
1

Efficient Beacon Placement for Network
Tomography

Ritesh Kumar and Jasleen Kaur
Department of Computer Science

University of North Carolina at Chapel Hill
{ritesh, jasleen}@cs.unc.edu

Abstract— Recent interest in using tomography for net-
work monitoring has raised the fundamental issue of
whether it is possible to use only a small number of prob-
ing nodes (beacons) for monitoring all edges of a network in
the presence of dynamic routing. Past work has shown that
minimizing the number of beacons is NP-hard, and has pro-
vided approximate solutions that may be fairly suboptimal.
In this paper, we use a two-pronged approach to compute
an efficient beacon set: (i) we formulate the need for, and
design algorithms for, computing the set of edges that can
be monitored by a beacon under all possible routing states;
and (ii) we minimize the number of beacons used to monitor
all network edges. We show that the latter problem is NP-
complete and use an approximate placement algorithm that
yields beacon sets of sizes within1 + ln(|E|) of the optimal
solution, where E is the set of edges to be monitored. Beacon
set computations for several Rocketfuel ISP topologies indi-
cate that our algorithm may reduce the number of beacons
yielded by past solutions by more than50%.

I. Introduction
The last two decades have witnessed an exponential

growth of the Internet in terms of its infrastructure, its
traffic load, as well as its commercial usage. Today, the
growth of the world’s economy depends heavily on the
connectivity, reliability, and quality of service provided by
Internet Service Providers (ISPs). The ability to monitor
the health of their networks is essential for ISPs to provide
good service to customers. Consequently, there is signifi-
cant interest in developing network monitoring infrastruc-
tures that allow ISPs to monitor their network links.

A key consideration in the design of monitoring infras-
tructures is to develop low-cost solutions. In particular, the
idea of placing and operating sophisticated monitors at all
nodes in a network is not cost-efficient. Instead, there has
been significant recent interest in relying on tomographic
techniques that use only a few probing nodes (beacons)
for monitoring the health of all network links [1], [2], [3],
[4], [5], [6], [7]. A key challenge is to find asmall set
of beacons that is guaranteed to be able to monitor all
network links, even withdynamically-changingIP routes.

Two recent efforts have focused on the problem of find-
ing the smallest beacon sets for a network [4], [7]. These,
however, do not adequately meet the above challenge—
the beacon set of [4] is not robust to changes in IP routes,
and the beacon set proposed in [7] can be quite large for
real ISP topologies (Sections II and V). In this paper, we
present beacon placement strategies that meet both aspects
of the above challenge.

Our approach relies on a two-pronged methodology.
First, we define the concept of adeterministically moni-
torable edge set(DMES) of a beacon as the set of edges
that can be monitored by the beacon under all possible
route configurations. We present efficient graph-theoretic
algorithms for computing the DMES of all candidate bea-
cons for a given network. Second, we consider the prob-
lem of finding the minimum number of beacons such that
the union of their DMES covers all network edges. We
show that this is an NP-complete problem. We then use
an approximate solution that yields beacon sets of sizes
within 1 + ln(|E|) of the optimal solution, whereE is the
set of network edges. Finally, we prove and exploit ad-
ditional properties of beacons that help in improving the
computational efficiency of our algorithm. Our experi-
mental results with several real ISP topologies obtained
from the Rocketfuel project [8] illustrate that our beacon
placement strategy yields beacon sets that are50 − 70%
smaller than those yielded by [7].

The rest of this paper is organized as follows. In Sec-
tion II, we formulate the problem of beacon placement
and discuss past work. In Section III, we define and com-
pute DMES. Section IV discusses beacon set minimiza-
tion. Section V presents experimental results with Rocket-
fuel topologies. We conclude in Section VII.

Notations and Assumptions. We model a network as an
undirected graphG(V,E), whereV is the set of network
nodes andE is the set of links (or edges)—in Section VI,
we extend our analysis to directed graphs as well. We use
the terms network and graph interchangeably. We assume
thatG is connected (there exists a path from any node to
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any other node) and that all routes are simple (acyclic).
Finally, we say that two physical paths between a pair of
nodes aredistinct, if they differ in even one of the edges
traversed.

II. Problem Formulation

In a tomographic network monitoring infrastructure,
each network link is monitored by a special probing node,
referred to as abeacon.1 The basic idea behind most to-
mographic setups is fairly simple: the beacon sends a pair
of nearly-simultaneous probes to the two end-nodes of the
link, only one of which traverses the link. Each end-point
sends back a response to the beacon—this may be imple-
mented using ICMP echo messages. The results of the
probes can then be used to infer properties of the link. For
instance, if the objective is to measure link delays, then
the difference in round-trip times of the two probes can be
used as an estimate. If the objective is to simply detect
link transmission failures, the success and failure of the
two probes may be used as reasonable estimators.

