
Core-Stateless Guaranteed Rate Scheduling Algorithms
���

Jasleen Kaur and Harrick M. Vin

Distributed Multimedia Computing Laboratory
Department of Computer Sciences

University of Texas at Austin

Abstract

Many per-flow scheduling algorithms have been proposed to
provide rate and delay guarantees to flows. It is often ar-
gued that the need for maintaining per-flow state and per-
forming per-packet classification seriously limits the scala-
bility of routers that employ such per-flow scheduling algo-
rithms. Consequently, design of algorithms that can provide
per-flow rate and delay guarantees without requiring per-flow
functionality in the network core routers has become an active
area of research. In this paper, we propose a methodology to
transform any Guaranteed Rate (GR) per-flow scheduling al-
gorithm into a version that does not require per-flow state to
be maintained in the core routers. We prove that a network of
such core-stateless servers provides the same delay guarantee
as a corresponding network of GR servers.

1 Introduction

The Internet has traditionally supported the best-effort ser-
vice model in which the network offers no assurance about
when, or even if, packets are delivered. This service model
has proved to be adequate for elastic applications (e.g., ftp,
telnet, and http) that tolerate packet delays and losses rather
gracefully. With the commercialization of the Internet and
the deployment of inelastic continuous media applications,
however, the best-effort service model is increasingly becom-
ing inadequate. For example, to meet the timeliness require-
ments of digital audio and video playback, most multimedia
applications require greater predictability with respect to end-
to-end delay and bandwidth than that offered by the current
best-effort networks. To facilitate the co-existence of these
emerging applications with the conventional elastic applica-
tions, there is an increasing need for designing networks that
differentiate between the services provided to different cus-
tomers and applications.

The integrated services network architecture achieves ser-
vice differentiation by requiring (1) routers to employ per-

�
This work appeared at IEEE INFOCOM, Anchorage, AK, April 2001.�
This research was supported in part by an AT&T Foundation Award,

IBM Faculty Development Award, Intel, the National Science Foundation
(CAREER award CCR-9624757, and Research Infrastructure Award CDA-
9624082), Lucent Bell Laboratories, NASA, Mitsubishi Electric Research
Laboratories (MERL), Tivoli, Novell, and Sun Microsystems Inc.

flow1 scheduling algorithms [2, 6, 12, 28] and (2) sources
and destinations to exchange signaling messages that estab-
lish packet classification and forwarding state on each router
along the path [21]. It is often argued that the need for main-
taining per-flow state and performing per-packet classifica-
tion in routers seriously limits the scalability of this architec-
ture.

To address this scalability requirement, the differentiated
services network architecture has been proposed [18]. In this
architecture, traffic entering a network is classified and con-
ditioned at the network boundary, and is assigned to a small
set of behavior (or flow) aggregates (also referred to as Per
Hop Behaviors—PHB). This architecture achieves scalabil-
ity by implementing complex classification and condition-
ing functions only at network boundary routers (which pro-
cess lower volumes of traffic and lesser numbers of flows),
and providing service differentiation inside the network for
flow aggregates rather than on a per-flow basis [18]. Sim-
ple resource-management mechanisms—such as RED [7]—
have been proposed to provide service differentiation among
behavior aggregates [4, 14, 15, 17]. While this architecture
is inherently more scalable, it is less flexible and provides
weaker guarantees to flows. In particular, it is non-trivial to
provide per-flow rate or delay guarantees in this framework.

Recently, several frameworks and mechanisms have been
proposed to overcome this tradeoff between scalability and
flexibility [8, 24]. These mechanisms aim at providing ser-
vice guarantees without requiring the core routers to either
maintain per-flow state, or perform complex per-packet com-
putation or both. In [8], simple buffer management schemes
are used to provide rate guarantees to flows. This ap-
proach requires per-packet flow classification and maintain-
ing per-flow state in routers, but eliminates the per-packet
computation overhead inherent in per-flow scheduling algo-
rithms. In [24], a core-stateless version of Jitter Virtual Clock
(CJVC) scheduling algorithm has been proposed. CJVC pro-
vides the same delay guarantees as Jitter Virtual Clock, while
maintaining and using per-flow state only at the edges of the
network. Since CJVC is non-work-conserving and employs
a constant bit-rate (CBR) per-flow shaper at every router,
queue lengths observed in a network of such servers are gen-
erally smaller than in networks of work-conserving sched-

1A flow refers to a sequence of packets transmitted from a source to a
destination.

1

ulers. This further reduces the computation complexity of
implementing such a scheduler. Unfortunately, the non-work-
conserving nature of the CJVC algorithm limits the extent of
statistical multiplexing gains that the framework can benefit
from. This is because non-work-conserving algorithms shape
the traffic to the maximum of the reserved rate and sending
rate for that flow; when a flow sends a burst of packets at a rate
greater than its reserved rate, extra packets are held until their
eligibility time, even if idle bandwidth is available for trans-
mitting these packets. Such an approach may under-utilize
available network resources. Hence, stateless algorithms that
provide delay guarantees and also are work-conserving are
desirable.

