
Core-stateless Guaranteed Throughput Networks
�

Jasleen Kaur Harrick M. Vin
Department of Computer Science Department of Computer Sciences

University of North Carolina at Chapel Hill University of Texas at Austin

Abstract — End-to-end throughput guarantee is an important
service semantics that network providers would like to offer to their
customers. A network provider can offer such service semantics
by deploying a network where each router employs a fair packet
scheduling algorithm. Unfortunately, these scheduling algorithms
require every router to maintain per-flow state and perform per-
packet flow classification; these requirements limit the scalability
of the routers. In this paper, we propose the Core-stateless Guar-
anteed Throughput (CSGT) network architecture—the first work-
conserving architecture that, without maintaining per-flow state or
performing per-packet flow classification in core routers, provides
to flows throughput guarantees that are within an additive constant
of what is attained by a network of core-stateful fair routers.

1 Introduction
With the commercialization of the Internet, there is a signif-
icant incentive for network service providers to export richer
service semantics —with respect to end-to-end delay and
throughput guarantees— to customers. Over the past decade,
several packet scheduling algorithms that enable a network
to offer such richer semantics have been proposed [2, 6, 9,
19]. A network can, for instance, provide end-to-end de-
lay guarantees by employing Virtual Clock [20] and Delay
Earliest-Due-Date (Delay EDD) [14, 18] scheduling algo-
rithms; and delay-cum-throughput guarantees by employing
fair packet scheduling algorithms —such as Weighted Fair
Queuing(WFQ) [6, 12], Start-time Fair Queuing (SFQ) [9],
and Self-clocked Fair Queuing (SCFQ) [7]— in routers. Un-
fortunately, these scheduling algorithms require every router
to maintain per-flow state and perform per-packet flow clas-
sification; these requirements limit the scalability of the
routers, especially routers in the core of the network that may
carry a very large number of flows.

The topic of designing scalable network architectures that
can export to flows1 rich service semantics, but without main-
taining per-flow state or performing per-packet flow classifi-
cation in core routers, has received considerable attention in
the recent past [10, 17, 21]. For instance, the Core-stateless
Jitter Virtual Clock (CJVC) scheduling algorithm [17] and
the class of Core-stateless Guaranteed Rate (CSGR) algo-
rithms [10] enable a network to provide end-to-end delay
guarantees similar to their core-stateful counterparts. CJVC
also provides end-to-end throughput guarantees, but at the ex-
pense of making the network non-work-conserving. There
have also been attempts at designing core-stateless versions
of fair scheduling algorithms [4, 5, 13, 16]. Most of these
attempts only provide statistical fairness at large time-scales;
they do not provide any fairness or throughput guarantees for�

This work appeard at IEEE INFOCOM, San Fransisco, CA, April 2003.
1We refer to a sequence of packets transmitted by a source as a flow.

short-lived flows or for short intervals of interest in long-lived
flows.

In this paper, we propose the Core-stateless Guaranteed
Throughput (CSGT) network architecture—the first work-
conserving network architecture that provides throughput
guarantees to flows over finite time-scales, but without main-
taining per-flow state in core routers. We develop the ar-
chitecture in two steps. First, we show that for a network
to provide end-to-end throughput guarantees, it must also
provide end-to-end delay guarantees. Second, we demon-
strate that two simple mechanisms —tag re-use and source
rate control— when integrated with a work-conserving, core-
stateless network that provides end-to-end delay guarantees,
lead to the design of a CSGT network that provides end-to-
end throughput bounds within an additive constant of that at-
tained by a core-stateful network of fair servers.

The rest of this paper is organized as follows. In Section 3,
we formulate the problem of providing end-to-end throughput
guarantees. In Section 4, we present our CSGT network ar-
chitecture, and derive bounds on the end-to-end throughput.
Section 5 discusses deployment considerations. We summa-
rize our contributions in Section 6.

2 Notation and Assumptions
Throughout this paper, we use the following symbols and no-
tations. ���� : the ���
	 packet of flow ��
���� � : arrival time of ���� at node � on its path� ���� � : departure time of ���� from node �� �� : length of packet � ��� � : rate reserved for flow �� � : upper bound on propagation delay of

the link connecting node � and ���������� � : outgoing link capacity at node �
denotes the number of routers along the path of flow ! .

The source of flow ! is connected to router " and the desti-
nation is connected to router

. A source is said to transmit

packets at least at its reserved rate #%$, if &�'$)(*,+ & '.- *$)(*0/ 132�4657 8 7 .
The 9;:=< packet, >?'$, transmitted from the source, is said to
have a sequence number of 9 . Throughout our analysis, we
use the terms server and router interchangeably; further, we
assume that the sum of rates reserved for flows at any server
does not exceed the server capacity (i.e., the link bandwidth).
For improving readability, we include the proofs of all the
Lemmas and Theorems in the appendix.

3 Problem Formulation
A flow ! with reserved rate #@$ expects the network to provide,
during any time interval, throughput at least at rate #A$. This

1

service semantic is captured in the following definition of an
end-to-end throughput guarantee:

Definition 1 For a flow ! , whose source transmits pack-
ets at least at its reserved rate # $, a network is said to pro-
vide an end-to-end throughput guarantee if in any time inter-
val B C *%D CFEHG , the network guarantees a minimum throughput,I $)(JLK=CM* D C E)N , to flow ! given by:I $)(J K=C *%D CFE N�O # $ KPCFERQ�C * N QS# $ATVU�W :$)(J (1)

where

is the path length traversed by flow ! and T U
W :$)(J is a
constant that depends on the traffic and server characteristics
at nodes along the path.

From the definition, a network guarantees a non-zero
throughput to flow ! if C E QXCM* O T U�W :$)(J ; thus, the value ofT U�W :$)(J bounds the longest time interval for which a flow may
receive no throughput from the network. Clearly, the smaller
the value of T U�W :$)(J , the better the quality of network service for
applications that require sustained network throughput.

Observe that most networks that reserve a rate for each
flow guarantee an average throughput at the reserved rate;
however, these networks differ in the time-scales (namely,
the value of T U�W :$)(J) at which this guarantee is provided. For
instance, for a network where each router employs an un-
fair packet scheduling algorithm (e.g., Virtual Clock or De-
lay EDD), the throughput received by a flow during a time
interval is a function of the throughput received by the flow
in the past. In fact, for such networks, T U�W :$)(J is not bounded,
indicating that an unfair network cannot guarantee non-zero
throughput at finite time scales. To provide throughput guar-
antees at short time-scales, networks employ fair packet
scheduling algorithms at routers [3, 6, 7, 9]. Fair schedul-
ing algorithms ensure that in any time interval in which two
flows are backlogged, they receive service in proportion to
their reserved rates. It can be shown that, when coupled with
admission control, a network of fair servers provides an end-
to-end throughput guarantee with T U�W :$)(JZY K / " N 1�[]\M^7 8 7 /_ J - *`Ma *Sb ` / _ J`Ma * T $)(` , where T $)(` characterizes the through-
put guarantee provided by fair server c in isolation [1, 11].

To provide throughput guarantees, existing fair scheduling
algorithms define a concept of virtual time at each router; the
virtual time at a router is inherently a function of the current
state of each flow passing through the router. Implementa-
tions of fair scheduling algorithms, therefore, require every
router to maintain per-flow state and perform per-packet flow
classification. In this paper, our objective is to design a work-
conserving core-stateless network architecture2 that provides
deterministic end-to-end throughput guarantees, similar to
those provided by a network where each router employs a
fair scheduling algorithm.

