enhanced because it executes in a distributed
manner so that it can process many requests simultaneously.
It can store files striped and distributed in different OSTs.
As it stripes and distributes every file to all of the OSTs,
multiple requests can be made to the OSTs in a distributed
fashion. This can prevent multiple requests from being made
and concentrated to a small number of OSTs. Therefore in
order to evaluate its performance, we changed the number of
clients, that of I/O threads per client, and stripe count.

We also found every node has a Portal RPC process for RPC
communication. The number of Portal RPC threads is fixed to
the number of CPU cores in a specific node by default. Since
the OSSes and clients need the CPUs to do jobs other than
the communication, we thought the default number of Portal
RPC threads could be too large. Therefore, we also evaluated
the performance while changing the number of Portal RPC
threads on OSSes and Clients.

IV. EVALUATION

We evaluated the I/O performance of the Lustre file system
with various configurations and parameter settings. We focused
on the Direct I/O mode because some applications need to use
this mode for file operations. But the Lustre performance under
the mode has not been well studied yet.

For evaluation, we used Lustre version 2.7 with one MDS
and one OSS. The OSS was configured with 4 OSTs, and
each of them consisted of 10 disks (8 for capacity and 2 for
parity). Since Lustre parallelizes the operations w.r.t. OSTs,
this configuration was adequate to our needs. We used up to 8
clients simultaneously to run benchmarks. Each of the MDS
and clients had 2 * 10-core CPUs and the OSS had 2 * 6
core CPUs. All machines were connected via a FDR (Fourteen



Lustre GPFS OrangeFS
(prev. PVFS2)

Block management Object based Shared block map Object based
Stripe size 1MB 1MB 64KB
Metadata location Separate With data With data
Metadata written by Server Client Client

Cache coherency & protocol Coherent;
Distributed locking

Coherent;
Distributed locking Cache immutable

Reliability Block RAID Block RAID Block RAID
License Open Source (GPL v2) Proprietary (IBM) Open Source (LGPL)

TABLE I: Comparison of the popular file systems in HPC environments

Data Rate) InfiniBand switch which provides a 56Gbps link
bandwidth.

A. Performance in different client configurations

To evaluate the performance in different client configura-
tions, we changed three parameters. We changed the number
of clients from 1 to 5, the number of I/O threads per client from
1 to 2, and the stripe count from 1 to 4. In this experiment,
we used the IOR benchmark [11]. We configured the IOR
benchmark to read and write 16GB of data sequentially. The
transfer size was 64MB. We used the Direct I/O mode as
mentioned above. In most of the cases, we could find that the
performance is improved as the number of I/O client nodes
increases or the number of threads per client increases. But
in the case of the read operation, the performance dropped
when two clients performed the read operation simultaneously.
Yet when the number of clients increases and becomes more
than two, the performance is improved in a scalable manner.
In addition, the stripe count influences the performance. As
the stripe count increases, indicating that the I/O parallelism
becomes higher, the throughput also increases as expected.
In the write experiment, when the stripe count is 1 or 2, the
throughput is saturated around 800MB/s. But when the stripe
count is 3 or 4, the resulting throughput is over 800MB/s. This
result shows that the client scalability becomes higher as the
stripe count increases.

Then we measured the performance of Lustre in two con-
figurations. In one configuration, we used a single client while
changing the number of I/O threads from 1 to 3. In the other,
we changed the number of clients from 1 to 3, and used
a single I/O thread for every client. In this experiment, we
could find a performance drop similar to what mentioned
above, which happened when two clients or threads read
data simultaneously. As confirmed with the result of the
experiment, the performance drop is much higher when the
number of clients changes from 1 to 2 than when the number
of client threads changes from 1 to 2.