In this paper, we extend the idea of core-stateless schedul-
ing mechanisms to the entire class of Guaranteed Rate
(GR) [10] per-flow scheduling algorithms. We describe a
methodology using which any GR algorithm can be trans-
formed into a core-stateless version, CSGR, that provides the
same delay guarantees as the original GR algorithm. The net-
work architecture we consider is similar to the DiffServ ar-
chitecture, where per-flow functionality is implemented only
at the edges of the network, and core routers do not maintain
any per-flow state.

The rest of this paper is organized as follows. In Section 3,
we show that the methodology in [24] for deriving the core-
stateless version of Jitter Virtual Clock algorithm can not be
directly applied to its work conserving counterpart, Virtual
Clock. In Section 4, we observe the key property of GR
algorithms which allows us to design the core-stateless ver-
sion of Virtual Clock (CSVC). In Section 4.3, we prove that a
network of CSVC servers has the same delay guarantee as a
network of Virtual Clock servers. The methodology is gener-
alized to all GR algorithms in Section 5. We discuss related
work in Section 6 and summarize our results in Section 7.

2 Notation

Throughout this paper, we use the following symbols and no-
tations.

���� : the ����� packet of flow 	
���
� � : the arrival time of packet ���� at node �
along its path� �� : length of packet �������� : rate reserved for packet ����� � : propagation delay on the link connecting
node � and ���������

Furthermore, we assume that the sum of rates reserved for
flows at a server is less than the server capacity.

3 Problem Motivation

In [24], the authors develop the Core-Stateless Jitter Virtual
Clock (CJVC) scheduling algorithm; CJVC eliminates the
need for maintaining per-flow state in routers while provid-
ing the same delay guarantee as a network of Jitter Virtual
Clock (JVC) servers. In this section, we ask the question: can
the techniques used in deriving CJVC from JVC be applied
directly to derive a core-stateless version of Virtual Clock—
a work-conserving scheduling algorithm? We begin by first
outlining the technique of deriving CJVC from JVC.

The Jitter Virtual-Clock (JVC) algorithm assigns to packet���� a deadline � ��
� � at each server � as follows:

� ��
� �"!
#��
� � (1)
� ��
� �"! $&%�' �
 ��
� � �)(��
� �+* ��, � �

* ��
� � � (2)

� ��
� �-! � ��
� � �
� ��
� �� , � , �/.0� (3)

where (��
� �+* � is the amount of time by which the packet is
transmitted before its deadline at server �213� , and �4��
� � denotes
the eligibility time—the time at which packet ���� becomes eli-
gible for transmission—at server � . The JVC algorithm trans-
mits packets in the increasing order of their deadlines.

As is evident, to derive the eligibility time and hence the
deadline of a packet, JVC—and many other guaranteed rate
algorithms such as Virtual Clock—requires the server to re-
member for each flow the deadline � � * ��
� � of the previous
packet (used in the max-term computation of Equation (2)).
In deriving the Core-stateless Jitter Virtual Clock (CJVC) al-
gorithm, the authors of [24] observe that the need to maintain
such per-flow state at core routers can be eliminated by intro-
ducing a per-packet slack variable, 5 �� , that accounts for the
maximum difference between the two quantities in the max-
term computation. For CJVC, this translates to deriving 5 ��
such that for servers �6.87 :

5 �� �
 ��
� � �9(��
� �+* � .:� � * ��
� � (4)

In [24], authors derive a lower bound on the value of 5 �� ;
further, they demonstrate that by using this lower bound, a
network of CJVC server provide the same end-to-end de-
lay guarantee as the network of JVC servers. The deriva-
tion of the lower bound on 5 �� exploits a key property of the
JVC algorithm: the non-work conserving JVC algorithm at
each server shapes flows to their reserved rate and delays any
packets arriving earlier until their eligibility time. This prop-
erty enables the JVC algorithm to bound jitter, which in turn
bounds the difference between the deadline of a packet and
the eligibility time of the next packet of the same flow. Thus,
�;� � * ��
� � 1
���
� � 19(��
� �+* � � is upper-bounded for all � — this is

used as a lower bound for 5 �� .
Now consider Virtual Clock [29]—a work-conserving

packet scheduling algorithm. The Virtual Clock algorithm as-

2

signs to each packet ���� a virtual clock value ��� ��
� � at server� as follows:

��� ��
� � !
#��
� � �
� ��
� �� (5)

��� ��
� �"! $&% ' �
 ��
� � , ��� � * ��
� � � �
� ��
� �� (6)

Packets are transmitted in the increasing order of their virtual
clock values.

To eliminate the need for maintaining ��� � * ��
� � in routers, if
we apply the technique used to derive CJVC from JVC, then
we need to compute a per-packet slack variable 5 �� such that
for servers �&. 7 :

5 �� .���� � * ��
� � 1
 ��
� � (7)

Unfortunately, in a network of work-conserving Virtual Clock
servers, unlike in a JVC network, packets can arrive back-to-
back at a core router. The larger the number of back-to-back
arrivals, the greater is the difference between the deadline of
the penultimate packet of the burst and the arrival time of the
last packet in the burst. Hence, to account for such bursty
arrivals, the lower bound on 5 �� grows with � . Consequently,
we find that a network of core-stateless Virtual Clock servers
(derived using the technique presented in [24]) does not pre-
serve the delay guarantee of the corresponding network of
VC servers. Appendix A presents a detailed analysis of this
effect.