2Throughout this paper, the core-stateless property refers to a network
that does not require its core routers to maintain per-flow state or perform
per-packet flow classification.

4 CSGT Networks
We design core-stateless guaranteed throughput networks
in two steps. First, we show that for a network to pro-
vide throughput bounds similar to those in fair networks, it
must also provide end-to-end delay guarantees. Second, we
demonstrate that two mechanisms —tag re-use and source
rate control— when integrated with a core-stateless network
that provides end-to-end delay guarantees, lead to the design
of the Core-stateless Guaranteed Throughput (CSGT) net-
works that provide end-to-end throughput bounds within an
additive constant of that attained by a core-stateful network
of fair servers. Throughout this section, we assume that a
source transmits equal-sized packets.

4.1 Need for Delay Guarantees
Let the expected arrival time of a packet >V'$ of flow ! at the
first server, dfehgiK�> '$ N , be defined as:dfehgiK�> *$ N Y & *$)(*dfehgiK�> '$ N Y jlk%m n & '$)(* D dfehgiK�> '.- *$ Npo /rq '.- *$ #.$ D 9 O "
Then, a network is said to provide an end-to-end delay guar-
antee to flow ! , if, for all packets >V'$, the network provides an
upper bound on K=s�'$)(J QldfetgiKu>?'$ NMN , where s;'$)(J is the depar-
ture time for packet >?'$ from node

. We use this definition

of end-to-end delay guarantee to prove Theorem 1.

Theorem 1 If a network provides lower-bounds on
throughput of the form:

I $)(JvKPCM* D C E.Nxw #@$yK=C E QzCM* N Q|{ to
any flow ! whose source transmits at least at its reserved rate,
then it also provides to flow ! an end-to-end delay guarantee
of the form: s;'$)(J Q�dfetg * Ku>?'$ N +~}�� 1�[]\p^78 7 .

The converse of Theorem 1 indicates that a network that
does not provide delay guarantee to packets cannot provide
throughput bounds. Hence, a work-conserving, core-stateless
network that provides delay guarantee is a crucial building
block for designing CSGT networks.

In [10], the authors propose Core-stateless Guaranteed
Rate (CSGR) networks that provide the same delay guaran-
tee as a network that employs stateful scheduling algorithms
from the Guaranteed Rate (GR) class at the core routers. As
we illustrate below, a work-conserving CSGR network, how-
ever, does not provide throughput guarantees at short time-
scales. Our design of a CSGT network uses the CSGR net-
work as a building block and enhances it with a set of end-
to-end mechanisms that allow the network to retain its de-
lay properties while providing throughput guarantees at short
time-scales. We describe the derivation of a CSGT network
in the context of a Core-stateless Virtual Clock (CSVC) net-
work [10, 21]—a specific instance of the class of CSGR net-
works.

2

4.2 Defining CSGT Networks
CSVC Networks A CSVC network consists of two
types of routers: edge routers and core routers. Edge routers
maintain per-flow state and perform per-packet flow classi-
fication. The ingress router —the edge router where a flow
enters the network— assigns to each packet >�'$ a service tag
vector B �i���@#%�%'$)(* D �L���@#@�%'$)(E D����3��D �L���@#%�@'$)(J G where

is the

number of servers along the path, and �L���@#%�A'$)(` , the service
tag value for server c , is derived as follows3:

�f���@#%� '$)(* YXj�kAm n & '$)(* D �i���@#%� '.- *$)(* o / q '$#@$�i���@#%� '$)(` Y �i� '$)(* / ` - *�< a * KP�?$)(< /zb < / jlk%m*H���=� ' q �$# $ N D c w "
where �i���@#%�.�$)(* Y�� and �?$)(< Y 13[]\p^� � � . At both the edge and
core routers, packets are transmitted in the increasing order of
their service tags. Note that the core routers only perform a
sorting operation on the tag values; there is no need to main-
tain per-flow state or perform per-packet flow classification.

It has been shown that a CSVC network provides a dead-
line guarantee [10, 21]: packet >V'$ is guaranteed to depart
server c by K��i���@#%� '$)(` / �?$)(` N . However, the following exam-
ple shows that a CSVC network does not provide throughput
guarantees at finite time-scales.

Example 1 Consider the first server, with a transmission
capacity of " � packets/sec, in a CSVC network. Let the
sum of reserved rates of all flows be equal to the capacity.
Let the rate reserved by a flow ! be " packet/sec. At timeC Y�� , let ! be the only backlogged flow. In this setting, byC Y " , 10 packets of flow ! are serviced by the server; further,�i���@#%� *�*$)(* Y "�" . Now, let all other flows become backlogged
at time C Y " . Since the server services packets in the in-
creasing order of virtual clock values, packet > *�*$ may not be
serviced until C Y " � ; hence, flow ! receives no throughput
during the interval B � D " � G . Given any time interval of arbi-
trary length, it is easy to extend this example to show that
flow ! receives no throughput during the interval of interest.
Therefore, for any interval length, the CSVC server does not
provide any non-trivial (non-zero) lower bound on through-
put.

In the above example, until time C Y " , because of the
availability of idle bandwidth and the work-conserving nature

3In practice, the ingress router computes only �����M�H� ���� for packet ¡ �� .
Before transmitting the packet, it encodes in the packet header a quantity
called the slack—the difference between �����M�H� ��H� and the actual departure

time—and ¢h£�¤ ¦¥;§P¥ ��¨ª© 7« 7 . When the second router receives the packet, it

adds the slack, ¬
­ , and ¢h£�¤ ¦¥;§P¥ � ¨ª© 7« 7 , to the arrival time of the packet to

compute �®�����H� ���� ­ [10]. Subsequent routers compute their local �¯�����H�
values in a similar manner.

of the CSVC server, flow ! receives service at a rate greater
than its reserved rate. Due to the way deadlines are com-
puted, though, during the same period, flow ! accumulates
a debit at the rate #@$ (indicated by the increase in its VCore
value much beyond current time C), and is subsequently pe-
nalized for the duration of the accumulated debit once all the
other flows become backlogged. It is important for networks
to provide throughput guarantees at short time-scales, inde-
pendent of the past usage of idle bandwidth by a flow, for two
reasons:

1. In many settings, it is difficult for sources to predict pre-
cisely their bandwidth requirements at short time-scales.
For instance, the bit-rate requirement of a variable bit-
rate video stream may vary considerably and over short
time-scales. Suppose a video stream, with a reserved
bit-rate of ".°²±¦>�³ , transmits at �
°²±´>�³ for µ seconds us-
ing idle bandwidth. In a network that does not provide
throughput guarantees, the video stream may not receive
any throughput at all in the next µ seconds. The perfor-
mance of the video application in such a network may
therefore be unacceptable.

2. It is in the best interest of a network to allow sources
to transmit data in transient bursts (i.e., at a rate greater
than the reserved rate); bursty transmissions allow a net-
work to benefit from statistical multiplexing of the avail-
able network bandwidth among competing traffic. In
networks that penalize sources for using idle bandwidth,
however, sources have no incentive to transmit bursts
into the network. They may prefer to use constant bit-
rate flows, instead of allowing the network to enforce
arbitrary penalties. This, in turn, would reduce the sta-
tistical multiplexing gains and thereby reduce the overall
utilization of network resources.

