
New Approaches to Contention-Sensitive Nested Locking
in Real-Time Systems∗

Catherine E. Nemitz
Department of Computer Science

University of North Carolina at Chapel Hill

ABSTRACT
Nested lock requests in multiprocessor real-time systems
can be handled by only a handful of synchronization pro-
tocols. These protocols trade off overhead and blocking un-
der varying analysis assumptions. In some systems, a fine-
grained contention-sensitive protocol has significantly lower
worst-case blocking compared to its non-contention-sensitive
counterparts, which yields improved schedulability provided
overheads are low enough. In this work, we summarize three
key schemes for handling nested requests and briefly discuss
existing protocols. We then propose three approaches to re-
duce the often interdependent overhead and blocking for a
new contention-sensitive protocol.

CCS Concepts
•Computer systems organization → Real-time sys-
tems; Embedded and cyber-physical systems; Embedded soft-
ware; •Software and its engineering →Mutual exclu-
sion; Real-time systems software; Synchronization;
Scheduling; Process synchronization;

Keywords
multiprocessor locking protocols, nested locks, priority-
inversion blocking, real-time locking protocols, contention-
sensitive blocking

1. INTRODUCTION
The progression of multicore technologies has allowed in-

creasing numbers of real-time applications to be conceived.
To allow these applications to become realities, we must
maximize the use of current hardware. For example, the au-
tomotive industry is pushing toward autonomous vehicles,
which require hardware with low weight, power consump-
tion, and size that can perform complex computations on in-
put data. In particular, sensing data such as images or video
streams may be processed and modified by several tasks, re-
quiring resource access control for that shared memory. In
addition, images may be processed by some combination of
GPUs, which in turn may be considered resources.

∗Work supported by NSF grant CNS 1717589. This material
is based upon work supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant
No. DGS-1650116. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

For any real-time application, synchronization protocols
are required to provide efficient resource-allocation. An ef-
ficient synchronization protocol results in schedulability im-
provements, which allow more effective use of the hardware.

We focus on systems in which nested resource requests are
allowed. That is, a job may require multiple resources si-
multaneously and thus will request the resources in a nested
fashion. Our goal is to guarantee contention-sensitive worst-
case blocking for all jobs. A job is considered to experience
contention-sensitive blocking if the amount of its blocking
is dependent only on the number of other requests for the
same resource. We will refine this notion in Sec. 2.

Contributions.
After covering background material, we will present three

ideas about how we propose to move contention-sensitive
locking protocols forward to achieve better schedulability.

2. BACKGROUND
We begin by giving an overview of the systems we are

considering and how such systems are analyzed. Then we
discuss three broad schemes that are used by various locking
protocols to grant access to multiple resources.

2.1 Models

Task model.
We assume the classic sporadic task model. We consider

a task system of n tasks denoted Γ = {τ1, . . . , τn}. Tasks
are scheduled on m processors using a job-level fixed priority
scheduler. We often consider an arbitrary job Ji of task τi.

Resource model.
We consider systems with nr resources. An arbitrary re-

source is denoted `a. Unless a locking protocol specifies
otherwise, resources may be requested in any order. In this
work, we focus on resources that require mutual exclusion.

Request model.
When a job Ji requires access to a resource `a, it issues

a request, denoted Ri,a. If Ji issues only one request, we
shorten this to Ri. We say the request is satisfied when the
job holds the resource. While the request is satisfied, it is
in a critical section. We denote the critical section length
of Ri as Li and the maximum critical section length of any
request Lmax. Once a request completes, the job releases
the resource. If job holds a resource and then requires an-
other, we say that the requests for these resources are nested.



R1

R2 R2

R3

R4

l l
b

l

R3

Figure 1: Example illustrating one potential ordering

of requests R1 through R4. Here, R1 is satisfied and

holds resource `a. The other requests are enqueued and

waiting for access to their required resources.

(Later, we explore a technique that allows requests to be for
multiple resources.) We denote the set of all resources Ji
will require as Di.

Nested requests occur in a variety of types of applications,
and the depth of nested requests is typically between two and
four (that is, between two and four resources are required
simultaneously within the innermost critical section) [1, 3].

2.2 Analysis
We consider spin-based locking protocols and analyze such

protocols on the basis of priority-inversion blocking (pi-
blocking), which occurs when a job cannot execute because
a lower priority job is holding a resource which the higher
priority job requires. We consider the worst-case pi-blocking
and take critical section lengths to be constant.