Note that, in general, a beacon is capable of monitor-
ing several network links. A set of beacons that can be
collectively used to monitorall the links of a network is
referred to as abeacon set. A central issue in the design of
a monitoring infrastructure is that ofbeacon placement—
which network nodes should be used to construct a beacon
set? Two requirements guide the design of a good beacon
placement strategy:
• Minimizing the number of beacons.
One of the prime motivations for using tomography for
network monitoring is to reduce the cost of the monitoring
infrastructure. However, even a tomographic infrastructure
involves the development, installation, debugging, opera-
tion, and maintenance of specialized software/hardware on
each beacon. In order to minimize the cost of doing so, it
is important that the number of beacons used to monitor
all links of a given network are minimized.
• Robustness to routing dynamics.
Routing state in many networks responds to changes in
traffic patterns and link loads, as well as to link failures.
Since Internet traffic conditions are highly dynamic, the
default IP routes in a given network may change at rel-
atively small time-scales. A monitoring infrastructure,
therefore, should not assume a specific routing configu-
ration in order to assign a beacon to a given link. More
generally, a beacon set should be able to monitor all net-
work links, independent of the current route configuration.

In this paper, we focus on the problem of beacon place-

1Some applications of tomography may require multiple beacons to
monitor a given link [9].
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Fig. 1. Simple vs. Locally-flexible Beacons

ment that meets the above requirements. Specifically, our
objective is to: minimize the number of beacons required
to deterministically monitor all the links of a given net-
work, even in the presence of dynamism in IP routes.

A. Past Work

A fundamental step in finding the smallest beacon set
for a network is to first enlist the edges that can be mon-
itored by each candidate beacon, referred to as themoni-
torable edge set(MES) of the beacon. Note that the union
of MES of all beacons in a beacon set is equal to the set
of all network edges. In general, the larger is the average
MES size in a beacon set, the smaller is the beacon set.2

Below, we briefly discuss two beacon placement schemes
that have been proposed in recent literature, which differ
in their assumptions about which links comprise the MES
of a beacon.
• Simple Beacons: In [4], the authors assume that the
MES of a beacon consists of all links that can be reached
by the beacon—which are links that lie on its IP routing
tree.3 In order to monitor a link in its MES, the beacon—
henceforth referred to as a “simple” beacon—sends probes
to the end-points of the link, along the default IP paths to
those end-points. The authors demonstrate that the prob-
lem of minimizing the size of the beacon set with such
beacons, is NP-hard, and provide a placement strategy that
produces a beacon set no larger than1 + log|E| times the
optimal beacon set. Unfortunately, since the authors as-
sume that all links within the routing tree of a beacon be-

2Perhaps the largest MES (and smallest beacon set) that can be en-
visioned is when asinglebeacon monitorsall the links of a network—
this is feasible, for instance, in a network which supports source-
routing [10]. In such a network, a beacon can precisely specify the
path traversed by its probes, and hence can probe the end-points of any
network link. However, this strategy relies on the availability of source-
routing support atall network nodes, which is the not the case with a
majority of current networks [4].

3The IP routing tree of a node refers to the tree, rooted at the node,
which is formed by the links that lie on the default IP routes from that
node to each of the other nodes in the network.
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long to its MES, their strategy is not robust to changes
in routing trees and works only for networks with static
routes.
• Locally-flexible Beacons: In [7], the authors consider
beacons that have a greater flexibility in selecting the paths
taken by the probes. Specifically, the beacons—henceforth
referred to as “locally-flexible” beacons—are capable of
selecting thefirst link (outgoing link from beacon) on
which a probe to any destination is transmitted. A probe
can, therefore, be sent to a destination either along the cur-
rent IP route to the destination, or along one of the current
IP route from any immediate neighbor to the same des-
tination (Figure 1).4 Furthermore, the authors do not as-
sume static routing state and define the MES of a beacon
to consist of links that, irrespective of what current routes
are, can always be monitored. The authors do not provide
a mechanism to compute such an MES for a beacon, but
show that even if these sets are known, the beacon set mini-
mization problem is NP-hard. The authors instead suggest
an alternative beacon-placement strategy which, unfortu-
nately, could result in fairly large beacon sets for current
network topologies (see Section V).

To summarize, existing beacon placement strategies5

are either not robust to routing dynamics or are inefficient
in minimizing the number of beacons. In this paper, we
build on past work to address these limitations by using a
two-pronged approach:
1. Deterministic MES Computation: In order to be insen-
sitive to routing dynamics, for each candidate beacon, we
determine the set of edges—referred to as its Determinis-
tic MES (DMES)—that can be monitored by it underall
possible routing configurations.
2. Beacon Set Minimization: In order to minimize cost, we
address the problem of finding the smallest beacon set.

In the following two sections we present our abstrac-
tions and methodologies for achieving these two steps for

4The authors in [7] implicitly assume that the default IP route from
any neighbor to the said destination will not go through the beacon
node. This assumption may get violated when a path through the bea-
con has a smaller cost that any other physical path between a neighbor
and the destination.