It is important to observe that while a CSVC network does
not provide lower bounds on throughput at finite time-scales,
it does guarantee an average throughput at the rate of # $ to
a backlogged flow ! over infinite time-scales. This implies
that, the throughput of flow ! in any interval B C�* D C E G would be
below its reserved rate #%$ only if the flow ! receives service at
a rate higher than #@$ prior to CM* . In such an event, there must
exist CF¶ D CF·�¸¹CM* such that during interval B Cp¶ D CF·AG , packets of
flow ! arrive at the destination much ahead of their deadline
guarantee (derived based on the reserved rate #A$). More for-
mally, for packets >V'$ that reach destination at time C during
the interval B Cp¶ D CF·%G , �i���@#%�%'$)(J»º C .
The Principle of Deadline Re-use The property
of allowing a flow to accumulate arbitrarily large amount of
debit —by increasing the deadline values (or service tag val-
ues) assigned to packets of the flow much beyond the current
time— is central to the inability of CSVC networks to pro-
vide throughput guarantees at small time-scales. Hence, for
a network to provide throughput bounds at small time-scales,
it must reduce debit accumulation; this can be achieved by

3

allowing the ingress routers to re-use for future packets the
deadline (or service tag) values of packets that reach the des-
tination much prior to their deadlines. This is the central con-
cept in transforming a CSVC network into a CSGT network
that provides throughput bounds.

The Definition of CSGT Network A CSGT net-
work, like the CSVC network, consists of two types of
routers: edge routers and core routers. The ingress edge
router, in addition to maintaining per-flow state, maintains a
sorted-list ¼ of re-usable tag vectors. On receiving a packet>�'$ of flow ! , the ingress router assigns to it a service tag
vector B ½ * K�>�'$ N D ½¾E6Ku>?'$ N D����3��D ½ J Ku>�'$ N G where

is the number

of servers along the path, and ½ ` Ku>?'$ N is the service tag for
server c . The assignment of the tag vector to packet >�'$ pro-
ceeds as follows: If ¼À¿Y�Á , an incoming packet is assigned
the smallest tag vector from ¼ . Otherwise, a new tag vector
is created as follows:½ * K�> '$ N YXjlkAm K=& '$)(* D�Â½ $ KÃ& '$)(* NpN / q '$#@$ (2)

½ ` Ku> '$ N Y ½�*�Ku> '$ N / ` - *�< a * KP��$)(< /Äb < / jlk%m*��?�P� ' q �$# $ N D c O " (3)

where �?$)(< Y 1�[]\p^� � � , and Â½Å$yKPC N is the maximum of the service
tags for server " assigned to any packet of flow ! by timeC . All servers in the CSGT network transmit packets in the
increasing order of their service tags for that server.

Observe that if ¼ YÆÁ , then the assignment of tag vector in
CSGT is identical to the CSVC network. When ¼Ç¿YÈÁ , then,
by reusing a tag assigned to an earlier packet, CSGT prevents
accumulation of unbounded debit for flow ! . To instantiate
such a CSGT network, we need to address the following is-
sues.

1. When can an ingress server reuse a previously assigned
tag vector for a new packet? What are the constraints
that govern the re-usability of tag vectors? How does
the ingress router create and maintain the sorted-list ¼ ?
We address these questions in Section 4.2.1.

2. With the reuse of previously assigned tag vectors in the
CSGT network, packets of flow ! with higher sequence
number may, in fact, carry a smaller tag value (i.e.,½ < K�> ` $ N ¸É½ < Ku> � $ N even if ÊË¸Ìc). Since the tag val-
ues determine the priority for servicing packets in each
router, it is quite possible that packet > ` $ may reach the
egress edge router prior to packet > � $, even though packet> � $ was transmitted prior to packet > ` $ at server 1. We
discuss the associated packet re-ordering requirement in
Section 4.2.2.

4.2.1 Maintaining the Sorted-list of Re-usable
Tag Vectors

Reusing tag vectors allow CSGT networks to prevent un-
bounded debit accumulation for flows. Determination of

whether a tag vector is eligible for reuse, however, is tricky
because of two reasons.Í A CSGT network must ensure that the reuse of tag vec-

tors for packets of flow ! does not violate the deadline
guarantees provided to other flows.

To meet this requirement, the tag assigned to a packet >�'$
must differ by at least

1 78 7 from the tags assigned to all
packets > � $ that were transmitted prior to packet > '$ but
have not reached the destination. This is because, if the
separation is less than

1 78 7 , then flow ! will be guaranteed
service at a rate greater than its reserved rate #A$; this, in
turn, could violate the deadline guarantees provided to
other flows.Í A CSGT network must ensure that it can provide a dead-
line guarantee on the re-used tag vector.

To meet this requirement, at the time of assigning a re-
usable tag to a packet, the ingress router must ensure that
the tag value for the first server exceeds the current time
by at least

1 78 7 .

Using these eligibility criteria, we formally define re-
usability of a tag vector as follows.

Definition 2 A previously assigned tag vectorB ½�* D ½ E D)�3���3D ½¾J,G is said to be re-usable for a packet >�Î$
at time C if it satisfies the following properties:Ï > � $vÐÒÑrÓyÔ ½ ` Q�½ ` K�> � $ N Ô w q $# $ (4)C + ½�*RQ q $#@$ (5)

where Ñ is the set of packets transmitted by server 1 prior to
packet >yÎ$ but have not reached the destination by time C .
A CSGT network can enforce these conditions as follows.

1. An ingress router should consider a tag vector for re-use
only after a packet carrying that tag vector departs the
egress router

. This ensures that condition (4) is met.

This can be achieved by requiring the egress router to
send, on transmitting a packet >?Î$ of flow ! , an acknowl-
edgment for that packet to the ingress router for flow ! .
The ingress router, on receiving such an acknowledg-
ment, can add the tag vector assigned to packet >VÎ$ to
the sorted-list ¼ of re-usable tag vectors for flow ! .

2. On receiving a packet >?'$ from flow ! at time C , the
ingress router can scan through the sorted-list ¼ , discard
all the tag vectors that violate condition (5), and assign
to packet >?'$ the first re-usable tag that meets condition
(5).

Observe that the tag vector assigned to a packet > Î $ is
likely to re-usable (i.e., satisfy condition (5)) only if packet>yÎ$ departs server

”sufficiently” prior to its deadline. In

4

particular, if ÕÒÎ � U is the minimum latency incurred by the
acknowledgment packet to reach the ingress router, then us-
ing (5), the tag vector of packet >?Î$ can be re-used only if:s6Î$)(J / ÕÒÎ � U + ½ * K�>yÎ$ N Q 1 78 7 . From (3), this is the same as:

s Î $)(J + ½ J Ku> Î $ N QÖK J - *�`Ma * KP� $)(` /Äb ` / jlkAm*��?�P� Î q �$#@$ N/ Õ Î � U / q $#@$ N (6)

Thus, the egress server sends an acknowledgment to the first
server, only if packet >V'$ departs the network much before—as
given by condition (6)—its deadline. We prove, in Lemma 2
(see Section 4.3), that if a CSGT network reuses tag vectors in
accordance with the scheme described above, then it provides
the same deadline-guarantee as a CSVC network.

