Copyright
by
Jasleen Kaur Sahni

2002

The Dissertation Committee for Jasleen Kaur Sahni

certifies that this is the approved version of the following dissertation:

Scalable Network Architecures for Providing Per-flow

Service Guarantees

Committee:

Harrick M. Vin, Supervisor

Lorenzo Alvisi

Mike Dahlin

Gustavo DeVeciana

Jorg Liebeherr

Scalable Network Architecures for Providing Per-flow
Service Guarantees
by

Jasleen Kaur Sahni, B.Tech., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2002

To Babayji

Acknowledgments

My stay in Austin as a graduate student has been extremely rewarding and fun.
I will make an attempt to acknowledge people that have played a role in my life
during this stay—my apologies to those I may miss.

It is not possible for me to mention in just a few lines all that I have learned
from Harrick Vin, my advisor. His attitude that nothing but the best is acceptable,
has worked wonders on the quality of my research. His constant feedback and
questioning have not only contributed greatly to this dissertation, but also taught
me how to become a better researcher. I will always cherish his mentoring.

I thank Lorenzo Alvisi, Mike Dahlin, Gustavo de Veciana, and Jorg Liebe-
herr for serving on my dissertation committee. I am grateful for their constructive
comments and valuable insights. I would like to especially thank Lorenzo and Mike
for additionally helping me out during the interview process, and Gustavo for of-
fering great courses that were instrumental in making better my understanding of
networks. Special thanks are due to Jorg for reading my proposal and dissertation
at very short notices.

Life in Austin has been enriched by several people I have interacted with,
both professionally and personally. I have benefited from many discussions with
colleagues during my initial years in the Distributed Multimedia Computing Labo-
ratory (DMCL)—Sergey Gorinsky, Pawan Goyal, Xingang Guo, Amir Husain, Ja-
yaram Mudigonda, Scott Page, Sriram Rao, Prashant Shenoy, Renu Tiwari and T.R.

Viswanathan—and during the last two years in the Laboratory for Advanced Sys-
tems Research (LASR)—Puneet Chopra, Ben Hardekopf, Sugat Jain, Ravi Kokku,
Taroon Mandhana, Taylor Riche, and Praveen Yalagandula. I cherish these inter-
actions and am grateful for their company. I additionally thank Pawan Goyal and
Prashant Shenoy for setting wonderful examples for me to follow. I thank Sergey
and Scott for always being there when needed and Scott, additionally, for Lloyd. I
thank Deepa and Mythri for all the giggles, joy, and comfort they brought to me.
Most of all, I thank Jayaram for his friendship—he has been a never-ending source
of indispensable help, encouragement, advice, and inspiration.

I am grateful for having a family that has always given me tremendous love
and encouragement during my entire life, despite going through very difficult times.
My brother, Anup, continues to be one of my greatest mentors. I am indebted to
my dear husband, Darshan, for bearing with a smile on his face, the tough aspect of
travel during two years of separation, and for helping me focus on this dissertation
through his love, patience, and encouragement. Finally, I am grateful to You, Babaji,

for everything.

JASLEEN KAUR SAHNI

The University of Texas at Austin
August 2002

vi

Scalable Network Architecures for Providing Per-flow

Service Guarantees

Publication No.

Jasleen Kaur Sahni, Ph.D.
The University of Texas at Austin, 2002

Supervisor: Harrick M. Vin

The last decade in providing Internet service was all about building high-
bandwidth networks. Two requirements, in contrast, drive the design of next-
generation networks: (1) the need for richer service semantics, which stems from
the fact that the Internet has seen a rapid emergence of many applications with
stringent timeliness constraints that can greatly benefit from end-to-end guaran-
tees on delay, jitter, and throughput; and (2) the need to support large bandwidth
networks, which stems from the projected manifold increase in link speeds. Unfor-
tunately, these two requirements are often conflicting. Proposals to provide per-flow
service guarantees require the use of complex resource management mechanisms in
routers; whereas increase in link speeds mandates the simplification of routers to en-
able them to operate at high link speeds. The goal of this dissertation is to design a
network architecture that meets the above requirements of scalability and providing
end-to-end per-flow service guarantees simultaneously.

Past efforts design network architectures that are either scalable or rich in

vii

their service offerings, but not both. Conventional network architectures use the
First-in-First-Out (FIFO) link scheduler in routers which, although scalable, fails to
provide per-flow service guarantees in the presence of bursty traffic. The Integrated
Services (IntServ) network architecture, in contrast, enables a network to provide
per-flow service guarantees by requiring all routers to employ sophisticated per-flow
scheduling algorithms. These scheduling algorithms, however, require routers to
perform per-packet flow classification and maintain per-flow scheduling state, which
limits their scalability, especially in the core of networks that carry a large number
of flows. In this dissertation, we explore the following two design philosophies to

achieve simultaneously our objectives of scalability and richness.

e FIFO networks are scalable, but do not provide guarantees on end-to-end
delay and throughput in the presence of bursty traffic. A natural approach,
therefore, to providing richer services in scalable FIFO networks is to ask: can
traffic conditioning mechanisms that prevent bursty traffic from entering the

network enable FIFO networks to provide per-flow service guarantees?

e IntServ networks provide per-flow service guarantees, but impose per-flow
computational overheads in routers. The natural question of interest is: is
it possible to eliminate complexity from IntServ mechanisms while retaining

their strong service semantics?