In what follows, we present a general methodology to
derive the core-stateless version of any Guaranteed Rate
(GR) [10] scheduling algorithm. Our methodology ap-
plies both to work-conserving and non-work-conserving al-
gorithms in GR; further, we demonstrate that a network of
such core-stateless GR servers provide the same delay guar-
antee as the corresponding network of GR servers.

4 Methodology

We begin by observing the following key property of Guar-
anteed Rate algorithms [10]: the upper bound on the dead-
line of a packet at a server can be expressed in terms of the
deadline of the packet at the previous server; this state can be
encoded in the packet itself (e.g., Dynamic Packet State [23]),
thereby eliminating the need for maintaining per-flow state in
core routers. We illustrate the use of this property in deriving
a core-stateless version of the Virtual Clock algorithm, and
prove the end-to-end delay guarantee of a network of such
core-stateless VC servers.

4.1 Key Insight

The Guaranteed Rate Clock (�����) of a per-flow scheduling
algorithm is defined in [10] as:

����� ��
� � !
 ��
� � �
� ��
� �� (8)

����� ��
� � ! $&% ' �
 ��
� � , ����� � * ��
� � � �
� ��
� �� (9)

where ����� ��
� � is the ����� of packet ���� at server � .
A scheduling algorithm at server � is defined to be a mem-

ber of the class of Guaranteed Rate (GR) scheduling algo-
rithms for flow 	 if it guarantees that ���� will be transmitted
by ����� ��
� � �
	 � , where 	 � is a constant that depends on the
scheduling algorithm and the server. The class of GR servers
is broad – it includes Virtual Clock, Packet-by-Packet Gener-
alized Processor Sharing [20], Self Clocked Fair Queuing [9],
Delay-EDD and Jitter-EDD [27]. Table 1 lists the values of
	 � for some GR algorithms (derived in [11]).

The following lemma (stated and proved in [10]) provides
the key property that we use in the design of core-stateless
versions of Virtual Clock and other GR algorithms:

Lemma 1 If the scheduling algorithm at server � in a net-
work belongs to the class of GR algorithms for flow 	 , then

����� ��
� ��� ����� ��
� �+* � � $&%�'��
�� ����� ���
� ��
� �� � � �+* � ��	 �+* �

where � �+* � is the propagation delay on the link connecting
node ��� 1 ��� and � .

The guaranteed rate clock (�����) of a packet determines
the deadline by which it gets transmitted. Lemma 1 provides
an upper bound on the ����� of a packet at a server � in terms
of the same packet’s state at the previous server � 10� . This
state can be encoded in the packet itself at server � 1 � and
can be used for computing the upper bound on ����� at the
server � . If the scheduler at server � uses this upper bound
on ����� of a packet as its transmission deadline, it does not
require any per-flow state to be maintained at server � .

We illustrate the above idea by applying it to define the
core-stateless version of Virtual Clock, a work-conserving
scheduling algorithm that belongs to GR. We generalize the
methodology to all GR algorithms in Section 5.

4.2 Core Stateless Virtual Clock

The Virtual Clock algorithm guarantees that a packet would

depart server � by ����� ��
� � ��������� ! � , where ��� ��
� � is com-
puted according to Equations (5) and (6), � � is the capac-
ity of server � and

�#"%$'&� the maximum size of packets it
serves. From this, it is easy to see that Virtual Clock belongs

3

GR algorithm 	 �
Virtual Clock

��" $ &� � � �
Packet-by-Packet GPS [20]

��" $ &� � � �
Self Clocked Fair Queuing [9] � "��� � ��" $ &� � � �
Delay EDD

��" $ &� � � � � � �
� � 1 � � � � �
� �
Table 1: 	 � values of some GR algorithms (For Delay EDD, � �
� � is the desired delay bound for flow 	 at server �)

to the class of GR algorithms with ����� ��
� � ! ��� ��
� � and

	 � ! � ��� � ! .
From Lemma 1, we know that

��� ��
� � � ��� ��
� �+* � � $&% '��
�� ����� � �
� ��
� �� � � �+* � �

��" $ &�+* �
� �+* � (10)

Define the core virtual clock of ���� at server � , ����� � � ��
� � , as
follows:

����� � � ��
� � ! ��� ��
� � (11)

����� � � ��
� �-! ����� � � ��
� �+* � ��	 �+* � � � �+* � � $&% '�
�� � ��� � �
� ��
� �� ,

�&. 7 (12)

where 	 �+* � ! � ����� 	��
! 	��
 . We define server � to be a Core-
Stateless Virtual Clock server if it schedules packets in the
increasing order of their ����� � ����
� � values. From (10)-(12), it
is easy to see that ����� � ����
� � . ��� ��
� � .