4.2.2 Addressing Packet Re-ordering Require-
ments

With the tag re-use scheme described above, in a CSGT net-
work, packets of flow ! may reach the egress router out-of-
order. For applications that desire in-order delivery seman-
tics, a CSGT network needs to employ a sequencer that can
buffer packets received out-of-order and then deliver to the
applications packets in-order. A sequencer can reside either
on the egress router, on a special network appliance located
between the egress edge router and the destination node, or
on the destination node itself4. Figure 1 depicts the setting
where a sequencer is logically inserted between the egress
router and the destination node. For the simplicity of anal-
ysis, we assume zero propagation delay between the egress
router and the sequencer.

Now, let us consider the issues in designing the sequencer.
The following example shows that, in a naive implementation
of a CSGT network, the number of packets that may need to
be buffered at the sequencer is not bounded.

Example 2 Consider the case when the tag vector of
packet >?'$ becomes re-usable at the source, there are × un-
acknowledged packets, > ' � *$ D)���)��D > ' � U$, with larger tag vec-
tors in the network. Let the tag vector of >V'$ be re-assigned to
packet > ' � U � *$. Now let the tag vectors of the first KP×�QË" N un-
acknowledged packets > ' � *$ D��)����D > ' � U - *$ also become avail-
able for re-use; let these tag vectors be assigned to subse-
quent KP×ØQÆ" N packets, namely, > ' � U � E$ D����)��D > ' � U � U$. Con-
sider the case where packet > ' � U$ departs the egress node at
its deadline, ½ J Ku> ' � U$ N . Since packets > ' � U � *$ D��)����D >�' � U � U
have smaller deadlines, they are guaranteed to depart the
egress router earlier than > ' � U$. Therefore, these × packets

4Deploying a sequencer on the destination node itself may require
changes to end-hosts. Hence, the architectural options of instantiating the
sequencer on the egress router or on an appliance located at the edge of the
customer network may be more desirable.

need to be buffered, simultaneously for some time, at the se-
quencer till packet > ' � U$ arrives. Larger the value of × , the
larger the buffer space requirement at the sequencer.

In practice, a sequencer would have a fixed amount of
buffer space. In order to avoid packet loss due to over-
flow of the sequencer buffers, therefore, the aggressiveness
of sources using a CSGT network may need to be controlled.
We do this by employing a flow control algorithm that limits
the maximum number of deadlines that are simultaneously
in use for packets of a flow. Specifically, the flow control
algorithm ensures that at any point in time C , no packet is
assigned a deadline larger than C / I 1 78 7 , where

I
is a con-

figuration parameter. When a packet arrives at time C , if no
deadline smaller than C / I 1 78 7 is available for assigning to it,
the packet is held till one is available.

Observe that a large value of
I

increases the buffer space
requirement at the sequencer (Example 2). A small value ofI

, on the other hand, limits the extent to which the source
can utilize idle bandwidth in the network. In fact, if

I Y " ,
the first server does not transmit a packet before its expected
arrival time; in this case the server reduces to the non-work-
conserving Jitter Virtual Clock server. In practice, the largest
value of

I
—such that buffer overflow at the sequencer can

be avoided—should be selected. If Ù denotes the available
sequencer buffer space, in units of the packet size q $, then
Lemma 1 provides a condition that when satisfied by

I
,

avoids packet loss due to buffer overflow.

Lemma 1 Packets of flow ! will not be dropped at the se-
quencer due to unavailability of re-ordering buffers if

I
sat-

isfies:

Ù w ÚÛÜ ÛÝ K=Þ / " N K I Q0" N Q|KÃÞ N KÃÞ / " N ' [©3ßE D
if g,Î � U w 1 78 7àâáãà - *FäE ' [©3ß D if g,Î � U ¸ 1 78 7 (7)

where Þ Yæå à - E' [©�ß¾ç , 9�Î � U Yéè [©3ß1 7)ê 8 7 , and g,Î � U is a lower

bound on the round-trip time5.

Given the largest value of
I

that satisfies (7), there is a bound
on the maximum amount of available bandwidth that a flow! can utilize. Conversely, one can provision buffer space at
the sequencer that allows a flow to utilize up to a maximum
bandwidth (say #A¶). In Appendix C, we show that to allow a
source to utilize bandwidth #A¶ , the chosen value of

I
should

5 ë¾ì §�í is a lower bound on the time difference between the transmission
of a packet at the first server and the arrival of its acknowledgment at the
first server. For instance, the sum of propagation and minimum transmission
latencies on all the links on both the forward and reverse path qualifies as a
lower bound.

5

2

Ingress
Router

1

Router
Core

... H

Egress
Router Sequencer

Application
ThroughputThroughput

Network

CustomerCustomer
Cloud Cloud

Source Destination

Figure 1: The CSGT Network Architecture

satisfy the following condition6:I w # ¶q $
îï J - *�`Ma * b ` / J�`Ma * ��$)(` / Õ ÎñðHò�óô / / " (8)

Such a value of
I

can then be used to provision the se-
quencers with the appropriate amount of buffers. In partic-
ular, given #%¶ , the maximum bandwidth that a flow should be
allowed to utilize, one can derive a bound on

I
using (8);

this value of
I

when substituted in (7) determines the mini-
mum buffer requirement at the sequencer.
4.3 Properties of CSGT Networks
Delay Guarantee The following lemma proves that
deadline guarantees of CSVC are preserved in a CSGT net-
work.

Lemma 2 A packet >?'$ is guaranteed to depart server c in
a CSGT network by K=½ ` Ku>?'$ N / ��$)(` N .
It is important to observe that the deadlines assigned to a
packet in a CSGT network are never larger than the dealines
assigned to the same packet in a corresponding CSGR net-
work. From Lemma 2, therefore, it follows that a CSGT net-
work is guaranteed to deliver a packet no later than a CSGR
network. This is true despite the additional delay introduced
by the sequencer—the sequencer is guaranteed to deliver a
packet >�'$ by its CSGR deadline. This is because all pack-
ets with smaller sequence numbers are guaranteed to arrive at
the sequencer before their CSGR deadlines, which are smaller
than the CSGR deadline of packet >V'$.
Throughput Guarantee To quantify the effect of
packet re-ordering on the throughput received by the appli-
cations, we define two different throughput measures. We
define network throughput as the number of bits that depart
the egress router during a given time interval, and application
throughput as the number of bits that depart the sequencer (af-
ter re-ordering) during the interval. Note that the application
throughput in any given interval may be different from the
network throughput. Theorem 2 provides lower bounds on
the network and application throughput in a CSGT network.

Theorem 2 If the source of flow ! transmits packets at
least at its reserved rate, and Õ ÎñðHò is an upper bound on

6The condition in (8) can be intuitively seen to be a form of the commonly
used delay-bandwidth product rule-of-thumb.

the latency after which an acknowledgment packet sent by the
egress node reaches the ingress node, then the network guar-
antees a minimum throughput in any time interval B C *@D CFEHG ,I $)(JLK=CM* D C E)N , given by:I $)(J KPC *%D CFE NõO # $ K=CFEñQSC * N QØ# $,ö Õ ÎRð�ò Q#.$ îï K / � N q $# $ / J - *�`Ma * b ` / J�`Ma * ��$)(` óô
Further, the sequencer guarantees a minimum throughput,I ðM÷�÷$ KPCM* D C E)N , given by:I ðM÷�÷$ KPCM* D C E.NõO #@$�K=C E QØCM* N QØ#.$ ö Õ ÎñðHò Q I ö q $�Q#@$ îï K / " N q $# $ / J - *�`Ma * b ` / J�`Ma * ��$)(` óô
The bound on the network throughput derived in Theorem 2
for a CSGT network differs from that provided by a core-
stateful network of fair servers (Section 3), by a constant termd,* Y #.$ ö B ÕøÎRð�òtQ _ J`Ma * K T $)(` Qù�?$)(` N G / q $. The bound on
application throughput differs by the additional term d E YK I Q|" N ö q $.Observe that for a CSGT network derived from CSVC,� $)(` Y q ÎñðHò;úA� ` . Further, for most fair schedulers, T�$)(` wq ÎñðHò6úA� ` . Therefore, d * + # $�ö ÕÒÎñðHò / q $, which is primarily
governed by Õ ÎRð�ò , the maximum latency on the reverse path.