B. Performance while changing the number of Portal RPC
threads of OSSes and clients

In Lustre, Portal RPC is used to communicate between the
server and client. The architecture of the Lustre system is
illustrated in Figure 1. The number of these Portal RPC threads
on each node is set to the number of cores on that machine by
default. In a computer system, only one thread on each core

Fig. 1: Illustration of Lustre Architecture from Understanding
Lustre File System Internals [12]

can execute at the same time. In an HPC system using Lustre,
a client processes its own jobs and communicates with a Lustre
server when data I/O is needed. An OSS also has many jobs to
process, such as reading data from OSTs, and communication
is just one of the jobs. Therefore we thought that having too
many Portal RPC threads could be a performance bottleneck
for the entire Lustre system, lowering the performance of
the workloads. To find out the “best” number of Portal RPC
threads for OSSes and clients, we measured the performance
with changing the number of Portal RPC threads on OSSes
and clients. An OSS executed on a machine with two 6-core
CPUs, and by default 12 Portal RPC threads were created
on the machine. A client ran on a machine with two 10-core
CPUs, and by default 20 Portal RPC threads were created on
the machine. We measured the performance while changing
the number of OSS Portal RPC threads to 4, 8, and 12 , and
the number of client Portal RPC threads to 4, 8, and 20. We
used IOR to measure the performance; the transfer size was
fixed to 64MB, and the stripe size was fixed to 1MB.

Figure 2 shows the throughput of Lustre using a single client
with 16 I/O threads. In the legend, s denotes the number of
Portal RPC threads in the OSS and c denotes the number of
Portal RPC threads in the client. As shown in Figure 2, when
a single client sequentially read data using multiple threads,
the performance result did not show any trend. But in the case
of the write operation, when the number of OSS Portal RPC
threads was 8 and the number of client Portal RPC threads was



4, the performance was the best. This corresponds to a 113%
improvement compared with the default configuration. We can
find that the default configuration usually led to the worse
performance compared with all other configurations. When the
stripe count was 1, the performance difference was noticeable,
but when the count was larger than 2, the performance was
lower and performance difference was less distinguishable.

Figure 3 shows the throughput of Lustre using a single
client with 8 I/O threads. Similar to the previous experiment,
there was no performance difference for sequential reads.
But for sequential writes, the best performance was achieved
when the number of OSS Portal RPC threads was 8 and the
number of client Portal RPC threads was 4, which is also the
best configuration for the previous experiment. As a result,
up to 53% performance improvements were achieved. Also
since we decreased the number of I/O threads to 8, and thus
overall performance was lowed compared with the previous
experiment.

Figure 4 shows the throughput of Lustre using a single client
with a single I/O thread. In this experiment, both the sequential
read and sequential write throughputs were not influenced by
the number of Portal RPC threads. Thus we may conclude that
if the number of client I/O threads is lower, the performnace
in that configuration is less affected by the number of Portal
RPC threads.

Figure 5 shows the throughput of Lustre using 8 clients,
each with 1 I/O thread. Similar to the results of the previously
explained experiments, the sequential read throughput was not
influenced by the number of Portal RPC threads. For sequential
writes, the performance was improved by up to 71% when the
number of OSS Portal RPC threads was 8 and the number of
client Portal RPC threads was 4. Also in this experiment, the
performance difference was most noticeable when stripe count
was 1.

Figure 6 shows the throughput of Lustre using 8 clients,
each with 8 I/O threads. For sequential reads, small per-
formance differences were found as the number of Portal
RPC threads changed, but the performance difference was
too small, thus being negligible. For sequential writes, the
throughput was lower than the default configuration except for
the case where the number of OSS Portal RPC threads was
8 and the number of client Portal RPC threads was 20. Also
for sequential writes, it was interesting that the throughput
increased as the stripe count increased as shown at some points
in the figure.

Figure 7 shows the throughput of Lustre using 8 clients,
each with 16 I/O threads. For sequential writes, when the
stripe count was 1, the performance difference made by
changing the number of Portal RPC threads was negligible.
The performance was improved by up to 20% when the
number of OSS Portal RPC threads was 8 and the number
of client Portal RPC threads was 4. In this experiment, the
read throughput increased as the stripe count increased.