Thus, we have eliminated the need to maintain ��� � * ��
� � , to
compute the max term of Equation (6). Additionally, by en-
abling edge routers to encode the rate � �� , and enabling server
� 1:� to encode ����� � ����
� �+* � in the packet, we can eliminate
the need to maintain any per-flow state in the core routers of
the network.

We now prove that the end-to-end delay bound of a net-
work of such Core-Stateless Virtual Clock (CSVC) servers is
the same as that of a network of Virtual Clock servers.

4.3 Delay Guarantee of a Network of CSVC
Servers

Consider a network of �
��
 ��� servers. Let � � !���� ! � �2�� �
denote the time at which packet ���� departs server � . Then the
end-to-end delay � �� of packet ���� is defined as:

� �� ! ���!���� ! � � �� � 1
 ��
� � (13)

The delay guarantee of the network of servers is defined as
the upper bound on � �� .

To prove the delay guarantee of a network of CSVC
servers in Theorem 2, we first prove the delay bound of a
single CSVC server (Theorem 1). In the following, a non-
preemptive scheduling algorithm is one that does not pre-
empt the transmission of a lower priority packet even after

a higher priority packet arrives. On the other hand, a pre-
emptive scheduling algorithm always ensures that the packet
in service is the packet with the highest priority by possibly
preempting the transmission of a lower priority packet. A
non-preemptive algorithm is considered equivalent to a pre-
emptive algorithm if the priority assigned to all the packets
is the same in both. To simplify the proof of Theorem 1, we
first state and prove the following Lemmas.

Lemma 2 The core virtual clock of packet ���� satisfies

����� � � ��
� � . ����� � � � * ��
� � �
� ��
� �� , ��� �

Proof: See Appendix B.

Lemma 3 If the � ��� server’s capacity is not exceeded, then
the time at which packet ���� departs a Preemptive CSVC

server, denoted by � � � !�����! � �2�� � , is

� � � !�����! � � �� � � ����� � � ��
� � �&. � (14)

Proof: See Appendix C.
The following lemma is stated and proved in [11].

Lemma 4 If PS is a work conserving preemptive schedul-
ing algorithm, NPS its equivalent non-preemptive schedul-
ing algorithm and the priority assignment of a packet is not
changed dynamically, then

��� � � � � � � 1�� � � � � � � � � " $ &
�

where � � � � �2� � and ��� � � � �2� � denote the time a packet
leaves the server when PS and NPS scheduling algorithms
are employed, respectively. Also,

� " $ &
is the maximum length

of a packet and C is the capacity of the server.

Theorem 1 If a server’s capacity is not exceeded, then
the time at which packet ���� departs a Core Stateless Virtual

Clock server, denoted by � � !���� ! � �2�� � , is

� � !���� ! � � �� � � ����� � � ��
� � �
��" $ &�
� � (15)

where � � is the capacity of the server and
�#"%$'&� is the maxi-

mum length of a packet serviced by server � .

4

Proof: As Preemptive CSVC algorithm is work conserv-
ing and does not dynamically change the priority of a
packet, Theorem 1 follows immediately from Lemma 3 and
Lemma 4.
Theorem 1 states that the deadline for the departure of packet���� at server � is ������� � ����
� � � 	 � � . To avoid errors in compu-
tation of ����� � � ��
� �+* � and � �+* � due to inaccuracies in clock
synchronization and imprecise knowledge of propagation de-
lays, Equation (12) can be rewritten in terms of an alternate
set of variables as:

����� � � ��
� �"!
 ��
� � �)(��
� �+* � � $&% '��
�� ����� � �
� ��
� �� , �6. 7 (16)

where (��
� �+* � is the amount of time by which ���� departs be-
fore its deadline, ��� ��� � ����
� �+* � ��	 �+* � � at server � 1 � .
Theorem 2 The delay guarantee of a network of CSVC
servers is the same as that of a network of Virtual Clock
servers.

Proof: Using Theorem 1, Equation (11) and repeated appli-
cation of Equation (12), it follows that the time � �!���� ! � �2�� �
at which packet ���� departs the last server in a network of �
CSVC servers is given by

� �!���� ! � � �� � � ����� � � ��
� � � 	 �
� ��� ��
� � �0�	� 1:� � $&% '��
�� � ��� � �

� ��
� ��

� �
* ��
� � � � 	 � � � � � ��	 �

where 	 � ! �������� ! � . From (13), the delay guarantee of the
network of CSVC servers is thus given by:

� �� � ��� ��
� � 1
 ��
� � ��� � 1 ��� $ %�'�
�� � ��� � �
� ��
� ��

� �
* ��
� � � � 	 � � � � � ��	 �

The delay guarantee of a network of � Virtual Clock servers
has been shown to be the same as the above in [10].
The quantity (��� ��
� � 1
���
� �) in the above formulation depends
on the source traffic characterization. For a Leaky Bucket
source characterization [20], it can be shown [10] that

��� ��
� � 1
 ��
� � ���
�

� �
where � � is the depth of the Leaky Bucket and � � is its aver-
age rate. If flow 	 conforms to a Leaky Bucket with parame-
ters (� � , � �), then its end-to-end delay is given by:

� �� � � �� � ��� � 1 ��� $ %�'�
�� � ��� � �
� ��
� �� � � * ��

� � � � 	 � � � � � ��	 �

5 Core-Stateless GR Scheduling Algo-
rithms

In this section, we generalize the methodology described in
the previous section to define a core-stateless version of any
GR algorithm, which gives the same delay guarantee as the
original algorithm.

