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Abstract— Recent interest in using tomography for net- Two recent efforts have focused on the problem of find-
work monitoring has raised the fundamental issue of ing the smallest beacon sets for a network [4], [7]. These,
whether it is possible to use only a small number of prob- however, do not adequately meet the above challenge—
ing nodes (beacons) for monitoring all edges of a network in o e300 set of [4] is not robust to changes in IP routes
the presence of dynamic routing. Past work has shown that d the b t din 7 b ite | f ’
minimizing the number of beacons is NP-hard, and has pro- an € beacon .se p“’p‘?se in [7] can be q_u' € large for
vided approximate solutions that may be fairly suboptimal. "€@! ISP topologies (Sections Il and V). In this paper, we
In this paper, we use a two-pronged approach to compute Present beacon placement strategies that meet both aspects
an efficient beacon set: (i) we formulate the need for, and of the above challenge.
design algorithms for, computing the set of edges that can  Qur approach relies on a two-pronged methodology.
be monitored by a beacon under all possible routing states; First, we define the concept ofdeterministically moni-
and (i) we minimize the number of beacons used to monitor torable edge seDMES) of a beacon as the set of edges

all network edges. We show that the latter problem is NP- that b itored by the b d I il
complete and use an approximate placement algorithm that at can be monitored by he beacon under all possible

yields beacon sets of sizes withit + in(|E|) of the optimal "oute configurations. We present efficient graph-theoretic
solution, where E is the set of edges to be monitored. Beacon@lgorithms for computing the DMES of all candidate bea-
set computations for several Rocketfuel ISP topologies indi- cons for a given network. Second, we consider the prob-
cate that our algorithm may reduce the number of beacons |em of finding the minimum number of beacons such that

yielded by past solutions by more tharb07%. the union of their DMES covers all network edges. We
show that this is an NP-complete problem. We then use
| Introduction an approximate solution that yields beacon sets of sizes

within 1 + [n(| E) of the optimal solution, wher& is the
The last two decades have witnessed an exponendig{ of network edges. Finally, we prove and exploit ad-
growth of the Internet in terms of its infrastructure, itgitional properties of beacons that help in improving the
traffic load, as well as its commercial usage. Today, ti@mputational efficiency of our algorithm. Our experi-
growth of the world's economy depends heavily on th@ental results with several real ISP topologies obtained
connectivity, reliability, and quality of service provided brom the Rocketfuel project [8] illustrate that our beacon
Internet Service Providers (ISPs). The ability to monit%lacement strategy yields beacon sets thatsare 70%
the health of their networks is essential for ISPs to providghalier than those yielded by [7].
good service to customers. Consequently, there is signifithea rest of this paper is organized as follows. In Sec-
cant interest in developing network monitoring infrastrug;yp, I, we formulate the problem of beacon placement
tures that allow ISPs to monitor their network links. and discuss past work. In Section Ill, we define and com-
A key consideration in the design of monitoring infraspute DMES. Section IV discusses beacon set minimiza-

tructures is to develop low-cost solutions. In particular, thg)n section v presents experimental results with Rocket-
idea of placing and operating sophisticated monitors at gl topologies. We conclude in Section VII.
nodes in a network is not cost-efficient. Instead, there has

been significant recent interest in relying on tomographiotations and Assumptions. We model a network as an
techniques that use only a few probing nodes (beaconspirected grapldé:(V, E), whereV is the set of network

for monitoring the health of all network links [1], [2], [3], nodes and is the set of links (or edges)—in Section VI,
[4], [5], [6], [7]. A key challenge is to find amall set we extend our analysis to directed graphs as well. We use
of beacons that is guaranteed to be able to monitor @ik terms network and graph interchangeably. We assume
network links, even witldynamically-changindP routes. thatG is connected (there exists a path from any node to



any other node) and that all routes are simple (acycli A A
Finally, we say that two physical paths between a pair | B

nodes ardalistinct, if they differ in even one of the edges : :
traversed. i

s Ml Mc s M- _.__. M

Il. Problem Formulation

In a tomographic network monitoring infrastructure 5. .. ais
each network link is monitored by a special probing nod
referred to as &eacont The basic idea behind most to- ~ MES ={AB, AC, BC} MES ={AB, AC}
mographic setups is fairly simple: the beacon sends a pair
of nearly-simultaneous probes to the two end-nodes of the
link, only one of which traverses the link. Each end-point
sends back a response to the beacon—this may be imp&Nt that meets the above requirements. Specifically, our
mented using ICMP echo messages. The results of gliective is to: minimize the number of beacons required
probes can then be used to infer properties of the link. B8 deterministically monitor all the links of a given net-
instance, if the objective is to measure link delays, thd¥Prk, even in the presence of dynamism in IP routes.
the difference in round-trip times of the two probes can be
used as an estimate. If the objective is to simply deté%t Past Work
link transmission failures, the success and failure of theA fundamental step in finding the smallest beacon set
two probes may be used as reasonable estimators. for a network is to first enlist the edges that can be mon-