5 Evaluation of CSGT Networks
5.1 The Throughput Guarantee
Theorem 2 states that when measured over any time interval
larger than T U�W :$)(J , the network guarantees a non-zero through-
put at a rate equal to the reserved rate. As discussed in Sec-
tion 3, the smaller the value of T U�W :$)(J , the better the network
can support applications with stringent timeliness require-
ments. To evaluate the throughput guarantee of a CSGT net-
work numerically, we compute T U
W :$)(J for example networks,
where link capacities are " �
� °²±´>?³ and link propagation la-
tencies are ")ûË³ . In figure 2(a), we plot T U
W :$)(J against the num-
ber of hops on the end-to-end path of a sample flow with a
reserved bit-rate of " � °²±´>�³ . ÕøÎñðHò is varied from a multiple
of " to ü of the end-to-end propagation latency on the reverse
path. For comparison, we also plot T U�W :$)(J for a representative
core-stateful network of fair

I ½ E)ý / [3] servers. We ob-
serve the following:

6

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

N
on

-z
er

o
th

ro
ug

hp
ut

 m
in

im
um

-ti
m

es
ca

le
 (m

s)

H : Path Length

WF2Q+
Net: D=pi
Appl:D=pi

Net: D=2pi
Appl:D=2pi
Net: D=3pi
Appl:D=3pi

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2 3 4 5 6 7 8 9 10

S
eq

ue
nc

er
 B

uf
fe

r S
pa

ce
 R

eq
ui

re
m

en
t (

B
)

Reserved Rate, r (Mbps)

Rmax / r =2
Rmax / r =4
Rmax / r =5

reference

(a) Non-zero throughput time-scale (b) Sequencer buffer space requirement

Figure 2: Evaluation of a CSGT Network

1. When ÕÒÎñðHò is equal to the end-to-end link propagation
latency, the throughput guarantee of the CSGT networks
is similar to that of the core-stateful

I ½ E.ý / networks.
2. T U�W :$)(J increases with ÕøÎñðHò . Therefore, the throughput

guarantee of a CSGT network improves by provision-
ing low-delay feedback channels. However, even whenÕÒÎñðHò is three times the end-to-end propagation latency,
the application is guaranteed a non-zero throughput over
any time interval larger than "@þ � ûË³ .

These observations imply that by provisioning low-delay
feedback channels, a CSGT network can provide non-zero
throughput guarantees at very short time-scales, and similar
to those in core-stateful networks.

5.2 Sequencer Buffer Space vs. Maximum
Throughput

Recall that there is a tradeoff between the amount of buffer
space required at the sequencer and the maximum rate that
the source is allowed to achieve. We numerically character-
ize this tradeoff for the same example network as above (link
capacity = " ��� °²±´>�³ , link propagation latency = ")ûË³). In
figure 2(b), we plot the minimum sequencer buffer space re-
quired to allow sources to achieve a given maximum bit-rate,ÿ ÎñðHò (varied from � to þ times the reserved rate). We ob-
serve that:

1. To enable a flow, with a reserved bit-rate of up to" � °²±´>?³ , to achieve an end-to-end bit-rate of up toþ times that (þ � °²±´>?³), less than "@° Ù of sequencer
buffer space is sufficient.

2. The buffer space requirement grows slower with in-
crease in the bit-rate of the sample flow (for reference,
we plot a line where the buffer requirement grows at the
same rate as the reserved bit-rate).

These observations imply that a small amount of sequencer
buffer space is sufficient to allow flows to utilize bandwidth

up to multiple times their reserved rate. Further, a CSGT net-
work can reduce the total buffer requirement at the sequencer
by aggregating into a single large flow, all micro-flows that
traverse the same path between a pair of edge routers.

5.3 Deployment Considerations
A CSGT network introduces two main overheads—namely,
additional state in every packet, and additional traffic due to
feedback messages—in order to provide throughput guaran-
tees in a core-stateless architecture. To address the first over-
head, several techniques for encoding state in packets effi-
ciently have been discussed in [15]. We expect the overhead
due to feedback traffic to also be small because of two rea-
sons. First, the size of each feedback packet is small; ad-
ditionally, the packetization overhead can further be reduced
by acknowledging the receipt of multiple sequence numbers
in the same feedback message. In applications that involve
a bidirectional transfer of data, in fact, the feedback can be
piggy-backed onto data packets transmitted on the reverse
path. Second, feedback messages are transmitted only when
data packets depart the network much earlier than their dead-
lines. This happens only when sufficient spare bandwidth
is available on the forward path. While it would be useful
to quantify precisely the expected amount of feedback traf-
fic generated in practice, the lack of real testbeds and traffic
characteristics prevents us from doing so.

6 Summary
End-to-end throughput guarantees is an important network
service semantics to offer. Existing network architectures ei-
ther provide throughput guarantees at the cost of introducing
the complexity of per-flow state maintenance in all routers,
or do not provide throughput guarantees at finite time-
scales. In this paper, we propose the Core-stateless Guar-
anteed Throughput (CSGT) network architecture—the first
work-conserving network architecture that provides through-
put guarantees to individual flows over finite time-scales, but

7

without maintaining per-flow state in core routers. We de-
velop the architecture in two steps. First, we show that for
a network to provide end-to-end throughput guarantees, it
must also provide end-to-end delay guarantees. Second, we
demonstrate that two mechanisms —tag re-use and source
rate control— when integrated with a work-conserving, core-
stateless network that provides end-to-end delay guarantees,
lead to the design of CSGT network that provides end-to-end
throughput bounds within an additive constant of what is at-
tained by a core-stateful network of fair rate servers.

References
[1] J.C.R. Bennett, K. Benson, A. Charny, W.F.Courtney, and J.Y.

LeBoudec. Delay Jitter Bounds and Packet Scale Rate Guarantee for
Expedited Forwarding. In IEEE/ACM Transactions on Networking,
volume 10, pages 529–540, August 2002.

[2] J.C.R. Bennett and H. Zhang. WF ­ Q: Worst-case Fair Weighted Fair
Queuing. In Proceedings of INFOCOM’96, pages 120–127, March
1996.

[3] J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Al-
gorithms. In IEEE/ACM Transactions on Networking, volume 5, pages
675–689, October 1997.

[4] Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queueing: Fair Band-
width Sharing Without Per-Flow State. In Proceedings of IEEE INFO-
COM, March 2000.

[5] A. Clerget and W. Dabbous. TUF: Tag-based Unified Fairness. In
Proceedings of IEEE INFOCOM, April 2001.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. In Proceedings of ACM SIGCOMM, pages
1–12, September 1989.

[7] S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed
Applications. In Proceedings of INFOCOM’94, 1994.

[8] P. Goyal and H. Vin. Generalized Guaranteed Rate Scheduling Al-
gorithms: A Framework. Technical Report TR-95-30, Department of
Computer Sciences, The University of Texas at Austin, 1995. Available
via URL http://www.cs.utexas.edu/users/dmcl.