As mentioned above, we focus on contention-sensitive lock-
ing protocols. We denote the maximum amount of con-
tention for a resource `a, that is, the highest possible num-
ber of active requests for that resource, as ca. Note that this
value is static for a given system. (This is in contrast to the
dynamic concept of contention for `a, which is the number of
active requests for that resource at a particular instance in
time.) Given Ci = max

x∈Di

cx for a job Ji, we say that a locking

protocol is contention-sensitive if the worst-case pi-blocking
of any job Ji is bounded by O(Ci).

The key hindrance to contention-sensitive blocking is the
possibility of transitive blocking, which occurs when a job
experiences blocking because of job that it does not share
any resources with. Such a situation is depicted in Fig. 1;
request R4 conflicts only with R3, and yet neither of these
requests are satisfied because of the chain of blocking caused
by R1 and R2. This figure shows a system which allows
resources to be requested together. R1 is satisfied and holds
`a, depicted by the circle at the head of the queue. R2

has been enqueued for resources `a and `b. Likewise, R3

has been enqueued for resources `b and `c. Finally, R4 is
enqueued and waiting for access to `c.

2.3 Handling nested requests
The following three schemes handle nested requests to

provide mutually exclusive access to resources and prevent
deadlock. Each method has its trade-offs, some of which af-
fect analysis components such as the critical section length.
To illustrate each approach, we use a short running example.

Example 1. Consider a job J1 that requires resource `a.
In addition, consider J2 that will require access to `a and
then nested access to `b. Suppose there is also a job J3 that
requires access to `b and a job J4 that requires access to `c.

R1

R2

G1

R3

G2

R4

Figure 2: Example illustrating the effect of using static

groups.

R2,aR1

R2,a

R4

la l
b

lc

(a) (b)

R2,b

R3

la l
b

lc

Figure 3: In (a), R1 holds `a, and R2,a is waiting for

`a. In (b), R3 holds `b and R2,a holds `a, which allowed

R2,b to be issued for `b. The blocking of R2,b thus con-

tributes to the critical section length of R2,a, which in

turn increases the worst-case blocking of requests for `a.

Static group locks.
This method requires static groups of resources to be

formed by analyzing which resources are accessed in a nested
fashion by some job. A job requiring any resource in the
group must acquire the entire set. This approach allows a
mutex to control access to any shared resource; each job
will require only one group, so deadlock is impossible. The
use of a mutex yields low overheads and inherently provides
contention-sensitive blocking. However, it is important to
distinguish that this notion of contention is relative to the
created group of resources that a job requests. The static
groups may be quite pessimistic, causing a job to contend
with jobs that do not share resources but do share a group.

Example 1 (cont’d). With the four jobs above, static
groups G1 = {`a, `b} and G2 = {`c} could be formed. Then
jobs J1, J2, and J3 will all issues requests for G1, and job J4
will issue a request for G2, as shown in Fig. 2. Note that J1
and J3 now are considered to share a resource for the pur-
poses of determining blocking, though they do not actually
require access to the same resource. This is a small example
of the increased pessimism that static group locks cause.

Resource ordering.
In contrast to static group locks, resource ordering allows

fine-grained locking; each job only acquires the resources it
needs. In this approach, a total order on all resources is
defined prior to system startup. Any nested requests must
acquire resources in that order. This prevents deadlock and
easily allows for a low overhead protocol within this scheme.
However, this approach can easily inflate the critical section
lengths beyond the given Li, as illustrated by the following
example. In fact, this inflation can be more than m · Lmax.

Example 1 (cont’d). In this scenario, requests R1,
R2,a, and R4 were released before R3. As shown in Fig. 3(a),
R1 was immediately satisfied and holds `a. With the re-
source ordering imposed, J2 must first issue a request for `a



R1

R2 R2

R3

R4

la l
b

lc

Figure 4: With DGLs, job J2 issues a single request R2

for all resources it requires.

and then issue a separate request for `b, denoted R2,a and
R2,b, respectively. In Fig. 3(a), R2,a is waiting for access
to `a. R4 is satisfied and holds `c.

In Fig. 3(b), R4 has completed and R3 has been issued
for `b and is satisfied. Later, R1 completed, and R2,a be-
came satisfied. J2 then issued R2,b and must wait for R3

to complete. It holds `a, so the time R2,b blocks inflates the
critical section length of R2,a.

Observe that resource ordering can cause huge amounts of
blocking. A job requiring multiple resources may experience
the following. Just before its first resource becomes available,
requests may enqueue for its second resource. While it holds
the first resource, it could experience the worst-case blocking
for its second resource. This inflates the critical section,
causing higher blocking than the expected Li for any later
request for that first resource. This build-up of blocking can
be repeated for each nested resource access the job requires.