Define the core guaranteed rate clock (������� � �) for
packet � �� at server � , ������� � � ��
� � , as follows:

������� � � ��
� � ! ����� ��
� �
������� � � ��
� ��� � ! ������� � � ��
� � ��	 � � � � � $&% '�
�� � ��� � �

� ��
� �� ,
�6.0�

For every GR algorithm, define a corresponding Core-
Stateless GR algorithm that assigns ������� � � values to pack-
ets of all flows as defined above, and schedules packets in the
increasing order of their ������� � � values.

Theorem 3 The delay guarantee of a network of CSGR
servers is the same as that of a network of corresponding GR
servers.

Proof: The proof of the above theorem can be constructed
in exactly the same manner as the proof of Theorem 2 by re-
placing ��� and ����� � � by ����� and ������� � � respectively
in the corresponding proof analysis of Lemmas 2 and 3, and
Theorems 1 and 2.

From Theorem 3, it follows that for every GR algorithm,
we can define a Core-Stateless GR algorithm that would pre-
serve the delay properties of the original GR algorithm. Of
particular interest is the design of Core-Stateless-Delay-EDD,
a work-conserving GR algorithm that has the desirable prop-
erty of decoupling the delay and rate guarantees [5, 27].

Observe that the method for deriving core-stateless ver-
sions of GR algorithms described above preserves only the
delay property of the GR algorithms. Hence, this approach
can be used to derive core-stateless versions of all unfair,
work-conserving algorithms (such as Virtual Clock, Delay
EDD) in GR. However, if this approach is applied to algo-
rithms in GR that provide other forms of guarantees (e.g.,
fairness), then the resulting core-stateless algorithm may not
provide the same type of guarantees. For instance, if the
above technique is applied to the Weighted Fair Queuing
(WFQ) [6] algorithm, then the resulting core-stateless algo-
rithm will have the same delay property as WFQ, but would
not guarantee fairness. In general, it is non-trivial to design
core-stateless versions of fair scheduling algorithms. This is
because the per-packet computation of a flow in a fair GR
server depends on the other flows that are sharing the server.
Hence this computation cannot be performed by the edge
routers for a flow. Recently, schemes that achieve approxi-
mate fairness without maintaining per-flow state in network
cores have been proposed [3, 19, 23].

5

6 Related Work

In the differentiated services architecture, per-flow classifica-
tion and computation is performed only at the network edges
– the network core maintains state for only a few behavior ag-
gregates [4, 14, 15, 17]. While this architecture is inherently
scalable, it is non-trivial to implement services that provide
per-flow rate or delay guarantees.

In order to preserve the flexibility offered by per-flow man-
agement, recent research effort has focussed on reducing the
complexity and increasing the efficiency of sorting and per-
flow classification. Sorting complexity of � � loglog � � has
been reported in [25]. On the other hand, sorting is com-
pletely avoided in [8, 26]. In [8], simple buffer management
schemes are used to provide rate guarantees – however, the
buffer space is mostly statically partitioned, which results in
poor resource utilization.

It is widely believed that per-flow classification is more
complex than sorting. A number of schemes have been pro-
posed and/or implemented that make flow classification more
efficient [1, 13, 16, 22].

A different research theme assumes that the number of
flows in the future Internet would be too large for the
speedups in the existing per-flow mechanisms to suffice.
Therefore, it focuses on completely eliminating per-flow state
and per-packet classification in the network cores, and yet at-
tempts to provide per-flow guarantees [5, 24]. The SCED+
algorithm proposed in [5] avoids the use of per-path state in
order to provide guarantees to traffic aggregates that share the
same path in an ATM network. However guarantees are not
tailored to meet the specific requirements of individual flows.
The CJVC algorithm [24] on the other hand provides per-
flow delay guarantees without maintaining per-flow state in
the network core. Additionally, by employing a CBR shaper
at every router, the queues are not allowed to grow large, thus
resulting in smaller sorting overhead. However, this scheme
is non work-conserving, which limits the gains of statistical
multiplexing it can benefit from.

7 Summary

In this paper we propose a methodology for transforming
any Guaranteed Rate (GR) algorithm into its core-stateless
counterpart, that eliminates the need for maintaining per-flow
state or performing per-packet classification in core routers.
We have shown that a network of servers running such Core
Stateless Guaranteed Rate (CSGR) algorithms provides the
same end-to-end delay guarantee as a network of correspond-
ing GR servers.

References

[1] A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting
Global Data-flow Optimization in a Generalized Packet Fil-

ter Architecture. In Proceedings ACM SIGCOMM, September
1999.