[9] P. Goyal, H. Vin, and H. Cheng. Start-time Fair Queuing: A Schedul-
ing Algorithm for Integrated Services Packet Switching Networks. In
Proceedings of ACM SIGCOMM’96, pages 157–168, August 1996.

[10] J. Kaur and H. Vin. Core-stateless Guaranteed Rate Scheduling Algo-
rithms. In Proceedings of IEEE INFOCOM, volume 3, pages 1484–
1492, April 2001.

[11] J. Kaur and H. Vin. Core-stateless Guaranteed Throughput Networks.
Technical Report TR-01-47, Department of Computer Sciences, Uni-
versity of Texas at Austin, November 2001.

[12] S. Keshav. On Efficient Implementation of Fair Queuing. Journal of
Internetworking Research, 2:157–173, September 1995.

[13] R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth Allo-
cation. In Proceedings of IEEE INFOCOM, March 2000.

[14] S. Shenker, L. Zhang, and D. Clark. A Scheduling Ser-
vice Model and a Scheduling Architecture for an Integrated Ser-
vices Packet Networks. Available via anonymous ftp from
ftp://ftp.parc.xerox.com/pub/archfin.ps, 1995.

[15] I. Stoica. Stateless Core: A Scalable Approach for Quality of Service
in the Internet. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, December 2000.

[16] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks. In Proceedings of ACM SIGCOMM, September 1998.

[17] I. Stoica and H. Zhang. Providing Guaranteed Services Without Per
Flow Management. In Proceedings of ACM SIGCOMM, September
1999.

[18] H. Zhang. Service Disciplines For Guaranteed Performance Service in
Packet-Switching Networks. Proceedings of the IEEE, 83(10), October
1995.

[19] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disci-
plines. In Proceedings of ACM SIGCOMM, pages 113–121, August
1991.

[20] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet
Switching Networks. In Proceedings of ACM SIGCOMM’90, pages
19–29, August 1990.

[21] Z.L. Zhang, Z. Duan, and Y.T. Hou. Virtual Time Reference System:
A Unifying Scheduling Framework for Scalable Support of Guarantees
Services. IEEE Journal on Selected Areas in Communication, Special
Issue on Internet QoS, December 2000.

A Proof of Theorem 1
Consider CM* Y & *$)(* and C E Y s;'$)(J . ThenI $)(JLKÃ& *$)(* D s;'$)(J N Y _ '� a * q �$. Substituting into the through-

put bound, we get: s�'$)(J + & *$)(* / }8 7 / _ '� a * 1 © 78 7 . Since
the source transmits at least at its reserved rate, dfehgÅ*AKu>�'$ N Y& *$)(* / _ '@- *� a * 1 © 78 7 . Therefore, s;'$)(J Q diehg * K�>�'$ N + }�� 1 2 78 7 +}�� 1�[]\p^78 7 , for all 9 . Therefore, the network provides a delay
guarantee to flow ! .

B Proof of Lemma 1
We refer to packets that are assigned re-used tags as future
packet. We assume that a future packet is removed from
the sequencer re-ordering buffers as soon as all packets with
smaller sequence numbers arrive.

Let ÙøKPC N denote the occupancy of the sequencer re-
ordering buffers of a flow ! at time C . Let Cp� denote the time
instant at which the Ê :=< future packet is removed from these
buffers. For ease of analysis, we assume that even if all pack-
ets with smaller sequence numbers reach the sequencer be-
fore it, a future packet is still buffered and removed (in such
as scenario, at time instances C -� and C � respectively). Let C �
denote the initial time at which the source starts transmitting
packets, and ÙøK=C � N Y � . It follows that, ÙâKPCp� N + ÙâKPC -� N QÖ"
(more than one future packets may be removed from the
buffers at the same instant). The buffer occupancy in any time
interval B Cp� D CF� � * N is non-decreasing with time (since no pack-
ets are removed in this interval). Therefore, the maximum
buffer occupancy in this interval is given by ÙøK=C -� � * N .Consider the first server (ingress node) at a time C � . Con-
sider all future packets transmitted by this server, that have
not departed the sequencer (by time CM�). Of these, let ±�* de-
note the future packet with the smallest sequence number.
Consider the set of all packets with smaller sequence num-
bers than packet ±)* , that have not yet (at Cp�) reached the se-
quencer. Among these, let >?¶ have the largest tag-vector—
then all of these packets would reach the sequencer at most
by time (½ÅJ�Ku>�¶ N / ��$)(J), and the packet ±)* would not need
to be buffered after that.

8

Let CF¶ be the time at which packet >?¶ arrives at the first
server, and is assigned a tag-vector. Since all future packets
that have not departed the sequencer by time CM� , have a larger
sequence number than >?¶ , they are transmitted from the first
server after CF¶ . Let ÙL· be the total number of future pack-
ets that get transmitted from the first server in the intervalKPC ¶ D ½�*AKu> ¶ãN G , with smaller tag-vectors than > ¶ . Since > ¶ has not
reached the sequencer by Cp� , any future packets transmitted
after CF¶ with larger tag-vectors than >?¶ have also not reached
the sequencer. Hence, ÙøK=C � N + ÙL· , and Ùi· is the maximum
number of future packets that would need to be buffered at the
sequencer before >�¶ gets delivered, that is, ÙøK=C -� � * N + Ùi· .Due to source flow control, observe that: CM¶ w ½ * Ku>y¶ N QI ö q $ ú@# $. The number of distinct tag-vectors that lie in the

interval KPCF¶ D ½�*AKu>y¶ N G is given by:
I ¶ = � á�� 5 á ÷�� äPä 4 -y:��1 7 ê 8 7 � + I Q" . Let gtÎ � U denote a lower bound on the round-trip time—

the time difference between the transmission of a packet at
the first server and the arrival of its acknowledgment at the
first server. The maximum number of tags that can become
re-usable from the interval KPCM¶ D ½�*AKu>�¶ N G after time CF¶ , which is
an upper bound on ÙøK=C -� � * N , is given by:

+ ÚÛÜ ÛÝ I ¶ / K I ¶�Q	�=9�Î � U�
 N / ���3� / K I ¶�Q	�PÞù¶ã9�Î � U�
 N D
if gtÎ � U w 1 78 7å *' [©�ß ç / å E' [©�ß ç / ���)� / � à �' [©�ß � D if gtÎ � U ¸ 1 78 7

where 9�Î � U Y è [©�ß1 7�ê 8 7 , and Þ ¶ Y � à �=- *' [©�ß � . The right-hand-
side of the above is an increasing function of

I ¶ . Since
I ¶ +I Q0" ,

ÙøK=C -� � * N +
ÚÛÜ ÛÝ K=Þ / " N K I Q0" N Q|KÃÞ N KÃÞ / " N ' [©�ßE D

if g Î � U w 1 78 7àâáãà - *FäE ' [©3ß D if g,Î � U ¸ 1 78 7
where Þ Y å à - E' [©�ß ç . Since this upper bound on ÙøKPC -� � * N is
independent of Ê , it is an upper bound on the maximum buffer
occupancy in all time intervals B Cp� D CF� � * N D Ê w � . Therefore, if
the provisioned buffer space, Ù , is at least as large as given
by this upper bound, no packets are lost at the sequencer re-
ordering buffers.