Note that, in general, a beacon is capable of monitdtered by each candidate beacon, referred to asrtbei-
ing several network links. A set of beacons that can lberable edge setMES) of the beacon. Note that the union
collectively used to monitoall the links of a network is of MES of all beacons in a beacon set is equal to the set
referred to as Beacon setA central issue in the design ofof all network edges. In general, the larger is the average
a monitoring infrastructure is that dleacon placement MES size in a beacon set, the smaller is the beacofi set.
which network nodes should be used to construct a bea®&mlow, we briefly discuss two beacon placement schemes
set? Two requirements guide the design of a good beadbat have been proposed in recent literature, which differ
placement strategy: in their assumptions about which links comprise the MES
« Minimizing the number of beacons. of a beacon.
One of the prime motivations for using tomography for Simple Beacons In [4], the authors assume that the
network monitoring is to reduce the cost of the monitorinlES of a beacon consists of all links that can be reached
infrastructure. However, even a tomographic infrastructulpy the beacon—uwhich are links that lie on its IP routing
involves the development, installation, debugging, opeitaee? In order to monitor a link in its MES, the beacon—
tion, and maintenance of specialized software/hardwarefwenceforth referred to as a “simple” beacon—sends probes
each beacon. In order to minimize the cost of doing sotit the end-points of the link, along the default IP paths to
is important that the number of beacons used to monittwose end-points. The authors demonstrate that the prob-
all links of a given network are minimized. lem of minimizing the size of the beacon set with such
« Robustness to routing dynamics. beacons, is NP-hard, and provide a placement strategy that
Routing state in many networks responds to changespifpduces a beacon set no larger than log| £| times the
traffic patterns and link loads, as well as to link failuresptimal beacon set. Unfortunately, since the authors as-
Since Internet traffic conditions are highly dynamic, theume that all links within the routing tree of a beacon be-

dgfault P rOUt,es in-a given network may _Change at rel?Perhaps the largest MES (and smallest beacon set) that can be en-
atively small time-scales. A monitoring infrastructureisioned is when ainglebeacon monitorall the links of a network—
therefore, should not assume a specific routing configtis is feasible, for instance, in a network which supports source-
ration in order to assign a beacon to a given link. Moreuting [10]. In such a network, a beacon can precisely specify the

generally, a beacon set should be able to monitor all nBr{l_th traversed by its probes, and hence can probe the end-points of any
' network link. However, this strategy relies on the availability of source-

work links, independent of the current route Conf'gurat'oﬂnuting support aall network nodes, which is the not the case with a
In this paper, we focus on the problem of beacon placeajority of current networks [4].
3The IP routing tree of a node refers to the tree, rooted at the node,
1Some applications of tomography may require multiple beaconswich is formed by the links that lie on the default IP routes from that
monitor a given link [9]. node to each of the other nodes in the network.

"locally flexible" Beacon A is "simple"

Fig. 1. Simple vs. Locally-flexible Beacons



long to its MES, their strategy is not robust to changdmth simple and locally-flexible beacons.
in routing trees and works only for networks with static
routes. [ll. Deterministically Monitorable Edge
« Locally-flexible Beacons In [7], the authors consider Sets
beacons that have a greatgr flexibility in selecting the paths]_he first key problem we need to solve is to find the set
taken by the probes. Specifically, the beacons—henceforth : .

ot edges that can be monitored by a beacon, independent

referred to as “locally-flexible” beacons—are capable 0

of the routing configuration. This is formally captured in

selecting thefirst link (outgoing link from beacon) on the followina definition
which a probe to any destination is transmitted. A probe g '

can, therefore, be sent to a destination either along the aifinition 1: An edge is said to bdeterministically moni-
rent IP route to the destination, or along one of the curre@fable by a beacon if the beacon can monitor it under all
IP route from any immediate neighbor to the same dgsossible route configurations. TBeterministically Mon-
tination (Figure 1f. Furthermore, the authors do not astorable Edge Set(DMES) of a beacon is the set of all

sume static routing state and define the MES of a beacterministically monitorable edges associated with that
to consist of links that, irrespective of what current rout@feacon.

are, can always be monitored. The authors do not provide
a mechanism to compute such an MES for a beacon, butn what follows, we consider both simple and locally-
show that even if these sets are known, the beacon set mifgkible beacons and present algorithms for computing
mization problem is NP-hard. The authors instead suggétir DMES. Below, we consider both simple and locally-
an alternative beacon-placement strategy which, unforflgxible beacons and present methodologies for computing
nately, could result in fairly large beacon sets for currefteir DMES. We assume throughout that a beacon of ei-
network topologies (see Section V). ther type is able to monitor all edges directly connected to
To summarize, existing beacon placement Stratégiétsirrespective of the routing configuration. Thus, all edges
are either not robust to routing dynamics or are inefficielitcident on a node belong to its DMES. Lemma 1 estab-
in minimizing the number of beacons. In this paper, wishes a crucial property of a deterministically monitorable
build on past work to address these limitations by usingeglge (DME).