5An orthogonal problem of beacon placement for detectingmultiple
link failures that occur simultaneously has been considered in [11]. In
general, it is not possible to detect all cases of simultaneous link failures
in a given network. In [11], the authors restrict their attention to those
simultaneous link failures that can be detected in the absence of any
limitations on the number of beacons and probes. They then provide
efficient algorithms for minimizing the number of beacons and probes
needed for detecting these failures. Like [4], this work assumes “sim-
ple” beacons and uses the IP routing tree in the beacon set computation
and, hence, is applicable only to networks with non-dynamic routes.
As part of future work, we hope to use our formulations from this pa-
per to extend the work in [11] to other beacon types and to networks
with dynamic routing.

both simple and locally-flexible beacons.

III. Deterministically Monitorable Edge
Sets

The first key problem we need to solve is to find the set
of edges that can be monitored by a beacon, independent
of the routing configuration. This is formally captured in
the following definition.

Definition 1: An edge is said to bedeterministically moni-
torableby a beacon if the beacon can monitor it under all
possible route configurations. TheDeterministically Mon-
itorable Edge Set(DMES) of a beacon is the set of all
deterministically monitorable edges associated with that
beacon.

In what follows, we consider both simple and locally-
flexible beacons and present algorithms for computing
their DMES. Below, we consider both simple and locally-
flexible beacons and present methodologies for computing
their DMES. We assume throughout that a beacon of ei-
ther type is able to monitor all edges directly connected to
it, irrespective of the routing configuration. Thus, all edges
incident on a nodeu belong to its DMES. Lemma 1 estab-
lishes a crucial property of a deterministically monitorable
edge (DME).

Lemma 1: If a beaconu has the ability to reach, under
all possible route configurations, one of the end-points of
an edgee through that edge, thenu can deterministically
monitore.

Proof: Let the two nodes on the linke be x andy such
that the probe packet fromu to y traverses in the direction
x− > y. Now, given a pathp of a probe tox, consider the
following properties of such a path;
• p can always be extended bye to give p′, a path of a
probe toy. Thus,p cannot traversey because if we ex-
tendedp by e, the path doesn’t remain simple and hence is
no more valid.
• all paths fromu to y havee has the last link in the path.

Let us consider the following probe results.
• The probe toy is successful. This means thate is up.
This is becauseall paths for the probe toy go throughe at
the end.
• The probe toy fails but the probe tox is successful. This
means thate is down. The probe tox being successful
means that there was a path toy throughe after the suc-
cessful path tox. Since this path couldn’t be taken, it im-
plies that linke was down.
• The probes to bothx andy fail. This leads to uncertainty
as there could be faults in the paths to bothx andy.
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Fig. 2. The DMES may not a connected graph.

To measure link delays we require probes fromu to both
x andy to be successful. Assuming that the default routing
policy is monotonic implies that the path of the probe from
u toy was exactly the same path as that of the probe fromu
to x except the last edgee. The difference in the round trip
times for both these probes gives us the round trip delay of
the linke.

Thus we have proved that given the above properties of
an arbitrary pathp, we can monitor the linke for link fail-
ure and under assumptions of routing monotonicity, link
delay.

It is computationally expensive to enumerateall paths
of a probe from a beacon to a particular node. We will
make a simplifying assumption which we believe is valid
at least for inter-domain networking. We will assume that
no physically available path in the network is prohibited
as a network path. This allows us to use graph search al-
gorithms like depth first search to infer about the above
mentioned properties of paths in an efficient manner. The
algorithms 1 and 2 and their correctness proofs should give
the reader further insights into how this can be done.

A. DMES for Simple Beacons

Theorem 1: Let u be a simple beacon and letS(v) be the
set of all distinct physical paths fromu to another nodev.
The link l(v) is deterministically monitorable byu if for
all pathsp in S(v), l(v) is the last edge onp. The DMES
of u is the set of all such edgesl(v) for all nodesv ∈ V .

Proof: Since all paths from the beaconu to v havel(v) as
the last edge, the current IP route fromu to v (which takes
one of these paths) ends in the edgel(v). From Lemma 1,
therefore, beaconu is able to monitor the linkl(v).

Note that a DMES yielded by Theorem 1 has no more
structure than an arbitrary edge set. In particular, the
DMES need not form a connected sub-graph; Figure 2 il-
lustrates that the DMES of node 1 includes the edges 1-2
and 5-6. We now present an efficient algorithm for com-

puting the DMES for simple beacons.

Algorithm 1: Computing DMES of a simple beaconu.