C Condition on I to Allow Large
Throughput to be Achieved

Suppose #%¶ O #.$ is the bottleneck bandwidth available to the
flow ! at time C � (and thereafter). Without loss of generality,
assume that the first server is the bottleneck server7. We de-
rive a condition on

I
such that if there is only a single packet

at the bottlenecked first server (and in the network) at a timeC � , then there continues to be at least one packet at the bot-
tlenecked server at all future times (given that the source has

7Suppose this is not the case. Then even if the first server transmits pack-
ets once only every
 ��� ��� time units, the bottleneck server will remain back-
logged.

packets to transmit). If this is the case, then the bottleneck
bandwidth available to flow ! is not wasted.

Suppose packet > *$ arrives at the server queue at timeC � . Then it can be shown that packet >V'$, (where packets> *$ D��)����D >�'$ are transmitted back-to-back) would incur a max-
imum delay of K _ J - *`Ma *�b ` / _ J`Ma * ��$)(` / K / 9®Qâ" N ö q $Aú@#%¶ Nbefore it departs from the network. The acknowledgment for
packet >?'$ would reach the ingress node after an additional de-
lay of at most ÕøÎñðHò . The corresponding � * of this packet at
the ingress node would be � * Ku>�'$ N Y C � / KÃ9]Qi" N q $ ú%# $. There-
fore, the tag-vector of packet >V'$ would definitely be avail-
able for re-use at the first server, if 9 satisfies:

_ J - *`Ma *Sb ` /_ J`Ma * � $)(` / K / 9®Qâ" N ö q $ ú%#@¶ / ÕÒÎñðHò + KÃ9®Q " N ö q $ ú%# $.This implies:

9 w _ J - *`Ma *Øb ` / _ J`Ma * ��$)(` / ÕÒÎñðHò / ö 1 78 �1 78 7 Q 1 78 � / " (9)

Now observe that, if the bottlenecked first server remains
backlogged till the time the acknowledgment for > '$ arrives,
then the subsequent acknowledgments (spaced q $6ú@#%¶ apart)
clock the transmission of new packets, and the bottleneck
server, that transmits a packet every q $ ú%#%¶ units, would re-
main backlogged subsequently.

Further, due to source flow control, the tags for packet >�'$
would become available for re-use at most by the time

I /û ' packets arrive for transmission at the first server after C � ,
where û ' is given by the term:� _ J - *`Ma *Øb ` / _ J`Ma * � $)(` / K / 9LQ|" N 1 78 � / ÕøÎRð�òq $ ú%# $ � (10)

Therefore, if the time it takes for the first server to transmitI / û ' packets at the rate #%¶ , is at least as large as the
maximum time it takes for the acknowledgment of packet> '$ to arrive after C � , the first server always remains back-
logged with packets to transmit. That is, the following condi-
tion would ensure that the server remains continuously back-
logged: K I / û ' N ö 1 78 � w _ J - *`Ma *Øb ` / _ J`Ma * � $)(` / ÕÒÎñðHò /K / 9LQ0" N ö 1 78 � . From (9) and (10), this yields:

K I Q|" N q $ w # ¶ K J - *�`Ma * b ` / J�`Ma * �?$)(` / Õ ÎñðHò N / q $ (11)

If, on the other hand,
I

does not satisfy condition (11) for the
available bottleneck bandwidth #�¶ , then it can be seen, using
a similar argument as above, that the throughput rate that the
source can sustain,

ÿ ÎñðHò�K I D #%¶ N , is given by:� #.$ / � "ñQ 8 78 ��� K I Q0" N ö q_ J - *`Ma *Øb ` / _ J`Ma * � $)(` / Õ ÎñðHò / ö 1 78 �
9

D Proof of Lemma 2
In the following, a non-preemptive scheduling algorithm is
one that does not preempt the transmission of a lower priority
packet even after a higher priority packet arrives. On the other
hand, a preemptive scheduling algorithm always ensures that
the packet in service is the packet with the highest priority
by possibly preempting the transmission of a lower priority
packet. A non-preemptive algorithm is considered equivalent
to a preemptive algorithm if the priority assigned to all the
packets is the same in both. The following lemma is stated
and proved in [8].

Lemma 3 If PS is a work conserving preemptive schedul-
ing algorithm, NPS its equivalent non-preemptive schedul-
ing algorithm and the priority assignment of a packet is not
changed dynamically, then������� Ku> ' N Q ����� Ku> ' N + q ÎRð�ò�
where

� ��� Ku>?' N and
������� Ku>?' N denote the time a packet

leaves the server when PS and NPS scheduling algorithms
are employed, respectively. Also, q ÎñðHò is the maximum length
of a packet and C is the capacity of the server.

We first state and prove Lemma 4, which is used to prove
Lemma 2.

Lemma 4 If the c
:=< server’s capacity is not exceeded, then
the time at which packet >?'$ departs a Preemptive CSGT
server, denoted by

� ` � � ��! è Ku>?'$ N , is� ` � � ��! è Ku> '$ N + ½ ` K�> '$ N c w " (12)

Proof: Let � ` Ku>?'$ N Y ½ ` K�>�'$ N Q q '$ ú%#.$. At server c , define
the quantity

ÿ $)(` KPC N for flow ! as follows:

Y#" # $ if $�9&%ØKÃ&�'$)(` + C N(' K)� ` K�>�'$ N ¸0C + ½ ` K�>�'$ NpN� otherwise
(13)

Let � be the set of flows served by server c . Then server c
with capacity � ` is defined to have exceeded its capacity at
time C if

_ U+* � ÿ U (` KPC N�O � ` . Let , $)(` KPC *AD CFE N be the set of
all flow ! packets that arrive at server c in interval B C�* D C E G and
have deadlines no greater than C E . For packet >?'$, let g,'$)(` Y½ ` Ku>�'$ N Q j�kAm KÃ&�'$)(` D � ` K�>�'$ NpN . The proof of Lemma 4 is by
induction on c .
Base Case : j = 1. From (2) and (5), we have: ½®*%K�>�'$ N w& '$)(* / q '$ ú%# '$. Then it can be observed from (4) and (13) that:- :�.: 5 ÿ $)(*%K=C N s
C Y �� *0/ 7 á : 5 (:�. ä KP# �$)(* ö g �$)(* Nw �� *0/ 7 á : 5 (: . ä KP# �$)(* ö q

�$# �$ N�w �� *0/ 7 á : 5 (: . ä q �$

Therefore, the cumulative length of all flow ! packets that
arrive in interval B C�* D C E G and have deadline value no greater
than C E , denoted by e21�$�K=CM* D C E@N , is given as e31�$�K=CM* D C E)N +4 : .: 5 ÿ $)(*%K=C N s
C .We now prove the lemma by contradiction. Assume that
for packet > '$, � *� � ��! è K�> '$ N O ½ *AK�> '$ N . Also, let C � be
the beginning of the busy period in which >V'$ is served andCFE Y ½ * K�>�'$ N . Let C * be the least time less than CpE dur-
ing the busy period such that no packet with deadline value
greater than C E is served in the interval B C�* D C E G (it can be
shown that such a C�* exists). Clearly, all the packets served
in the interval B C�* D C E G arrive in this interval (else they would
have been served earlier than C�*) and have deadline value
less than or equal to C E . Since the server is busy in the in-
terval B CM* D C E G and packet >?'$ is not serviced by C E , we have:_ $ * � e21�$yK=CM* D C E)NXO �ñ*%K=C E Q»CM* N . Since e21�$yKPCM* D C E.N +4 : .: 5 ÿ $)(*%K=C N s
C , we have:- :�.: 5 �$ * � ÿ $)(*AKPC N s�C O �R*AKPC E QØCM* N (14)

Since the server capacity is not exceeded,
_ $ * � ÿ $)(*AK=C N +� * . Hence,

4 :�.: 5 _ $ * � ÿ $)(* KPC N s�C + � * KPCFE�QâC * N . This contra-
dicts (14) and hence the base case is proved.
Induction Hypothesis : Assume (12) holds for " + c + û .
Induction Step : We will show that (12) holds for " + c +û / " .
From (3) and the Induction Hypothesis, we get: ½ Î � *�Ku>�'$ N�w& '$)(Î � * / q '$ ú%# '$. The induction step can now be proved in
exactly the same manner as the base case. Therefore, from
induction, the lemma follows.