two-pronged approach: Lemma 1: If a beaconu has the ability to reach, under

1. Deterministic MES Computation: In order to be insen- . . . .

" : . . all possible route configurations, one of the end-points of
sitive to routing dynamics, for each candidate beacon, W daee throuah that edae. them can deterministicall
determine the set of edges—referred to as its Determinis- g 9 ge. y

tic MES (DMES)—that can be monitored by it uncat monitore.

possible routing configurations. o Proof: Let the two nodes on the link be 2 andy such
2. Beacon Set Minimization:  In order to minimize cost, we that the probe packet fromto y traverses in the direction

address the problem of finding the smallest beacon set.,,— ~ 4, Now, given a patlp of a probe taz, consider the
In the following two sections we present our abstrago|lowing properties of such a path;

tions and methodologies for achieving these two steps {o, can always be extended hyto give p/, a path of a

4The authors in [7] implicitly assume that the default IP route fror{:?rObe toy. Thus,p cannot traversg because if we ex-

any neighbor to the said destination will not go through the beact@ndedp by e, the path doesn’t remain simple and hence is
node. This assumption may get violated when a path through the bpa-more valid.

con has a smaller cost that any other physical path between a neigh.boc{” paths fromu to y havee has the last link in the path.

and the destination. Let ider the followi b It
5An orthogonal problem of beacon placement for detectmdtiple et us consider the following probe resutts.

link failuresthat occur simultaneously has been considered in [11]. } The probe toy is successful. This means thats up.
general, itis not possible to detect all cases of simultaneous link failufERis is becausall paths for the probe tg go throughe at
in a given network. In [11], the authors restrict their attention to thosiﬁe end.

simultaneous link failures that can be detected in the absence of an;i_h be ta, fails but th beto | ful. Thi
limitations on the number of beacons and probes. They then provite € probe 1qgy 1alls butthe probe ta 1S successiul. IS

efficient algorithms for minimizing the number of beacons and prob88€ans that is down. The probe ta: being successful
needed for detecting these failures. Like [4], this work assumes “simieans that there was a pathygtahroughe after the suc-

plec’; bﬁacons_a”d ”?esg'Fe 'Plrot‘“”g t”ee;“ th‘?ﬂ?eacog set C‘?mPUttaéé%sful path ta. Since this path couldn’t be taken, it im-
and, hence, is applicable only to networks with non-dynamic routes .

As part of future work, we hope to use our formulations from this pij‘-;“es that linke was down. . . .
per to extend the work in [11] to other beacon types and to networks 1 N€ Probes to both andy fail. This leads to uncertainty

with dynamic routing. as there could be faults in the paths to bothndy.



puting the DMES for simple beacons.

3
1 2 / : \ 5 6 Algorithm 1.  Computing DMES of a simple beacan
: : : Initialize S to be an empty set;

\4 / For all edges | neighboring u
- include | in S;

For all nodes v in V
do a depth first search from v;
(we get a set of forests each
connected to v by one or more

Fig. 2. The DMES may not a connected graph.

To measure link delays we require probes froto both edges)
x andy to be successful. Assuming that the defaultrouting it |\, Jies in a forest connected
policy is monotonic implies that the path of the probe from to v by only a single edge e
u to y was exactly the same path as that of the probe fsxom include the edge e in S

toz except the last edge The difference inthe round tripg s the DMES for u:
times for both these probes gives us the round trip delay of
the linkee.

Thus we have proved that given the above propertiestrg o
an arbitrary patty, we can monitor the link for link fail-
ure and under assumptions of routing monotonicity, qu
delay.

(Proof of correctness) Consider a depth first tree

along with its back edges) constructed from the node
we consider all forests rooted at the immediate neigh-

bors ofwv, then these might connect tovia one or more

edges. Separating forests this way helps us to isolate all

It is computationally expensive to enumerale paths possible paths from the beacono the nodes. Any probe

of a probe from a beacon to a particular node. We Wiy cket fromu to v is entirely confined to paths in the forest

make a simplifying assumption which we believe is Va”@ontainingu. Now, if the beacon: lies in a forest which

at least for inter-domain networking. We will assume that,nnects ta via only one edge, all paths fromto v have

no physically available path in the network is prohibitegy ~ross this edge at the end of the path. Howevex, if

as a network pathThis allows us to use graph search aljeg in a forest which is connected tovia two or more

gorithms like depth first search to infer about the abovgyges then there exist at least two distinct paths from the

mentioned properties of paths in an efficient manner. T_B@aconu to the nodev which end in different edges to the

algorithms 1 and 2 and their correctness proofs should gy§qe,,. This means that the edges are not deterministically
the reader further insights into how this can be done.  onitorable fromu (Theorem 1). -