Initialize S to be an empty set;
For all edges l neighboring u

include l in S;
For all nodes v in V

do a depth first search from v;
(we get a set of forests each
connected to v by one or more
edges)
if u lies in a forest connected

to v by only a single edge e
include the edge e in S;

S is the DMES for u;

Proof: (Proof of correctness) Consider a depth first tree
(along with its back edges) constructed from the nodev.
If we consider all forests rooted at the immediate neigh-
bors ofv, then these might connect tov via one or more
edges. Separating forests this way helps us to isolate all
possible paths from the beaconu to the nodev. Any probe
packet fromu to v is entirely confined to paths in the forest
containingu. Now, if the beaconu lies in a forest which
connects tov via only one edge, all paths fromu to v have
to cross this edge at the end of the path. However, ifu
lies in a forest which is connected tov via two or more
edges, then there exist at least two distinct paths from the
beaconu to the nodev which end in different edges to the
nodev. This means that the edges are not deterministically
monitorable fromu (Theorem 1).

Time Complexity:The cost of computing the DMES of
a simple beacon is essentially that of running a depth
first search (DFS) algorithm at every node in the network.
Since the time complexity of running a depth first search
onG(V,E) is θ(|E|+ |V |), the time complexity of Algo-
rithm 1 isθ(|V |(|E|+ |V |)).

Note that the DMES for multiple beacons can be com-
puted in parallel. After running DFS on a nodev, we can
add an incident edges ofv to the DMES of all beacons that
belong to the forest rooted at the edge, if there are no more
edges connecting that forest tov. Since the number of po-
tential beacons is bounded by|V |, and the time complexity
of depth first search isθ(|E| + |V |), the time complexity
for the parallel DMES computation algorithm is the same
as above. Hence, we can calculate the DMES ofall nodes
in G(V,E) in θ(|V |(|E|+ |V |)) time.
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B. DMES for Locally-flexible Beacons

Theorem 2: Let u be a locally-flexible beacon andEu be
the set of edges directly connected tou. For each edge
i ∈ Eu, letSi(v) be the set of all paths fromu to any other
nodev, that start with the edgei. A link li(v) is deter-
ministically monitorable fromu if for all paths inSi(v),
li(v) is the last edge. The DMES ofu is the set of all
deterministically-monitorable edgesli(v), for all v ∈ V
and alli ∈ Eu.

Proof: Since locally-flexible beacons can select the outgo-
ing link on which to transmit a probe, we need to consider
only those paths tov which start from a specific edge in
Eu, to see if there is a common ending edge. Thus, even
if u has paths tov which end with different edges, if all
paths tov that start fromu with edgei end with a common
edgeli(v), u has the control over the ability to reachv
throughli(v). From Definition 1 and Lemma 1, therefore,
the common edge is deterministically monitorable.
Below, we present an algorithm for computing the DMES
for locally-flexible beacons.

Algorithm 2: Computing DMES of a locally-flexible bea-
conu.

Initialize S to be an empty set;
For all edges i neighboring u

include i in S;
remove i from E;

For all nodes v in V
do a depth first search from v;
(we get a set of forests each
connected to v by one or more
edges)
if one of u’s neighbors lies in

the forest connected
to v by a single edge e

include the edge e in S;
S is the DMES for u;

Proof: (Correctness) The proof is similar to that for Algo-
rithm 1. Let ui be the neighbor connected tou through
i. The forest containingui also contains all paths fromu
to v that start ini. This is because, if there was another
path fromu to v throughi, v andui would have been con-
nected via a path which would be captured in the depth
first search. Conversely, consider any simple path fromui

to v. Since Algorithm 2 removesi from E, addingi at the
start of the path still retains the “simple” property of the
path. Such a path is a valid path fromu to v starting with
edgei. Since we removedu’s neighboring edges fromE,

one could argue that some paths might be missing. How-
ever, this cannot be true because no simple paths fromv
to u would transitu in the middle of the path. Hence the
forests obtained by removing the edges neighboringu are
representative of all paths fromu’s neighbors tov.

Time Complexity:The cost of this algorithm is that of
running a depth first search on each node and for each
depth first search run checking if any of the neighbors
of u are in a singly connected forest. Thus, if the de-
gree ofu is k, the time complexity of the algorithm is
θ(|V |(|E| + |V | + k)). Sincek is bounded by|V |, the
time complexity isθ(|V |(|E| + |V |)). Note that, unlike
simple beacons, DMES can not be computed in parallel
for multiple nodes because for each beacon we customize
the graphG(V,E) (removal of neighboring edges) specific
to the beacon before doing all the depth first searches. The
complexity of computing DMES forall nodes inG(V,E)
is, therefore,θ(|V |2(|E|+ |V |)).

IV. Beacon Set Minimization

The second key problem—of minimizing the beacon set
for a network—is formally stated below:

Beacon Minimization Problem (BMP). Let Du be the
DMES associated with a nodeu ∈ V . Then thebeacon-
minimization problemis to find the smallest set of beacons,
B ⊆ V , such that

⋃
b∈B Db = E.

Theorem 3: The Beacon Minimization Problem is NP-
complete.

