
Assignment 2
In this assignment, you will develop a tool that simulates an EDF scheduler. Your script will take in
a file that contains data about the task system and will output data about when specific jobs run
into a file. Additionally, you will modify your visualizer to handle periodic tasks.

Part 1: Setting up your workspace.
1. In your home directory on the server, make a new directory called HW2.

mkdir HW2

2. Copy the sample data to your directory:
cd HW2

cp /home/shared/executions.json .

cp /home/shared/tasks.json .

3. Copy the template to your directory and rename it EDF.py :
cp /home/shared/template2.py EDF.py

4. Copy your visualization tool from the first assignment to the new directory:
cp ../HW1/visualizer.py .

Part 2: The assignment.

A - Modifying the visualization tool
1. Make sure arrows are visible even when a task misses its deadline. The easiest way to do this is
to make sure that the rectangles of execution are drawn before the up- and down-arrows.
2. Change the script to handle periodic tasks. If a task has a period that is non-zero, draw the
appropriate job release arrows and deadline arrows until the time max_t . (Note that the tasks
now also have a “period” field.)
3. Test your modified tool by using the supplied executions and looking at the pdf.

python visualizer.py executions.json

ps2pdf schedule.ps partA.pdf
pdfcrop partA.pdf partA.pdf

B - Producing executions
1. Check that EDF.py takes the max_t from the input file and writes it to the output file. The input
file is the first argument, and the output file is the second argument.

python EDF.py tasks.json new_executions.json

2. Modify EDF.py to write the task set information to the output file.
3. Toward the top of the file EDF.py , fill in the function that adds an execution to the output file.
Recall that each execution includes the components task number, job number, start
time, and end time .
4. Add executions to the output file based on how EDF would schedule the task system from time 0
to max_t .
5. Test your EDF simulator with tasks.json . Produce new_executions.json as the output.
Then look at the schedule produced by running it through your visualizer, and verify that it is
indeed following the rules of EDF. Name this pdf PartB.pdf .

python EDF.py tasks.json new_executions.json

python visualizer.py new_executions.json

ps2pdf schedule.ps PartB.pdf

pdfcrop PartB.pdf PartB.pdf

Part 3: Submitting your assignment.
Your assignment should be in /home/<yourCSlogin>/HW2 . I will collect homework from here
and check the last time that each file was modified. This assignment is due on Sept. 17, 2018 at
9:05am EST. If the files have been edited after that time, I will assume that you have chosen to use
one or more late days. If you would like to continue tweaking your solution, do so in a different
folder. Make sure that the following files are in /home/<yourCSlogin>/HW2 , especially if you
were working in a different directory or on a different machine:

● PartA.pdf

● visualizer.py

● PartB.pdf

● new_executions.json

● EDF.py

Your schedule visualizer and execution generator will also be tested with additional inputs.