A. DMES for Simple Beacons Tim_e Complexity:The cost qf computing the 'DMES of

. a simple beacon is essentially that of running a depth
Theorem 1: Letu be a simple beacon and 18tv) be the first search (DFS) algorithm at every node in the network.
set of all distinct physical paths fromto another node. gjyce the time complexity of running a depth first search

The link [(v) is deterministically monitorable by if for onG(V, E) is 6(|E| + |V ), the time complexity of Algo-
all pathsp in S(v), I(v) is the last edge op. The DMES  (ithm 1 isO(|V|(|E| + |V])).

of u is the set of all such edgeégv) for all nodesv € V. _
Note that the DMES for multiple beacons can be com-

Proof: Since all paths from the beacarto v havel(v) as puted in parallel. After running DFS on a nodewe can
the last edge, the current IP route frano v (which takes add an incident edges ofto the DMES of all beacons that
one of these paths) ends in the ed@g. From Lemma 1, belong to the forest rooted at the edge, if there are no more
therefore, beacon is able to monitor the link(v). B edges connecting that forestioSince the number of po-
Note that a DMES yielded by Theorem 1 has no motential beacons is bounded [Jy|, and the time complexity
structure than an arbitrary edge set. In particular, tloédepth first search i8(|E| + |V|), the time complexity
DMES need not form a connected sub-graph; Figure 2 fbr the parallel DMES computation algorithm is the same
lustrates that the DMES of node 1 includes the edges B2above. Hence, we can calculate the DMES&Ilofodes
and 5-6. We now present an efficient algorithm for conn G(V, E) in 6(|V|(|E| + |V])) time.



B. DMES for Locally-flexible Beacons one could argue that some paths might be missing. How-
ever, this cannot be true because no simple paths from
to « would transitu in the middle of the path. Hence the
forests obtained by removing the edges neighbotiage
representative of all paths fronis neighbors ta. |

Theorem 2: Let u be a locally-flexible beacon anfl, be
the set of edges directly connected«uo For each edge
i € Ey, letS;(v) be the set of all paths fromato any other
nodew, that start with the edgé A link [;(v) is deter-
ministically monitorable fromy if for all paths inS;(v), Time Complexity:The cost of this algorithm is that of
l;(v) is the last edge. The DMES eof is the set of all running a depth first search on each node and for each
deterministically-monitorable edgégv), for all v € V' depth first search run checking if any of the neighbors
and alli € E,. of u are in a singly connected forest. Thus, if the de-

. _ gree ofu is k, the time complexity of the algorithm is
Proof. Since locally-flexible beacons can select the outggy|v/|(|g| + V| + k)). Sincek is bounded by V|, the

ing link on which to transmit a probe, we need to considgm,e complexity is0(|V|(|E| + [V])). Note that, unlike
only those paths te which start from a specific edge insimple beacons, DMES can not be computed in parallel
Ey, to see if there is a common ending edge. Thus, evgp myltiple nodes because for each beacon we customize
if 4 has paths t@ which end with different edges, if all y,¢ graphG(V, E) (removal of neighboring edges) specific
paths tov that start fromu with edge: end with a common g the peacon before doing all the depth first searches. The

edgel;(v), u has the control over the ability to reach complexity of computing DMES foall nodes inG(V, E)
throughl;(v). From Definition 1 and Lemma 1, thereforejg therefored([V|2(|E| + [V]))

the common edge is deterministically monitorable.
Below, we present an algorithm for computing the DMES
for locally-flexible beacons.

V. Beacon Set Minimization
Algorithm 2:  Computing DMES of a locally-flexible bea-
conu. The second key problem—of minimizing the beacon set

o for a network—is formally stated below:
Initialize S to be an empty set;

For all edges i neighboring u

include i in S; Beacon Minimization Problem (BMP). Let D, be the
remove i from E; DMES associated with a nodee V. Then thebeacon-

For all nodes v in V minimization problenms to find the smallest set of beacons,
do a depth first search from v; B CV,suchthatJ,.z Dy = E.

(we get a set of forests each

connected to v by one or more

edges)

if one of u’s neighbors lies in
the forest connected

Theorem 3: The Beacon Minimization Problem is NP-
complete.

Proof: Let the graph under consideration ¢V, E). Let

to v by a single edge e _ S be the set{D, : v € V}. Since every node can
_ include th_e edge e in S; deterministically monitor at least its neighboring edges,
S is the DMES for u; Uper D» = E. Also, D, C E. To find the smallest bea-

con set we need to fin@ C S such that), .z D, = F

Proof: (Correctness) The proof is similar to that for Algof"r_‘d_“B| is minimized. This is the the same as the classic
rithm 1. Letwu; be the neighbor connected tothrough Mlnlmum Set Cover problem (MSCP) [12]. Thus, there
i. The forest containing; also contains all paths from 'S & One-to-one correspondence between BMP and MSCP,

to v that start ini. This is because, if there was anothé?y using the concept of deterministically monitorable edge

path fromu to v throughi, v andu; would have been con- S€tS:  The Minimum Set Cover Problem is known to be
nected via a path which would be captured in the deghff “Complete [12], [13]; this implies that BMP is NP-
first search. Conversely, consider any simple path figm COMPlete as well. u

to v. Since Algorithm 2 removesfrom E, adding: at the Fortunately, MSCP has a pruning-based approximate
start of the path still retains the “simple” property of theolution—below, we adapt the pruning algorithm and use
path. Such a path is a valid path franto v starting with heuristics from the literature to establish optimality bounds
edgei. Since we removed’s neighboring edges fromy, for it.