Via all of these experiments, we found that for sequential
reads, the number of Portal RPC threads does not influence
the read throughput. But for sequential writes, the performance

difference made by changing the number is noticeable. Our
experimental study suggests that we can achieve the best
sequential write throughputs when using 8 Portal RPC threads
per OSS (which is 2/3 of the number of system cores) and 4
Portal RPC threads per client (which is 1/5 of the number).
When the stripe count was 1, the use of the configuration with
a single client and 8 I/O threads led to up to 54% performance
improvements; A single client with 16 I/O threads, up to 114%
improvements; 8 clients, each with a single I/O thread, up
to 40% improvements; 8 clients, each with 8 I/O threads,
up to 12% performance decreases; and 8 clients, each with
16 I/O threads, up to 13% decreases. Different performance
tendencies were observed as the stripe count or the number of
clients changed. When the stripe count was 1 or 2, the resulting
throughput was higher than that in the default configuration
as long as the number of Portal RPC threads was low in both
of the OSS and client. When the stripe count was 3 or 4,
the resulting throughput was not always higher than that in
the default configuration. We suspect that this was probably
affected by the RAID configuration. In our OSS, the OSTs
were configured as RAID 6. RAID 6 uses 2 parity blocks
to store data. Therefore after writing every block, the parity
is calculated and written as the parity block. These tasks are
CPU intensive, and thus by reducing the number of Portal
RPC threads, they can use more CPU. But the Portal RPC
threads take charge of communication between the OSS and
client. Consequently, if we reduce the number of Portal RPC
threads to too small a number, the communication becomes a
performance bottleneck.

V. DISCUSSION

It is well known that Lustre can perform I/O operations
using a file stripe. Therefore the throughput is higher when
the stripe count is greater than 2 [13]. But in our experiments
mentioned above, the throughput dropped when the stripe
count was greater than 1. We conjecture that the throughput
drop can occur because Lustre performs block I/O operations
in a synchronous manner when using direct I/O [12].

We assume that the reason why the results shown in
Subsection IV-B were obtained is related to direct I/O. First, as
just mentioned, I/O operations were performed synchronously
when using direct I/O in Lustre. We used the direct I/O mode
in running these benchmarks. Lustre cannot parallelize the syn-
chronous operation, and therefore the use of too many Portal
RPC threads is excessive. We achieved the best performance
when the OSS had Portal RPC threads, the number of which
was about 2/3 of that of system cores and a client had Portal
RPC threads, the number of which was about 1/5 of that
of system cores. Based on this result, we can conclude that
the clients need more CPU powers to perform their workload
(since they run in compute nodes) whereas OSSes utilize most
of the CPU powers for performing Lustre operations.

VI. CONCLUSION

We compared the existing distributed parallel file systems
which are widely being used in HPC environments, and
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Fig. 2: Sequential I/O performance with 1 client, 16 threads, and 1GB block size
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Fig. 3: Sequential I/O performance with 1 client, 8 threads, and 2GB block size
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Fig. 4: Sequential I/O performance with 1 client, 1 thread, and 16GB block size
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Fig. 5: Sequential I/O performance with 8 clients, each with 1 thread, and 2GB block size
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Fig. 6: Sequential I/O performance with 8 clients, each with 8 threads, and 256MB block size
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Fig. 7: Sequential I/O performance with 8 clients, each with 16 threads, and 128MB block size

investigated which parts can become performance bottlenecks.
Then we analyzed the characteristics of the Lustre file system
especially when using the direct I/O mode, attempting to
identify such bottlenecks. We executed a popular benchmark
on Lustre with various configurations and parameter settings,
and found out the settings which lead to the best performance.
Specifically, we found that we can obtain up to 114% perfor-
mance improvements by adjusting the number of Portal RPC
threads on OSSes and Clients. Based on our experimental
results, we expect to achieve performance improvements for
various HPC applications, since their I/O performance can
be improved. In addition, we plan to perform research on
optimizing distributed parallel file systems more effectively
by using the results.
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