[2] J.C.R. Bennett and H. Zhang. WF � Q: Worst-case Fair
Weighted Fair Queuing. In Proceedings of INFOCOM’96,
pages 120–127, March 1996.

[3] Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queueing: Fair
Bandwidth Sharing Without Per-Flow State. In Proceedings of
IEEE INFOCOM, March 2000.

[4] D. Clark and W. Fang. Explicit Allocation of Best Effort
Packet Delivery Service. IEEE/ACM Transactions on Net-
working, 1(6):362–373, August 1998.

[5] R. L. Cruz. SCED+: Efficient Management of Quality of
Service Guarantees. In Proceedings of INFOCOM’98, March
1998.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Proceedings of ACM
SIGCOMM, pages 1–12, September 1989.

[7] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. In IEEE/ACM Transactions on Net-
working, volume 1, pages 397–413, August 1993.

[8] R. Geurin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS
Provision Through Buffer Management. In Proceedings ACM
SIGCOMM, September 1998.

[9] S.J. Golestani. A Self-Clocked Fair Queueing Scheme for
High Speed Applications. In Proceedings of INFOCOM’94,
1994.

[10] P. Goyal, S.S. Lam, and H. Vin. Determining End-to-End De-
lay Bounds In Heterogeneous Networks. In ACM/Springer-
Verlag Multimedia Systems Journal, 1996. Also appeared in
the Proceedings of the Workshop on Network and Operating
System Support for Digital Audio and Video, April 1995.

[11] P. Goyal and H. Vin. Generalized Guaranteed Rate
Scheduling Algorithms: A Framework. Technical Report
TR-95-30, Department of Computer Sciences, The Uni-
versity of Texas at Austin, 1995. Available via URL
http://www.cs.utexas.edu/users/dmcl.

[12] P. Goyal, H. Vin, and H. Cheng. Start-time Fair Queuing: A
Scheduling Algorithm for Integrated Services Packet Switch-
ing Networks. In Proceedings of ACM SIGCOMM’96, pages
157–168, August 1996.

[13] P. Gupta and N. McKeown. Packet Classification on Multiple
Fields. In Proceedings ACM SIGCOMM, September 1999.

[14] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured
Forwarding PHB Group. June 1999. Internet RFC 2597.

[15] V. Jacobson, K. Nichols, and K. Poduri. An Expedited For-
warding PHB. August 1998. available as IETF draft(draft-
ietf-diffserv-phb-ef-00.txt).

[16] T. V. Lakshman and D. Stiliadis. High-speed Policy-based
Packet Forwarding Using Efficient Multi-dimensional Range
Matching. In Proceedings ACM SIGCOMM, September 1998.

[17] K. Nichols, V. Jacobson, and L. Zhang. An Approach to Ser-
vice Allocation in the Internet. November 1997. Internet Draft.

6

[18] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differen-
tiated Services Architecture for the Internet. November 1997.
ftp://ftp.ee.lbl.gov/papers/dsarch.pdf.

[19] R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A Stateless
Active Queue Management Scheme for Approximating Fair
Bandwidth Allocation. In Proceedings of IEEE INFOCOM,
March 2000.

[20] A.K. Parekh. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks. PhD Thesis,
Department of Electrical Engineering and Computer Science,
MIT, 1992.

[21] S. Shenker and C. Partridge. Specification of Guaranteed
Quality of Service. Available via anonymous ftp from
ftp://ftp.ietf.cnri.reston.va.us/internet-drafts/draft-ietf-intserv-
guaranteed-svc-03.txt, November 1995.

[22] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast
Scalable Algorithms for Level Four Switching. In Proceedings
ACM SIGCOMM, September 1998.

[23] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth Alloca-
tions in High Speed Networks. In Proceedings of ACM SIG-
COMM, September 1998.

[24] I. Stoica and H. Zhang. Providing Guaranteed Services With-
out Per Flow Management. In Proceedings of ACM SIG-
COMM, September 1999.

[25] S. Suri, G. Varghese, and G. Chandramenon. Leap Forward
Virtual Clock: A New Fair Queueing Scheme with Guaran-
teed Delay and Throughput Fairness. In Proceedings of INFO-
COM’97, April 1997.

[26] D. Wrege and J. Liebeherr. A Near-optimal Packet Scheduler
for QoS Networks. In Proceedings of INFOCOM’97, April
1997.

[27] H. Zhang. Service Disciplines For Guaranteed Performance
Service in Packet-Switching Networks. Proceedings of the
IEEE, 83(10), October 1995.

[28] H. Zhang and S. Keshav. Comparison of Rate-Based Service
Disciplines. In Proceedings of ACM SIGCOMM, pages 113–
121, August 1991.

[29] L. Zhang. VirtualClock: A New Traffic Control Algorithm
for Packet Switching Networks. In Proceedings of ACM SIG-
COMM’90, pages 19–29, August 1990.

A Applying approach of [24] to Virtual
Clock

We apply the approach adopted in [24] for Jitter Virtual Clock
to its work-conserving version, Virtual Clock, in this section
and demonstrate that the delay guarantees of Virtual Clock
are not preserved in its core-stateless version.

