
Assignment 2 
In this assignment, you will develop a tool that simulates an EDF scheduler.  Your script will take in 
a file that contains data about the task system and will output data about when specific jobs run 
into a file.  Additionally, you will modify your visualizer to handle periodic tasks. 
 

Part 1: Setting up your workspace. 
1. In your home directory on the server, make a new directory called HW2.  

mkdir HW2 

2. Copy the sample data to your directory: 
cd HW2 

cp /home/shared/executions.json . 

cp /home/shared/tasks.json . 

3. Copy the template to your directory and rename it ​EDF.py ​: 
cp /home/shared/template2.py EDF.py 

4. Copy your visualization tool from the first assignment to the new directory: 
cp ../HW1/visualizer.py . 

 

 

Part 2: The assignment. 

A - Modifying the visualization tool 
1. Make sure arrows are visible even when a task misses its deadline.  The easiest way to do this is 
to make sure that the rectangles of execution are drawn before the up- and down-arrows. 
2. Change the script to handle periodic tasks.  If a task has a period that is non-zero, draw the 
appropriate job release arrows and deadline arrows until the time ​max_t ​.  (Note that the tasks 
now also have a “period” field.) 
3. Test your modified tool by using the supplied executions and looking at the pdf. 

python visualizer.py executions.json 

ps2pdf schedule.ps partA.pdf 
pdfcrop partA.pdf partA.pdf 

 
 

 

 



B - Producing executions 
1. Check that ​EDF.py ​ takes the ​max_t ​ from the input file and writes it to the output file.  The input 
file is the first argument, and the output file is the second argument. 

python EDF.py tasks.json new_executions.json 

2. Modify ​EDF.py ​ to write the task set information to the output file. 
3. Toward the top of the file ​EDF.py ​, fill in the function that adds an execution to the output file. 
Recall that each execution includes the components ​task number, job number, start 
time, ​ and​ end time ​.  
4. Add executions to the output file based on how EDF would schedule the task system from time 0 
to ​max_t ​. 
5. Test your EDF simulator with ​tasks.json ​.  Produce ​new_executions.json ​ as the output. 
Then look at the schedule produced by running it through your visualizer, and verify that it is 
indeed following the rules of EDF.  Name this pdf ​PartB.pdf ​. 

python EDF.py tasks.json new_executions.json 

python visualizer.py new_executions.json 

ps2pdf schedule.ps PartB.pdf 

pdfcrop PartB.pdf PartB.pdf 
 
 

Part 3: Submitting your assignment. 
Your assignment should be in ​/home/<yourCSlogin>/HW2 ​.  I will collect homework from here 
and check the last time that each file was modified.  This assignment is due on Sept. 17, 2018 at 
9:05am EST.  If the files have been edited after that time, I will assume that you have chosen to use 
one or more late days.  If you would like to continue tweaking your solution, do so in a different 
folder.  Make sure that the following files are in ​/home/<yourCSlogin>/HW2 ​, especially if you 
were working in a different directory or on a different machine: 

● PartA.pdf 

● visualizer.py  

● PartB.pdf 

● new_executions.json 

● EDF.py 

Your schedule visualizer and execution generator will also be tested with additional inputs. 
 

 