Proof: Let the graph under consideration beG(V,E). Let
S be the set{Dv : v ∈ V }. Since every node can
deterministically monitor at least its neighboring edges,⋃

v∈V Dv = E. Also, Dv ⊆ E. To find the smallest bea-
con set we need to findB ⊆ S such that

⋃
Dv∈B Dv = E

and |B| is minimized. This is the the same as the classic
Minimum Set Cover problem (MSCP) [12]. Thus, there
is a one-to-one correspondence between BMP and MSCP,
by using the concept of deterministically monitorable edge
sets. The Minimum Set Cover Problem is known to be
NP-Complete [12], [13]; this implies that BMP is NP-
complete as well.

Fortunately, MSCP has a pruning-based approximate
solution—below, we adapt the pruning algorithm and use
heuristics from the literature to establish optimality bounds
for it.
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Fig. 3. Optimality of the “pruning” algorithm depends a lot on
the order of selection of nodes.

Algorithm 3: Find the beacon set for completely monitor-
ing a graphG(V,E).

Initialize B to be an empty set;
Initialize E’ = E;
while E’ is not empty

Select* node u from V not in B;
E’ = E’ - the DMES of u;
Include u in B;

B is the beacon set;

It is straightforward to see that the algorithm returns a valid
beacon set. This is because every edge that was elim-
inated fromE′ could be deterministically monitored by
some node that was included in the beacon set.

The efficacy of the “pruning” algorithm in minimizing
the size of the beacon set depends on the order of selection
(the *ed operation in Algorithm 3) of nodes. For instance,
consider the topology in Figure 3. The optimal beacon set
(with locally-flexible beacons) for this topology contains
just node 1. However, the “pruning” algorithm will lead to
a non-optimal beacon set if it selects any node other than
node 1 as its first beacon. In fact, selecting the nodes in
the order 5, 4, 3, 2 and 1 causes the “pruning” algorithm to
select all the nodes in the graph for the beacon set.

There exists a known heuristic for the MSCP pruning-
based solution that ensures that the size of the solution is
within a bound of the optimal [14]. The heuristic maps to
the following node-selection rule (* in above algorithm)
for BMP. Select that node for a beacon whose DMES
has the maximum overlap with the current pruned graph.
Specifically, ifE′ is the current set of edges of the pruned
graph then we choose the nodev such that|Dv ∩ E′| is
maximum. This heuristic results in provable [14] bounds
of optimality of the beacon set as:|B(heuristic)|

|B(optimal)| = 1 +
ln|E|.

A. Further Optimizations

We next establish additional monitoring-related proper-
ties of networks that let us further optimize the compu-
tation of the minimal beacon set. The concept ofnode
arity in an undirected graphG(V,E), defined in [7], is
useful for this discussion. Below, we restate the definition
from [7] in a slightly different manner.

Definition 2: (Node Arity) The arity of a node,u, with re-
spect to another node, v, is defined as the number of dis-
tinct paths that exist between the two nodes such that each
of these paths starts from a unique outgoing edge fromu.
The arity of a nodeu is defined as the maximum of arities
of u with respect all nodes of the graph.

Using the terminology of [7], we call a node “high ar-
ity” if the node’s arity is more than one. Note that since
G(V,E) is assumed to be connected, there is at least
one path from every node to every other node (assuming
|V | > 1). Hence, the arity of a node is always greater
than or equal to one. Also, since the maximum number of
distinct paths (with a unique outgoing edge) fromu to v
can not be more than the degree ofu, the arity of a node is
bounded by its degree. Algorithm 4 in the Appendix is an
efficient way for finding whether a node inG(V,E) is high
arity or not. Our algorithm is based on the insight that if a
nodev has arity one, all forests generated in the depth-first
search fromv will be connected tov by a single edge.

A.1 Single Arity Networks

It is interesting to study the Beacon Placement Problem
for a graphG(V,E) that contains only single arity nodes.
We show the optimal beacon set for such a graph is a sin-
gleton set, and can contain any one node of the graph.

Lemma 2: A graphG(V,E) with no high arity nodes is a
tree.

Proof: Since the graph is connected, the nodes present in
the graph have an arity of at least one. Since there are no
high arity nodes in graph, the arity of all nodes is one. Sup-
pose there is a cycle inG. Then, any two distinct nodes in
the cycle have separate paths to each other from their dif-
ferent outgoing edges. Thus, the nodes in the cycle are
high arity, which is a contradiction. Hence, the graph can-
not contain cycles. This implies thatG(V,E) is a tree.

Lemma 3: A tree can be completely monitored by just one
beacon instantiated on any one of its nodes.

Proof: Since the graph is a tree, there is one unique path
from any node to any other node. Let us consider an ar-
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bitrary nodeu in the tree. Consider the leaves of the tree
as rooted atu. The edges which connect the leaves to the
tree can be monitored by probing the leaf and its parent.
Hence, all edges connecting the leaves to the tree can now
be monitored. Now consider the paths from the rootu to
any other node. This path will not contain any edges which
connect the leaves to the tree. Now, probing for any other
edge would require probes to be sent to the nodes on its
two sides. Since none of these nodes are leaves, we can
conclude that none of the probing paths will contain edges
connecting the leaves to the tree. Hence, we can elimi-
nate the leaf nodes and their edges to the tree from the
graph for further analysis. Now we have a new set of leaf
nodes and we recursively apply the logic above to this till
we eliminate all edges from the tree. Hence, the tree can
be completely monitored by having any one node as the
beacon.