A. Further Optimizations

We next establish additional monitoring-related proper-
ties of networks that let us further optimize the compu-
tation of the minimal beacon set. The conceptnofle

. . . . . arity in an undirected grapi(V, E), defined in [7], is
I -  —— | useful for this discussion. Below, we restate the definition
1 2

from [7] in a slightly different manner.

3 4 S Definition 2:  (Node Arity) The arity of a nodey, with re-
_ o o _ spect to another node, is defined as the number of dis-
F'g'tg' Optimality of the “pruning” algorithm depends a lot 0ot paths that exist between the two nodes such that each
e order of selection of nodes. of these paths starts from a unigue outgoing edge frtom
The arity of a node: is defined as the maximum of arities

i .. of u with respect all nodes of the graph.
Algorithm 3:  Find the beacon set for completely monitor- “ P grap

ing a graph(V, E). Using the terminology of [7], we call a node “high ar-
ity” if the node’s arity is more than one. Note that since

Initialize B to be an empty set: G(V,E) is assumed to be connected, there is at least

Initialize E' = E: one path from every node to every other node (assuming

while E' is not empty V| > 1). Hence, the arity of a node is always greater
Select* node u from V not in B: than or equal to one. Also, since the maximum number of
E = E' - the DMES of u: distinct paths (with a unique outgoing edge) frano v
Include u in B: can not be more than the degreeupthe arity of a node is

B is the beacon set: bounded by its degree. Algorithm 4 in the Appendix is an

efficient way for finding whether a node @(V, E) is high

Itis straightforward to see that the algorithm returns a valfity O not. Our algorithm is based on the insight that if a
beacon set. This is because every edge that was emﬂgev has arity one, all forests generated in the depth-first
inated from £/ could be deterministically monitored bySearch from will be connected t@ by a single edge.

some node that was included in the beacon set. . .
_ _ _ Al single Arity Networks
The efficacy of the “pruning” algorithm in minimizing

the size of the beacon set depends on the order of selectioff IS interesting to study the Beacon Placement Problem
(the *ed operation in Algorithm 3) of nodes. For instancd?" @ 9raphG(V; E) that contains only single arity nodes.
consider the topology in Figure 3. The optimal beacon s&f Show the optimal beacon set for such a graph is a sin-
(with locally-flexible beacons) for this topology containd!€ton set, and can contain any one node of the graph.
just node 1 However, the “_pr_uning" algorithm will lead tq_emma 2. A graphG(V, E) with no high arity nodes is a

a non-optimal beacon set if it selects any node other th
node 1 as its first beacon. In fact, selecting the nodes in

the order 5, 4, 3, 2 and 1 causes the “pruning” algorithm gof.  Since the graph is connected, the nodes present in
select all the nodes in the graph for the beacon set.  the graph have an arity of at least one. Since there are no

There exists a known heuristic for the MSCP pruningtigh arity nodes in graph, the arity of all nodes is one. Sup-
based solution that ensures that the size of the solutioPRS€ there is a cycle i@. Then, any two distinct nodes in
within a bound of the optimal [14]. The heuristic maps t§1€ cycle have separate paths to each other from their dif-
the following node-selection rule (* in above algorithm{erent outgoing edges. Thus, the nodes in the cycle are
for BMP. Select that node for a beacon whose DMERGh arity, which is a contradiction. Hence, the graph can-
has the maximum overlap with the current pruned graghpt contain cycles. This implies that(V, £) is a tree. ®

» p—
Specifically, if &7 is the current set of edges of the/pr_unelt_jemma 3. Atree can be completely monitored by just one
graph then we choose the nodesuch that D, N E’| is . . :

i . e . eacon instantiated on any one of its nodes.
maximum. This heuristic results in provable [14] bounc}%
of optimality of the beacon set aé% = 1+ proof: Since the graph is a tree, there is one unique path
In|E|. from any node to any other node. Let us consider an ar-



bitrary nodeu in the tree. Consider the leaves of the trggle or locally-flexible, is a subset of the set of high arity
as rooted at:.. The edges which connect the leaves to thedes.

tree can be monitored by probing the leaf and its parent.