Let J be the total number of nodes that packets of flow 	
traverse. Let � be the total number of flow 	 packets trans-
mitted. If we introduce a per-packet slack variable, 5 �� , such
that,

5 �� .���� � * ��
� � 1
 ��
� � , � ! 7 ,�������, ��� � ! 7 ,�������, � (17)

and we compute the new core virtual clock values as:

����� � � ��
� � !
 ��
� � � 5 �� �
� ��
� �� , � ! 7 ,�������, ��� � ! � ,�������, �

(18)

where 5 �� !	� , then we can calculate ����� � ����
� � purely on the
basis of variables that can be encoded in the packet by nodes
�6. � .

Note that, from Equations (6), (17), and 18, we get:

����� � � ��
� � .���� ��
� � ,
 � , � , 	 (19)

Using 19, we can show that a server scheduling packets
in increasing order of their core virtual clock values would

transmit a packet by �#����� � � ��
� � � 	 � � , where 	 � ! � ��� � !
(the proof is similar to the one for Theorem 1). Hence, the
following upper bound on
 ��
� � exists:

 ��
� ��� ����� � � ��
� �+* � � 	 �+* � � � �+* � (20)

For computing 5 �� , note that 5 �� !�� .
Further, in order to ensure Inequality (17), we need to

make sure that 5 �� is no smaller than the largest value that
its RHS can take. This is given by upper and lower bounds on
��� � * ��
� � and
���
� � respectively as follows:

��� � * ��
� � ! $&% ' �
 � * ��
� � , ��� � *
��
� � � �
� � * ��
� ��

�
 � * ��
� � � 5 � * �� �
� � * ��
� �� �;	 � ���9� ��� � �

� ����� � � � * ��
� �+* � � � �+* � ��	 �+* � � 5 � * �� �
� � * ��
� ��

�;	 � ���9�;7 � � �
�
 � * ��
� �+* � �:7#�;5 � * �� �

� � * ��
� �� � ��� � �+* � � 	 �+* � �

�
�

�
 � * ��
� � ����� 1 ���+�;5 � * �� �
� � * ��
� �� � �

�+* ��
� � � � � � � 	 � �

� ��� � * ��
� � �0� � 1:� �+�;5 � * �� �
� � * ��
� �� � �

�+* ��
� � � �

� � � 	 � �

 ��
� � .
 ��
� �+* � � � �+* � �
� ��
� �

.
 ��
� �+*
� �
�+* ��
� � �+*
� � � � �

� ��
� � �

�
�

.
 ��
� � �
�+* ��
� � � �

� � �
� ��
� � �

7

Therefore, at node � , the maximum possible value that 5 ��
would be required to exceed is given by:

5 �� . ����� � * ��
� � 1
 ��
� � � �6� ��13��� ��5 � * �� �
� � * ��
� �� � �

�+* ��
� � � � 	

� 1
� ��
� � �

Since ��	 � . � �� � � � � , the RHS is maximized for � ! � , and
therefore, the least sequence of 5 �� that would satisfy Inequal-
ity (17) is given by:

5 �� ! �

5 �� ! �
�� � � � , ����� � * ��
� � 1
 ��
� � � ��� � 1 ��� ��5 � * �� �
� � * ��
� �� �

� �
* ��
� � � ��	

� 1
� ��
� � � � � (21)

A.1 Delay Bound of a Network of Core-
Stateless Virtual Clock Servers

Consider a flow 	 traveling through a network of � Core-
Stateless Virtual Clock Servers. Let � ��
� � be the time at which
packet ���� gets transmitted at the � ��� node. Then, the bound
on the end-to-end delay of the �#��� packet is given by:

� ��
� � 1
 ��
� � � ����� � � ��
� � � 	 � 1
 ��
� �
�
 ��
� � 1
 ��
� � � 5 �� �

� ��
� �� � 	 �

�
�

�
 ��
� � 1
 ��
� � ��� � 1 ��� ��5 �� �
� ��
� �� �

� �
* ��
� � � � � � � 	 � � � 	 �

� ��
� � 1
 ��
� � � ��� ��
� � 1
 ��
� � �0�	� 1:� �+�;5 �� �
� ��
� �� �

� �
* ��
� � � �

� � � 	 � � � 	 �
This delay bound for the ����� packet of a flow depends on

the value of its slack variable, 5 �� . To get a feel for the lower
bound on 5 �� , consider a well-behaved source, that sends its
packets at a constant bit-rate, � � , i.e.:

 ��
� � ! ��� � * ��
� �
Substituting in Equation (21), we get:

5 �� ! �

5 �� ! �	� 1:� ���
� ��
� � � � * ��

� � � ��	 � 1
� ��
� � �

5 �� ! �	� 1:� � � �
� ��
� � ��� � 1 �����

� ��
� �

� ��� �
* ��
� � � ��	 � 1

� ��
� � �

5 �� ! �	� 1:� � � �
� ��
� � ��� � 1 ��� � �

� ��
� � �

�	� 1:� ���
� ��
� � �0�	� � � 1 ��� ������� �

* ��
� � � ��	

� 1
� ��
� � �

�
�
�

We see that, as � grows, such a computation of the slack
variable 5 �� to eliminate per-flow state in core nodes fails to
provide reasonable end-to-end delay bounds for even constant
bit-rate flows, and hence the approach used in [24] does not
work for Virtual Clock.