Theorem 4: A network with no high arity nodes can be
monitored by a single beacon on any node in the network.

Proof: Follows from Lemma 2 and Lemma 3.
This theorem implies that a minimum beacon set can

be computed trivially and optimally for any single-arity
network, without using the “pruning” algorithm presented
earlier.

A.2 Relationship between Optimal Beacon Sets and
High Arity Node Sets

We next show that for networks that require use of the
pruning algorithm, it is possible to substantially reduce the
search space for a beacon set. Specifically, in Theorem 5
we show that we can eliminate all single arity nodes from
our consideration. Lemma 4 is used to prove the theorem.

Lemma 4: A graph which has at least one high arity node
cannot be completely monitored by a single simple or
locally-flexible beacon placed on a single arity node.

Proof: Consider a graphG(V,E), which has a high arity
nodex. Also consider a single beacon on a single arity
nodeb. Sincex is a high arity node, there exists a node
y, to whichx has multiple paths with different outgoing
edges fromx and multiple incoming edges toy. Thus,x
andy are part of a cycle.b cannot be on this cycle as oth-
erwise it would be high arity. Note thatb cannot determin-
istically monitor any edges in this cycle. This is because
for any edge in the cycle,b has multiple paths to one of its
end-points, which end in a different edge. Hence,b cannot
monitor the entire graph.

Theorem 5: An optimal beacon set, when beacons are sim-

ple or locally-flexible, is a subset of the set of high arity
nodes.

Proof: Let B be an optimal beacon set of graphG(V,E).
Let b ∈ B be a single arity node. Since,B is optimal,
removingb from B causes at least one edgee ∈ E to be
not deterministically monitorable byB. Letx andy be the
two nodes on either side ofe and assume thate is traversed
when a probe packet is sent fromb to y (and hence not tra-
versed when sent tox). Now, consider a depth first search
from y. Consider the forests sprouting from the edges ad-
jacent toy. Sincee is deterministically monitorable from
b, b lies in the forest,Fe, sprouting from the edgee. Also,
Fe is connected toy by only e and no other edge (other-
wise,e wouldn’t have been deterministically monitorable
by b). Since,e was exclusively monitorable by onlyb,
there are no other beacons inFe.

Now consider the following two cases:

• Fe has at least one high arity node.Let h be a high
arity node inFe. Sincee is the only edge connecting the
forest to the rest of the graph,h must be high arity with
respect to a node in the forest itself. Hence from Lemma 4,
b cannot monitor the entire forest. Also, no other beacon
outsideFe can completely monitorFe, as all paths from
such beacons must traversee; just likeb, such beacons can
not deterministically guarantee the last edge in their paths
to nodes in the cycle formed byh (Lemma 4). Sinceb
should be able to monitor the entire forest as it is the sole
beacon in it, we reach a contradiction. It follows that all
nodes in the forest must be single arity.
• Fe has only single arity nodes.
If Fe contains only single arity nodes then all edges in the
forest can be monitored by a single beacon outside the for-
est. This is becauseFe is a tree, and is reachable only
throughe from a beacon outsideFe. Any path from an out-
side beacon to any node inFe has a unique sub-path after
crossinge. Hence, all edges withinFe can be monitored by
it. This implies thatb is a redundant beacon, and removing
b from B doesn’t effect the monitorable edge coverage of
the beacon setB. This contradicts the definition ofB as
an optimal beacon set.

Thus, there can not exist a single arity node inB. Hence,
we have proved thatB has to contain only high arity nodes.

Theorem 5 lets us reduce the set of potential beacons
used in Algorithm 3 to the set of high arity nodes. This can
lead to substantial computational savings. For instance,
we show in Section V (and Figure 4), that the number and
fraction of single arity nodes in current ISP topologies can
be quite high.
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Please note that a network consisting of only single arity
nodes is an exception to the above theorem.

In [7] the authors have shown that the set of high arity
nodes in a graph is a beacon set—though potentially a non-
optimal set—when beacons are locally-flexible. We have
much strengthened this result by showing that the optimal
beacon set is always a subset of the set of high-arity nodes
(even with simple beacons). Not surprisingly, our pruning
algorithm is able to find smaller beacon sets for all topolo-
gies. In order to numerically evaluate the efficacy of our
formulations, we next present results of beacon set com-
putations on a few real ISP topologies.