Hence, all edges connecting the leaves to the tree can risepf: Let B be an optimal beacon set of graghiV, £).

be monitored. Now consider the paths from the rodo Letb € B be a single arity node. Sincé} is optimal,
any other node. This path will not contain any edges whi¢@movingb from B causes at least one edges E to be
connect the leaves to the tree. Now, probing for any otheet deterministically monitorable b§. Letz andy be the
edge would require probes to be sent to the nodes ontw® nodes on either side efand assume thatis traversed
two sides. Since none of these nodes are leaves, we Wéen a probe packet is sent frdno y (and hence not tra-
conclude that none of the probing paths will contain edgeersed when sent te). Now, consider a depth first search
connecting the leaves to the tree. Hence, we can eliffiem y. Consider the forests sprouting from the edges ad-
nate the leaf nodes and their edges to the tree from jheent toy. Sincee is deterministically monitorable from
graph for further analysis. Now we have a new set of lefb lies in the forestF., sprouting from the edge Also,
nodes and we recursively apply the logic above to this tffl. is connected tg by only e and no other edge (other-
we eliminate all edges from the tree. Hence, the tree caise, e wouldn’'t have been deterministically monitorable
be completely monitored by having any one node as thg b). Since,e was exclusively monitorable by only,
beacon. m there are no other beaconsip.

) ] ) Now consider the following two cases:
Theorem 4: A network with no high arity nodes can be

monitored by a single beacon on any node in the network £« has at least one high arity nodel.et i be a high
arity node inF,. Sincee is the only edge connecting the

Proof: Follows from Lemma 2 and Lemma 3. B forest to the rest of the graph, must be high arity with
This theorem implies that a minimum beacon set caespect to a node in the forest itself. Hence from Lemma 4,

be computed trivially and optimally for any single-arityp cannot monitor the entire forest. Also, no other beacon

network, without using the “pruning” algorithm presentedutside F, can completely monitof,, as all paths from

earlier. such beacons must traveksgust like b, such beacons can
not deterministically guarantee the last edge in their paths
A.2 Relationship between Optimal Beacon Sets and to nodes in the cycle formed by (Lemma 4). Sinceh
High Arity Node Sets should be able to monitor the entire forest as it is the sole

We next show that for networks that require use of thbeegcor_l Irt]hlt’ fwe r?ach ?bcon_tratllllcthtn - It follows that all
pruning algorithm, it is possible to substantially reduce e d€s In the forest must be singie artty.
¢ has only single arity nodes.

search space for a beacon set. Specifically, in Theoren . . : .
P P y ’ﬂ « contains only single arity nodes then all edges in the

we show that we can eliminate all single arity nodes fro?wr t can be monitored b inale b n outside the for
our consideration. Lemma 4 is used to provethetheorerﬁ.es can be monitored by a single beacon outside the 1o

est. This is because, is a tree, and is reachable only

Lemma 4: A graph which has at least one high arity nod#iroughe from a beacon outsidg... Any path from an out-
cannot be completely monitored by a single simple §ide beacon to any node i has a unique sub-path after

locally-flexible beacon placed on a single arity node. ~ crossing:. Hence, all edges withifi, can be monitored by
it. This implies thab is a redundant beacon, and removing

Proof: Consider a grapli-(V, ), which has a high arity » from B doesn'’t effect the monitorable edge coverage of
nodez. Also consider a single beacon on a single aritfie beacon seB. This contradicts the definition d8 as
nodeb. Sincex is a high arity node, there exists a nodan optimal beacon set.

, to which z has multiple paths with different outgoin . . . .
J . pie p going Thus, there can not exist a single arity nod&inHence,

edges fromz and multiple incoming edge_s ta Thus,z we have proved thdp has to contain only high arity nodes.
andy are part of a cycleb cannot be on this cycle as oth-

erwise it would be high arity. Note thatcannot determin- _
istically monitor any edges in this cycle. This is because Theorem 5 lets us reduce the set of potential beacons
for any edge in the cyclé,has multiple paths to one of itsused in Algorithm 3 to the set of high arity nodes. This can

end-points, which end in a different edge. Hericeannot |€ad to substantial computational savings. For instance,
monitor the entire graph. m We show in Section V (and Figure 4), that the number and

fraction of single arity nodes in current ISP topologies can
Theorem 5:  An optimal beacon set, when beacons are sirbe quite high.



for simple beacons; and (iii) by our algorithms for locally-
flexible beacons. We refer to the resultant beacon sets as
Bpa, Bs, and By g, respectively. We have implemented
these algorithms in Java and have run these on eight ma-
jor ISP topologies obtained from the Rocketfuel project at
the University of Washington [8]. For each of the eight
topologies, we analyze the distribution of node arities and
Fay calculate the sizes of beacon sets yielded by the three so-
W asrz2t o] lutions.

; a
0.3 AS: 3356 --m- -
AS: 3967 ---o-
&

Fraction of Nodes

Node Arities. The distribution of node arity for the eight
AS 4755 e topologies is plotted in Figure 4. We observe that:
TR Affy = = = = 1. The distribution of node arities are quite different for
different ISPs, indicating that ISP topologies can be quite
Fig. 4. Cumulative distribution of node arities for eight Rockdiverse in their topological structure. In particular, some

0.2

etfuel topologies. ISP topologies have a long-tailed arity distribution, indi-
cating that only a handful of nodes have significant redun-
2000 dancy in the manner in which they connect to the rest of
Onumber of high arity nodes . . .
w00 @110, of simple beacons the network. For most topologies, a majority of nodes have
1500, Brno. of lecaly flexible beacons arities within20, although we some nodes can have arities
oo higher thant 50.