Dynamic group locks.
A third method for handling nested requests is by using

dynamic group locks (DGLs). In this scheme, a job requiring
nested resources issues a single request for all resources that
it requires. This lengthens all inner critical section lengths
to the length of the outermost access. Note that if a job
conditionally acquires `a or `b but not both, under DGLs, it
must request both resources. While holding both resources
decreases potential runtime parallelism, it does not have an
effect on the overall blocking; as discussed later as it per-
tains to static contention, we must consider the worst-case
contention for each resource, and this job would be counted
toward the contention of both resources regardless.

Several directions of work have been explored using the
DGL scheme, as discussed in Sec. 3. One approach has
moderate overheads and O(m) blocking (that is, blocking
bounded by the number of processors). Another approach
has similar overheads and contention-sensitive blocking given
certain analysis assumptions.

Example 1 (cont’d). Returning to our four jobs, un-
der DGLs, J2 issues a single request for both `a and `b. (In
order to prevent deadlock, protocols must ensure requests for
multiple resources enqueue atomically into all required re-
source queues.) Fig. 4 shows one way in which the requests
could enqueue. R1 is satisfied and holds `a. Thus, R2 is
blocked. As depicted in Fig. 4, R3 was issued after R2 and
must wait for access to `b. Regardless of when it is issued,
R4 is satisfied immediately, as no other requests require `c.

3. RELATED WORK
Standard mutex implementations, such as ticket locks and

MCS locks function well with static groups locks and are

inherently contention-sensitive [8].
Protocols that support fine-grained lock nesting by using

resource ordering include the Multiprocessor Bandwidth In-
heritance Protocol (M-BWI) [5], MrsP [4], and nested FIFO
locks [2], the last of which has corresponding analysis that
tractably bounds blocking.

The only protocols to use DGLs are those in the Real-
time Nested Locking Protocol (RNLP) family [11, 10]. Two
RNLP variants yield contention-sensitive blocking. The fast
RW-RNLP provides contention-sensitive resource access only
to read requests and non-nested write requests [9]. Nested
write requests under the fast RW-RNLP are not contention-
sensitive. Finally, the C-RNLP yields contention-sensitive
blocking with the assumption that critical section lengths
are the same for all resources [6].

4. NEW APPROACHES
We present three approaches to use with DGLs that we

believe will be important in improving upon existing ap-
proaches toward nested lock requests. In particular, our
goals are low overheads and contention-sensitive blocking for
all requests, which will lead to better schedulability results.

4.1 Mutex usage
When a lock implementation requires maintenance of sig-

nificant lock state, the simplest approach is to protect this
state with a mutex that prevents concurrent lock calls from
modifying the lock state simultaneously. This is the ap-
proach taken by the C-RNLP. While this is safe, it increases
overheads by causing all requests to conflict on the lock-state
mutex.

Therefore, our first approach to a new contention-sensitive
locking protocol is to eliminate or reduce the usage of a
lock-state mutex. Some lock structures allow this naturally
or with only a slight addition of state-maintenance opera-
tions and thus overhead. For example, enqueing on multiple
queues in a way that is seen as atomic simply requires that
two requests for the same resources enqueue in the same
order relative to each other for each resource. This is a con-
dition that can be checked and preserved without requiring
a mutex. Alternatively, even using a different mutex for
each resource queue would reduce the amount of blocking
that contributes to overhead, as only requests for the same
resource, which already contend, would share a given mutex.

4.2 Static contention
Previous approaches to providing contention-sensitive re-

source access have focused on doing so with a dynamic view
of contention; that is, a new request’s worst-case blocking
should be upper bounded by the number of active requests
with overlapping resource requirements. However, this dy-
namic view of contention cannot be used in schedulabil-
ity analysis. We must instead use the static measure of
contention (the upper bound of the possible dynamic con-
tention) in our analysis.

In light of this insight about the use of dynamic and static
contention, we aim to explore the use of static contention in
constructing a new contention-sensitive protocol.

A protocol designed around static contention may have
less overhead; decisions regarding enqueuing for resources
could be based on the static contention instead of comput-
ing the number of requests ahead of the current request.
We are interested in exploring the trade-offs in such an ap-



0 5 10 15 20 25 30 35
Tasks

0

2

4

6

8

10
Lo

ck
 O

ve
rh

ea
d 

(m
ic

ro
se

co
nd

s) LS-C-RNLP
C-RNLP
RNLP
MCS

Figure 5: Lock overhead as a function of task count n for

nr = 64 and each job requesting four random resources

from that set.

proach, which we expect would increase both schedulability
and average blocking times (which could negatively impact
non-real-time workloads running on the same platform as
the real-time workload).