V. Experimental Results
In this section, we compute and compare the beacons

sets yielded for several current ISP topologies: (i) by the
beacon placement solution with locally-flexible beacons
suggested in [7]; (ii) by our beacon placement algorithms

for simple beacons; and (iii) by our algorithms for locally-
flexible beacons. We refer to the resultant beacon sets as
BHA, BS , andBLF , respectively. We have implemented
these algorithms in Java and have run these on eight ma-
jor ISP topologies obtained from the Rocketfuel project at
the University of Washington [8]. For each of the eight
topologies, we analyze the distribution of node arities and
calculate the sizes of beacon sets yielded by the three so-
lutions.

Node Arities. The distribution of node arity for the eight
topologies is plotted in Figure 4. We observe that:
1. The distribution of node arities are quite different for
different ISPs, indicating that ISP topologies can be quite
diverse in their topological structure. In particular, some
ISP topologies have a long-tailed arity distribution, indi-
cating that only a handful of nodes have significant redun-
dancy in the manner in which they connect to the rest of
the network. For most topologies, a majority of nodes have
arities within20, although we some nodes can have arities
higher than150.
2. The fraction of single arity nodes in the ISP topologies
varies from less than30% to more than85%. It is impor-
tant to note that, for every other node in the network, a
single arity node has only one local edge that can be used
to reach it. Single arity nodes, therefore, are not robust to
failures of local links. We find that for most topologies,
more than half of the nodes have a single arity.
A large fraction of single-arity nodes also implies that
the optimizations proposed in Section IV-A to enable fast
computation of beacon sets, can result in substantial sav-
ings.
It is important to observe that Rocketfuel ISP topologies
are subject to inference errors. In particular, [15] demon-
strates that the inclusion of links that do not exist and the
omission of links that are actually present can inflate path
diversity in these inferred topologies. This limits the accu-
racy of node arities computed above.

Beacon Set Sizes. It is important to mention that the Rock-
etfuel topologies for an ISP may not be connected (pos-
sibly due to lack of data about some links). Thus, some
of the topologies we analyze have multiple (independent)
connected components. More importantly, some of the
components consist of only single-arity nodes (such com-
ponents have a tree structure). For a fair comparison with
the previous work in [7], which does not apply to single-
arity networks, we ignore such components when comput-
ing beacon sets.6 For any ISP topology, we add up the sizes
of beacon sets computed for each of the remaining compo-

6This eliminates only a small fraction of nodes from each of the ISP
topologies.
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nents to get the total beacon set sizes—|BHA|, |BS |, and
|BLF |—for the three solutions being compared. Figure 5
plots the histograms of these beacon set sizes for the eight
topologies. We observe that:
1. Beacon sets with locally-flexible beacons.Our beacon
placement solution for locally-flexible beacons reduces the
beacon set sizes yielded by [7] by50− 70%. More impor-
tantly, we find that some major ISP topologies can be com-
pletely monitored, independent of routing state, using less
than a hundred locally-flexible beacons. This is an encour-
aging observation as it suggests that a tomography-based
monitoring infrastructure may not be infeasible even for
major ISP topologies.
2. Beacon sets with simple beacons.Even with simple
beacons, our beacon placement solution reduces the bea-
con set sizes of [7] by40 − 70%. This suggests that it
may be feasible to design a simpler monitoring infrastruc-
ture that does not require that network nodes use different
transmission rules for probe packets.
This conclusion is further supported by the comparison
of beacon set sizes yielded by our solution for simple
vs. locally-flexible beacons, which indicates that locally-
flexible beacons may not yield significant gains for many
major ISP topologies.

VI. Incorporating Half-Duplex Links

For brevity concerns, we have used an undirected graph
model to present our algorithms and proofs. In practice,
networks may connect any two nodes using a pair of half-
duplex links, rather than a single full duplex link. A net-
work monitoring infrastructure should ideally be capable
of monitoring both half-duplex links as separate entities.
Below, we illustrate that our solutions can be extended to
such networks with slight modifications.

We change our network model by replacing each undi-
rected link by two half-duplex links between adjacent
nodes. More formally, ifG(V,E) is the undirected graph,
we deriveG′(V ′, E′) from G as follows:
• V ′ = V ;
• for all e ∈ E, adde1 = x → y ande2 = y → x to E′,
wherex andy are the nodes connected bye in G.

The following definitions need to be seen in the light of
the new model.
• Node Arity: The definition of node arity remains the
same except that when we talk about the outgoing edges
of a node, we are talking about the links directed away
from the node.
• Path: A path now indicates paths connected by links in
the same direction. This also holds for the definition of
physically connected paths.

• DME: The definition of a DME should now be seen un-
der the light of the new definition of paths.

The algorithm to find the DMES of a beacon changes
slightly. We do a depth first search on nodev to find all
possible paths from the beaconu to nodev. In the undi-
rected graph this didn’t matter as the set of paths from bea-
conu to nodev is the same as that from nodev to beacon
u. However, for a directed graph, before we do a depth first
search fromv, we need to reverse the graph so that at the
end we are speaking of paths fromu to v. However, since
all directed links are paired with another link in the oppo-
site direction, we don’t actually need to reverse the graph
to find the forest of nodes. We should only be concerned
with the edge which finally gets included in the DMES of
the beacon. This edge should be the edge going into node
v and hence is the edge opposite to which connectedv to
the forest.