2. The fraction of single arity nodes in the ISP topologies

varies from less thaB0% to more thar85%. It is impor-

tant to note that, for every other node in the network, a

single arity node has only one local edge that can be used

to reach it. Single arity nodes, therefore, are not robust to

failures of local links. We find that for most topologies,

more than half of the nodes have a single arity.

s ASEW e RS A A Aol A large fraction of single-arity nodes also implies that
the optimizations proposed in Section IV-A to enable fast

Fig. 5. Histogram of beacon set sizes yielded by different algpemputation of beacon sets, can result in substantial sav-

rithms for the Rocketfuel topologies. ings.
It is important to observe that Rocketfuel ISP topologies

Please note that a network consisting of only single ari@fe subject to inference errors. In particular, [15] demon-
nodes is an exception to the above theorem. strates that the inclusion of links that do not exist and the

In [7] the authors have shown that the set of high ari§mission of links that are actually present can inflate path
nodes in a graph is a beacon set—though potentially a néiersity in these inferred topologies. This limits the accu-
optimal set—when beacons are locally-flexible. We hay@cy of node arities computed above.

much strengthened this result by showing that the optimglacon set sizes. It is important to mention that the Rock-

beacon set is always a subset of the set of high-arity noggge| topologies for an ISP may not be connected (pos-
(even with simple beacons). Not surprisingly, our pruninglply due to lack of data about some links). Thus, some
algorithm is able to find smaller beacon sets for all tOpOl@f the t0p0|ogies we ana|yze have mu|t|p|e (independent)
gies. In order to numerically evaluate the efficacy of oonnected components. More importantly, some of the
fOfmUlationS, we next pl’esent results of beacon set Cog(b'rnponents consist of On|y Sing|e_arity nodes (SUCh com-
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putations on a few real ISP topologies. ponents have a tree structure). For a fair comparison with
_ the previous work in [7], which does not apply to single-
V. Experimental Results arity networks, we ignore such components when comput-

In this section, we compute and compare the beacdf§ Peacon sets For any ISP topology, we add up the sizes
sets yielded for several current ISP topologies: (i) by tff Peacon sets computed for each of the remaining compo-
beacon placement solution with locally-flexible beaconsithis eliminates only a small fraction of nodes from each of the ISP
suggested in [7]; (ii) by our beacon placement algorithmaspologies.



nents to get the total beacon set sizé®+4/|, | Bs|, and « DME: The definition of a DME should now be seen un-
| B r|—for the three solutions being compared. Figureder the light of the new definition of paths.

plots the histograms of these beacon set sizes for the eighthe algorithm to find the DMES of a beacon changes
topologies. We observe that: slightly. We do a depth first search on nodéo find all

1. Beacon sets with locally-flexible beaconSur beacon possible paths from the beacarto nodev. In the undi-
placement solution for locally-flexible beacons reduces thected graph this didn’t matter as the set of paths from bea-
beacon set sizes yielded by [7] B9 — 70%. More impor- conw to nodev is the same as that from nodeo beacon
tantly, we find that some major ISP topologies can be com-However, for a directed graph, before we do a depth first
pletely monitored, independent of routing state, using lessarch fromv, we need to reverse the graph so that at the
than a hundred locally-flexible beacons. This is an encoefid we are speaking of paths framo v. However, since
aging observation as it suggests that a tomography-baagdiirected links are paired with another link in the oppo-
monitoring infrastructure may not be infeasible even faite direction, we don't actually need to reverse the graph
major ISP topologies. to find the forest of nodes. We should only be concerned
2. Beacon sets with simple beacond&Even with simple with the edge which finally gets included in the DMES of
beacons, our beacon placement solution reduces the hr@-beacon. This edge should be the edge going into node
con set sizes of [7] by0 — 70%. This suggests that it v and hence is the edge opposite to which connectied
may be feasible to design a simpler monitoring infrastruthe forest.

ture that does not require that network nodes use differentrhe pruning algorithm requires no changes since it is
transmission rules for probe packets. completely abstracted away from the beacon capabilities
This conclusion is further supported by the comparisgihd network routing mechanisms used. To argue about the

of beacon set sizes yielded by our solution for simplgyplicability of our optimizations to the new model we first
vs. locally-flexible beacons, which indicates that |Ocall}present an observation for directed graphsl

flexible beacons may not yield significant gains for many

major ISP topologies. Lemma5: The existence of a high arity node in the di-
rected graph as constructed in Section VI implies that we
VI. Incorporating Half-Duplex Links have a cycle. Conversely, a cycle implies the existence of
a high arity node.