An alternate way to lower overheads could be to mix the
ideas of DGLs and lock ordering. Jobs could issue requests
under the DGL scheme, with all resources requested simul-
taneously. The lock state could then be updated with an
ordered approach, in which resources are ordered by decreas-
ing static contention. When enqueuing for these resources,
requests could be required to wait until some threshold value
is met before enqueuing in the subsequent queue. To clarify,
a request might enqueue for `a, wait for ca − cb time units,
and then enqueue for `b, with the goal of becoming satisfied
for all its resources at the same time.

4.3 Lock server
As with many ideas, this approach comes from a solution

to a different problem. When some legacy applications are
transfered to a multiprocessor context, a fundamental com-
ponent that can slow its execution is the presence of lock
requests. The idea of remote core locking improved perfor-
mance; one core was dedicated to processing lock requests
for one or more locks. This allowed the lock state and the
memory locations protected by the lock to remain cache-hot.
Requests were issued to this remote core by writing the lock
identifier and the address of the critical section that needed
to be executed to its shared cache space [7].

We propose a similar solution that we call a lock server. In
contrast to remote core locking, a lock server maintains the
lock state and executes the logic of lock and unlock calls but
does not execute any of the critical section code on behalf
of the request. This approach was motivated by previous
work [6], in which we observed overhead trends that imply
that the lock state bounces between different caches. In
particular, notice the overheads presented in Fig. 5 of the
RNLP and the C-RNLP. The tasks systems that generated
these overheads (described in more detail below) was run on
a 36 core machine with two sockets. Each task was pinned to
a core, and while there were at most 18 tasks, only a single
socket was used. However, once the second socket (with a
separate cache) was in use, overheads drastically increased.

To do some preliminary testing of the hypothesis that a
lock server would reduce overheads, we implemented the C-
RNLP as a simple lock server (denoted LS-C-RNLP). Each
request was issued to the lock server, which returned a lo-
cation in memory on which to spin. The job then spun on
its core until the value in that location in memory was set

by the lock server to indicate that its request was satisfied.
We evaluated the LS-C-RNLP against the original C-

RNLP, the RNLP, and the MCS on a dual-socket 18-cores-
per-socket Intel Xeon E5-2699 platform. As mentioned
above, each task was pinned to a core (using only a single
socket when possible). These tasks repeatedly performed
lock and unlock calls with a negligible critical section length
in order to try to cause the worst-case overheads. Each task
issued 1000 requests for a randomly chosen set of four re-
sources of the available nr = 64 resources. We report the
99th percentile of these overheads for varying numbers of
tasks in the system in Fig. 5.

For the new contention-sensitive protocol we develop, we
will test its overheads and the resulting schedulability of
implementing it both with and without a lock server.

5. CONCLUSION
We explored three approaches to attaining a more univer-

sally applicable contention-sensitive protocol with increased
schedulability results. In future work, we will explore these
ideas. In particular, we are attempting to build the lock
state data structures around the statically defined contention
per resource. We are considering using DGLs for request is-
suance, but within the lock logic, employing a lock-enqueuing
ordering based on decreasing static contention as a means
of limiting the length of any transitive blocking chains.

6. ACKNOWLEDGMENTS
The author would like to thank Jim Anderson and Tanya

Amert for their discussions and helpful feedback.

7. REFERENCES
[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano.

Thin locks: Featherweight synchronization for java. In
PLDI 1998.

[2] A. Biondi, B. Brandenburg, and A. Wieder. A
blocking bound for nested FIFO spin locks. In RTSS
2016.

[3] B. Brandenburg and J. Anderson. Feather-trace: A
lightweight event tracing toolkit. In OSPERT 2007.

[4] A. Burns and A. Wellings. A schedulability compatible
multiprocessor resource sharing protocol - MrsP. In
ECRTS 2013.

[5] D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and
implementation of the multiprocessor bandwidth
inheritance protocol. Real-Time Systems, 48(6), 2012.

[6] C. Jarrett, B. Ward, and J. Anderson. A
contention-sensitive fine-grained locking protocol for
multiprocessor real-time systems. In RTNS 2015.

[7] J. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: migrating
critical-section execution to improve the performance
of multithreaded applications. In USENIX ATC’12.

[8] J. Mellor-Crummey and M. Scott. Algorithms for
scalable synchronization of shared-memory
multiprocessors. Transactions on Computer Systems,
9(1), 1991.

[9] C. Nemitz, T. Amert, and J. Anderson. Real-time
multiprocessor locks with nesting: Optimizing the
common case. In RTNS 2017.

[10] B. Ward and J. Anderson. Multi-resource real-time
reader/writer locks for multiprocessors. In IPDPS
2014.

[11] B. Ward and J. Anderson. Supporting nested locking
in multiprocessor real-time systems. In ECRTS 2012.