The pruning algorithm requires no changes since it is
completely abstracted away from the beacon capabilities
and network routing mechanisms used. To argue about the
applicability of our optimizations to the new model we first
present an observation for directed graphs.

Lemma 5: The existence of a high arity node in the di-
rected graph as constructed in Section VI implies that we
have a cycle. Conversely, a cycle implies the existence of
a high arity node.

Proof:

Let u be high arity with respect tov. This means that
we have distinct pathsp1 andp2 from u to v both of which
start from different outgoing edges ofu. Since every di-
rected link is paired with an oppositely directed link be-
tween the same nodes, we have pathsp′

1 andp′
2 from v

to u. Let us assume that we chose av such that the first
edges in pathsp′

1 andp′
2 differ. Now pathsp1 andp′

2 (and
also pathsp′

1 andp2) combine to form a cycle. Now con-
sider that we have a cycle in the graph. We break the cycle
along any two pathsp1 andp2. Like the argument above,
we would have a reverse path for bothp1 andp2 which
makes the nodes at which we broke the cycle, high arity.

The above keeps our single arity network optimization
intact. Having no high arity nodes means that our net-
work has no cycles. This is even stronger than a directed
acyclic graph as, because of the way links are connected,
any physical loop in the network becomes a cyclic path.
The graph looks like a tree except that all edges are actu-
ally paired.

The above also keeps the optimization of choosing just
the high arity nodes for the beacon set, intact. In the proof,
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a high arity node is said to imply a cycle which we have
already proved above.

VII. Future Work

There are several ways in which our work can be ex-
tended. We briefly discuss a few below.

In this paper, we consider two kinds of beacons: sim-
ple and locally-flexible. An important component of our
future work is to generalize the notion of DMES for other
kinds of beacons. For example, the beacons could form
an overlay and use routing-tunnels to increase their DMES
and reduce the beacon set size. We plan to explore the
trade-off between beacon complexity and the beacon set
size for monitoring realistic network topologies.

Our formulations assume that all high-level policies do
not prohibit the use of a certain physical path between
two network nodes. While this is a reasonable assump-
tion for networks that are operated by a single autonomous
entity, this may not be true when the network considered
consists of multiple Autonomous Systems. In particular,
multi-homedstubnetworks typically do not provide tran-
sit to traffic arriving from one of their ISPs and destined
to a different ISP. We plan to extend our network model
to incorporate such networks and compute beacon sets for
large internetworks like the Internet.

An interesting extension of our framework is for mon-
itoring infrastructure needed to monitor only a subset of
all network links. For instance, an ISP may be interested
in monitoring only its backbone or peering links. One ap-
proach for finding a beacon set for this scenario would be
to create an abstraction in which some network nodes are
collapsed to create a new network that contains only the
relevant edges. The key challenges then would be in de-
ciding where to install the beacons (as a single node in
the collapsed graph may represent several nodes from the
original network). We plan to explore this problem as part
of future work.

Another interesting direction in which our work can be
extended in by finding tree-like subgraphs in the network
and use assigning one beacon to every such subgraph. The
probes and/or routers would now need to be configured
so that probe packets generating within a subgraph remain
confined to the subgraph. This might be helpful in reduc-
ing the number of probes required, and the distance they
travel, for monitoring all the edges of a large network.
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Appendix
Algorithm 4: Finding out if a node,u in G(V,E) is high
arity or not.

Do a depth first search from u;
if there is a back edge to u from

any other node
declare u high arity;

else
declare u single arity;
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Proof: (Proof of Correctness) Consider the case whenu is
high arity. Then there exists a node (sayv) to which there
are more than one paths fromu with different outgoing
edges fromu. In a depth first search fromu, one of these
edges will be selected first for traversal. In the depth first
search run, consider that we are on the first edge fromu
which has a path tov, with an alternating path to the same
nodev as defined above. Because of the alternating path,
there exists a cycle with nodesu andv on it. Since the
edge on the alternating path outgoing fromu is not yet
traversed, it will become a back edge and will be detected
as outlined in the algorithm.

Now consider that nodeu is not a high arity node. Also
assume that we detect a back edge in the way outlined in
the algorithm. Since the back edge was to nodeu itself,
it means that nodeu is part of a cycle with two outgoing
edges participating in the cycle. Thus, there is at least one
node in the network (from the same cycle) which has two
paths tou each path having a different outgoing edge from
u. This means thatu is a high arity node. This is a con-
tradiction. Hence ifu is an arity one node then one cannot
detect a back edge as described in the algorithm.

Time Complexity:The complexity of depth first search
is θ(|E| + |V |). Detecting a back edge involves going
through all the neighbors ofu. If the degree ofu is k,
then the cost for checking for a back edge isθ(k). Sincek
is bounded by|E|, the time complexity of our algorithm is
θ(|E|+ |V |).