For brevity concerns, we have used an undirected graph
model to present our algorithms and proofs. In practicerof:
networks may connect any two nodes using a pair of half-Let « be high arity with respect to. This means that
duplex links, rather than a single full duplex link. A netwe have distinct paths; andp, from u to v both of which
work monitoring infrastructure should ideally be capablstart from different outgoing edges af Since every di-
of monitoring both half-duplex links as separate entitiegected link is paired with an oppositely directed link be-
Below, we illustrate that our solutions can be extended tween the same nodes, we have pathandyp), from v
such networks with slight modifications. to u. Let us assume that we chose auch that the first
We change our network model by replacing each undielges in pathg} andp, differ. Now pathsp; andp), (and
rected link by two half-duplex links between adjacerdlso pathg andp,) combine to form a cycle. Now con-
nodes. More formally, it7(V, E) is the undirected graph, sider that we have a cycle in the graph. We break the cycle

we deriveG’(V’, E’) from G as follows: along any two pathg; andp,. Like the argument above,

V' =V we would have a reverse path for bgth and p, which

o foralle € £, adde; = v — y andes = y — zto £/, makes the nodes at which we broke the cycle, high arity.

wherez andy are the nodes connected bin G. [ |
The following definitions need to be seen in the light of The above keeps our single arity network optimization

the new model. intact. Having no high arity nodes means that our net-

« Node Arity: The definition of node arity remains thework has no cycles. This is even stronger than a directed
same except that when we talk about the outgoing edgeyclic graph as, because of the way links are connected,
of a node, we are talking about the links directed awa&ny physical loop in the network becomes a cyclic path.

from the node. The graph looks like a tree except that all edges are actu-
« Path: A path now indicates paths connected by links ially paired.

the same direction. This also holds for the definition of The above also keeps the optimization of choosing just
physically connected paths. the high arity nodes for the beacon set, intact. In the proof,
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a high arity node is said to imply a cycle which we havi]

already proved above.
[3]

[4]

There are several ways in which our work can be ex-
tended. We briefly discuss a few below. [5]

In this paper, we consider two kinds of beacons: sim-
ple and locally-flexible. An important component of our
future work is to generalize the notion of DMES for othelf]
kinds of beacons. For example, the beacons could form
an overlay and use routing-tunnels to increase their DMES
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all network links. For instance, an ISP may be interested
in monitoring only its backbone or peering links. One ap-
proach for finding a beacon set for this scenario would

to create an abstraction in which some network nodes are
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] M.R. Garey and D.S. Johnso@pmputers and Intractabil-

ity: A Guide to the Theory of NP-Completenesd/. H.
Freeman & Co., 1979.

collapsed to create a new network that contains only t &] TH. Cormen, C.E. Leiserson, and R.L. Rivest, “Theo-
relevant edges. The key challenges then would be in de-  rem 37.4, minimum set covertroduction to Algorithms

ciding where to install the beacons (as a single node in

1999.

the collapsed graph may represent several nodes from[ttid R. Teixeira, K. Marzullo, S. Savage, and G.M. Voelker, “In

original network). We plan to explore this problem as part
of future work.

Another interesting direction in which our work can be
extended in by finding tree-like subgraphs in the network

and use assigning one beacon to every such subgraph. The
probes and/or routers would now need to be configuregorithm 4:

search of path diversity in isp networks,” Rroceedings
of the ACM SIGCOMM Internet Measurement Conference
October 2003.

Appendix
Finding out if a nodey in G(V, E) is high

so that probe packets generating within a subgraph remairity or not.

confined to the subgraph. This might be helpful in reduc-
ing the number of probes required, and the distance they
travel, for monitoring all the edges of a large network.

Do a depth first search from u;

if there is a back edge to u from
any other node
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declare u high arity;

declare u single arity;



Proof: (Proof of Correctness) Consider the case whes
high arity. Then there exists a node (3gyto which there
are more than one paths fromwith different outgoing
edges fromu. In a depth first search froms, one of these
edges will be selected first for traversal. In the depth first
search run, consider that we are on the first edge fiom
which has a path to, with an alternating path to the same
nodev as defined above. Because of the alternating path,
there exists a cycle with nodesandv on it. Since the
edge on the alternating path outgoing frairis not yet
traversed, it will become a back edge and will be detected
as outlined in the algorithm.

Now consider that node is not a high arity node. Also
assume that we detect a back edge in the way outlined in
the algorithm. Since the back edge was to nadeself,
it means that node is part of a cycle with two outgoing
edges patrticipating in the cycle. Thus, there is at least one
node in the network (from the same cycle) which has two
paths tou each path having a different outgoing edge from
u. This means that is a high arity node. This is a con-
tradiction. Hence if: is an arity one node then one cannot
detect a back edge as described in the algorithm.

|

Time Complexity:The complexity of depth first search
is O(|E| + |V]). Detecting a back edge involves going
through all the neighbors af. If the degree ofu is k,
then the cost for checking for a back edgé(is). Sincek
is bounded byFE|, the time complexity of our algorithm is
0(|E| + V).
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