B Proof of Lemma 2

Observe that

$&% '�
�� � ��� � �
� ��
� �� . $&% '�
�� � ��� � * � �

� ��
� �� (22)

Also observe that by repeatedly applying 12, we get:

����� � � � * ��
� � ! ����� � � � * ��
� � ����� 1)74� $&% '��
�� ����� � * � �
� ��
� ��

�
�+* ��
� � � � 	 � � � � �

! ��� � * ��
� � �0� � 1 ��� $&% '�
�� � ��� � * � �
� ��
� ��

�
�+* ��
� � � � 	

� � � � � (23)

Similarly,

����� � � ��
� � ! ��� ��
� � ����� 1 ��� $ %�'�
�� � ��� � �
� ��
� �� �

�+* ��
� � � ��	

� � � � �

. ��� � * ��
� � �
� ��
� �� �0� � 1:� � $&% '��
�� � ��� � �

� ��
� ��

�
�+* ��
� � � � 	

� � � � � �;	 � ���9� � � �

. ��� � * ��
� � �
� ��
� �� �0� � 1:� � $&%�'��
�� � ��� � * � �

� ��
� ��

8

�
�+* ��
� � � � 	

� � � � � �;	 � ���9�;7 74� �

. ����� � � � * ��
� � �
� ��
� �� � 	 � ���9�;7�� � �

C Proof of Lemma 3

At server � , define the quantity � �
� � ��� � for flow 	 as follows:

� �
� � ��� � !
�� � ����
� � if �#�	�9�
���
� � � � ��

������� � � � * ��
� �
� � � ����� � � ��
� � �� otherwise

(24)

Let
 be the set of flows served by server � . Then server �
with capacity � � is defined to have exceeded its capacity at
time � if ���
 � � � � � ��� � � � � .

The proof of Lemma 3 is by induction on � .
Base Case : j = 1
The first server in a CSVC network runs the Virtual Clock
algorithm, for which the theorem is proved in [11].
Induction Hypothesis : Assume 14 holds for � � � � � .
Induction : We will show that 14 holds for � � � � � ��� .
From (16) and the Induction Hypothesis (which implies that
(��
� " . �) we get

����� � � ��
� " � � .
 ��
� " � � �
� ��
� �� (25)

Let � � ��� � , � � � be the set of all flow 	 packets that arrive
in interval � � � , � ��� and have virtual clock value no greater than� � . For packet ���� , let � ��
� � denote the following quantity

� ��
� � ! ����� � � ��
� � 1 $&% ' �
 ��
� � , ����� � � � * ��
� � �
It is easily observed from (24), (25) and Lemma 2 that� ���

�
 � �
� " � � ��� � ��� ! �
��
������ �
 � ����� �

� ��
� " � � ��� ��
� " � � �
. �

��
������ �
 � � � � �
� ��
� " � � �

� ��
� �� �

. �
��
�� � � �
 � � � �

� ��

Therefore, the cumulative length of all flow 	 packets that ar-
rive in interval � � � , � ��� and have virtual clock value no greater
than � � , denoted by � � � ��� � , � � � , is given as

�!� � ��� � , � � � � � ���
�
 � �
� � ��� � ��� (26)

We now prove the theorem by contradiction. Assume that
for packet ���� , � " � �� !���� ! � �2�� � � ����� � � ��
� " � � . Also, let �#"

be the beginning of the busy period in which � �� is served
and � � ! ����� � � ��
� " � � . Let � � be the least time less than� � during the busy period such that no packet with virtual
clock value greater than � � is served in the interval � � � , � � � . We
claim that such a � � exists. If not, then either packet ����
� " � � is
the first packet in the busy period or preempts the service of
the previous packet on arrival. In either case, the packet gets
served immediately on arrival, and

� " � �� !���� ! � � �� � !
 ��
� " � � �
� ��

� " � �� ����� � � ��
� " � �
which violates our assumption. Therefore, such a � � exists.

Clearly, all the packets served in the interval � � � , � �$� arrive
in this interval (else they would have been served earlier than� �) and have virtual clock value less than or equal to � � . Since
the server is busy in the interval � � � , � � � and packet � �� is not
serviced by � � , we have:

�
�
 � � � � ��� � , � � � � � " � � ��� � 1%� � �

�
�
 �

� � �
�
 � �
� " � � ��� � �&� � � " � � ��� � 1%� � �� ���

�

�
�
 � � �
� " � � ��� � �&� � � " � � ��� � 1%� � � (27)

Since the server capacity is not ex-
ceeded, � �
 � � �
� " � � ��� � � � " � � . Hence,' ����
 � �
 � � �
� " � � ��� � ��� � � " � � ��� � 1(� � � . This con-
tradicts (27) and hence the induction step is proved. From
induction, the theorem follows.

9