Since Preemptive CSGT is work conserving and does not
dynamically change the priority of a packet, lemma 2 follows
immediately from Lemma 4 and Lemma 3.

E Proof of Theorem 2
Since ÕøÎRð�ò is the maximum latency after which a packet
from the egress node reaches the ingress node, the following
condition is sufficient to ensure that the tags of packet >�'$ will
be reused by the ingress node:

s '$)(J / Õ ÎñðHò + ½�*�Ku> '$ N Q q '$#@$ (15)

Consider any tag value ½ at the last server

. Let 9 � denote
the sequence number of the last packet that is ever assigned
the deadline tag ½ at server

. Then the departure time of

packet > '65$ from the last server, s '65J , must not satisfy con-
dition (15)—otherwise, tag ½ would be re-used for another
packet, and > '65$ does not qualify to be the last packet to be
assigned the tag ½ . We therefore have:

½ÆQØs '65J ¸|Õ ÎRð�ò / q '65$# ' 5$ / J - *�`Ma * KP� $)(` /zb ` / jlkAm*��?�P� '65 q �$#.$ N
10

Let Âg be the upper bound on the right hand side of the above
for all ½ . That is, for a source with equal-sized packets, letÂg Y ÕÒÎñðHò / 1 78 7 / _ J - *`Ma *Øb ` / _ J - *`Ma * ��$)(` .

Now consider any time interval K=C *%D CFE N . From the def-
inition of Âg , we know that given any ½ w KPC * / Âg N that
has been assigned as a deadline tag at the last server

, at

least one packet with this tag ½ will be delivered after timeCM* (this is true even for CM* Y & *$)(* , since ½ *AK�> *$ N + & *$)(* / Âg).
Further, from Lemma 2, we know that any packet with an as-
signed deadline tag ½ will be delivered no later than ½ / ��$)(J .
Therefore, for every ½ Ð B C * / Âg D CFE Q0� $)(J G that has been
assigned as a tag to any packet, at least one packet with that
deadline tag will depart the last server in the time intervalKPC *AD CFE N . Let ÙøK=C � D C N represent the total number of bits in
packets that are last assigned deadlines that lie in any time
interval KPC � D C´G . Then,

I $)(JvK=CM* D C E)NRw ÙøKPCM* / Âg D C E QS�?$)(J N .
Let C87 Y CM* / Âg and C:9 Y C E QÄ�?$)(J . Let CF¶7 w C87 be the

smallest time instant that coincides with a deadline—let the
corresponding packet be > '�;$. Let CF¶9 + C 9 be the largest time
instant that coincides with a deadline—let the corresponding
packet be > '=<$. Then, since the source transmits at least at its
reserved rate, the total number of bits in packets with deadline
in the range KPCp¶7 D CF¶9 N is given by: ÙâKPCp¶7 D CF¶9 N Y # $ KPCF¶9 QØCF¶7 N .

Now note that Cp¶7 ¸~C87 / q $
ú@#@$. This is so because oth-
erwise, ½lKu> ' ; - *$ N Ð B C87 D CF¶7 N , which violates the definition
of Cp¶7 . Similarly, CF¶9 O C:9LQ q $;ú@#@$. This is so because oth-
erwise, ½lKu> '=< � *$ N Ð KPCF¶9 D C:9�G , which violates the definition
of Cp¶9 . Therefore, we have: Cp¶9 Q|CF¶7 O K=C:9iQÖC87 N Q�� q $
ú%#.$.Therefore, we get:

I $)(J�K=CM* D C E@N w ÙøK=C87 D C:9 N w ÙøK=CF¶7 D CF¶9 N Y#.$yKPC ¶9 QSC ¶7 N�O #@$�K=C:9hQØC87 N QÄ� q $. This implies,I $)(J KPC *%D CFE NõO # $ K=CFEñQSC * N QØ# $,ö Õ ÎRð�ò Q#.$ îï K / � N q $# $ / J - *�`Ma * b ` / J�`Ma * ��$)(` óô
Next, consider a time instant C?> Ð K=C87 D C:9 N that coincides with
a deadline tag at the last server. Let > '�@$ be the last packet that
is assigned the deadline C?> . Then > '�@$ is received at the se-
quencer in the interval KPC *AD CFE N . If > ' @$ is not a future packet, it
departs the sequencer (for simplicity, we assume that packets
depart the sequencer instantly). If not, it has to be buffered
till all packets with smaller sequence numbers reach the se-
quencer as well. Among all these packets with smaller se-
quence numbers than > '�@$, let >y¶ have the largest deadline (if
there are more than one such packets, let >?¶ be the last packet
to be assigned that deadline).

Packet > '�@$ arrives for transmission at the first server latest
by ½�*�Ku> ' @$ N Q q ' @$ ú%#.$. Let CF¶ be the time at which >?¶ arrives
for transmission at the first server. Since >?¶ has a smaller se-
quence number than > '�@$, CF¶i¸ ½ *AK�> '�@$ N Q q '�@$ ú%#.$. Further,
due to source flow control, ½¯*�Ku>�¶ N + CF¶ / I ö q $;ú@#@$. There-
fore, ½ *AK�>y¶ N ¸r½�*�Ku> '�@$ N / K I QÈ" N ö q $;ú@#@$BA ½¾JvKu>�¶ N ¸C8> / K I Q0" N ö q $
ú%#.$.

Since >�¶ is guaranteed to be delivered at the sequencer by½ÅJLK�>y¶ N / ��$)(J , > ' @$ will also be delivered by this time. This

implies that, for any deadline in the interval KPC * / Âg D CFELQ� $)(J Q K I Q~" N ö q $ ú@# $ N , the last packet to be assigned
that deadline will depart the sequencer in the time intervalKPCM* D C E.N . Therefore, the number of bits that depart the se-
quencer in the time interval KPC�* D C E.N , I ðM÷�÷$ KPCM* D C E)N , is given

by:
I ðM÷�÷$ K=C *%D CFE Nhw ÙøKPC 7�D C 9 QÖK I Q|" N ö 1 78 7 Nñw ÙøK=CF¶7 D CF¶9 QK I Q�" N ö 1 78 7 NiO #.$yKPC:9�QzC87 N Q0�%#@$ 1 78 7 QÈK I Q�" N q $. This

implies,I ðM÷�÷$ KPC *%D CFE NõO # $ K=CFEñQSC * N QØ# $tö Õ ÎñðHò Q I ö q $Qñ# $ îï K / " N q $#.$ / J - *�`Ma * b ` / J�`Ma * � $)(` óô

11