In this dissertation, we answer both of the questions raised above. First,
we evaluate the efficacy in providing per-flow service guarantees of constant bit-rate
(CBR) traffic conditioning used in conjunction with FIFO networks. We find that
under asymptotic conditions of network utilization and path length, CBR flows
may experience significantly high delays in FIFO networks. Our results indicate
that CBR shaping is effective in providing performance guarantees to flows, only
in environments where the amount of such premium traffic does not exceed a small

percentage of the total link capacities.

viii

Second, we develop a network architecture that provides per-flow service
guarantees similar to IntServ networks, but without requiring per-flow state or per-
packet flow classification in the core routers of the network. We do this in two
steps: (1) we understand what end-to-end guarantees are provided by core-stateful
networks, and (2) we design core-stateless networks that provide similar guarantees.
We instantiate our core-stateless architecture on a programmable network testbed
and find that it can be implemented in routers with complexity similar to that of
current FIFO networks.

The key contributions of this dissertation include: (1) a comprehensive ex-
perimental analysis of the performance of CBR flows in FIFO networks; (2) the
first tight end-to-end fairness analysis of fair queuing networks; (3) a methodology
to transform algorithms from the Guaranteed Rate class of core-stateful algorithms
to a core-stateless version that provides the same upper bounds on end-to-end de-
lay; (4) the first work-conserving core-stateless network that provides deterministic
end-to-end throughput guarantees; (5) the first work-conserving core-stateless net-
work that provides deterministic end-to-end fairness guarantees; and (6) the first
performance analysis of networks that provides per-flow service guarantees, on a

programmable router platform.

ix

Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1 Introduction
1.1 The Opportunity i e
1.2 The Challenge
1.3 Stateofthe Art
1.3.1 Background o
1.3.2 Network Architectures
1.4 Research Methodology
1.5 Summary of Contributions,
1.5.1 Evaluation of FIFO Networks
1.5.2 Design of Core-stateless Guaranteed Services Networks

1.6 Notation and Assumptions.,

Chapter 2 Performance of CBR Flows in FIFO Networks
2.1 Background L o s

vii

xiv

XV

o 00 N Ot s N

10
15

16

2.2
2.3

24

Chapter 3 End-to-end Service Guarantees in Core-stateful Networks

3.1
3.2
3.3

3.4

Analytical Model
Experimental Evaluation 00000,
2.3.1 Simulation Environment L.
2.3.2 Measuring Non-asymptotic Region of Heavy-tailed Behavior

for CBRFlows,
2.3.3 Comparing Performance of CBR Flows in FIFO Networks vs.

Per-flow Queuing Networks

Discussion e

End-to-end Delay Guarantees
End-to-end Throughput Guarantees
End-to-end Fairness Guarantees
3.3.1 Background
3.3.2 End-to-end Fairness Analysis: Challenges
3.3.3 The Class of Fair Throughput Servers
3.3.4 End-to-end Analysis of FT Networks

Summary

Chapter 4 Core-stateless Guaranteed Rate Networks

4.1

4.2

4.3

4.4

Past Work o L
4.1.1 Extending the CJVC Design Methodology to Virtual Clock .
Design Methodology oL
421 KeylInsight L.
Design of a CSVC Network
4.3.1 Definitiono
4.3.2 Delay Guarantee of a CSVC Network
Generalizing to CSGR Networks

xi

31
32
34
38
38
40
41
45
56

4.5 Summary oo e e e e e e e e e e e 73

Chapter 5 Core-stateless Guaranteed Throughput Networks 74
5.1 Need for Delay Guarantees 74
5.2 Defining CSGT Networks, 75

5.2.1 Maintaining the Sorted-list of Re-usable Tag Vectors 79
5.2.2 Addressing Packet Re-ordering Requirements 81
5.3 Properties of CSGT Networks 85
5.3.1 Delay Guarantee 85
5.3.2 Throughput Guarantee 87
5.4 Evaluation of CSGT Networks 91
5.4.1 The Throughput Guarantee 91
5.4.2 Sequencer Buffer Space vs. Maximum Throughput 92
5.5 Summary L e e 93

Chapter 6 Core-stateless Guaranteed Fair Networks 94
6.1 The Need for End-to-end Throughput Guarantees 95
6.2 Fairness Guarantees in a CSGF network 97

6.2.1 Fairness in Application Throughput 98
6.2.2 Fairness in Network Throughput 98
6.2.3 How Good Are CSGF Fairness Guarantees? 103
6.3 Throughput Guarantees in a CSGF Network 106
6.4 Summary L e e 108

Chapter 7 Scalability Evaluation on a Programmable Router Plat-

form 110
7.1 Choice of Implementation Platform 111
7.2 Router Building Blocks in Different Network Architectures. 114

72.1 Routing oL 116

xii

7.2.2 Flow Classification 116

7.2.3 Sorting 117

7.3 Evaluation Along the Time Dimension 118
7.4 Evaluation Along the Space Dimension 122
7.5 Evaluation of Different Network Architectures 125
7.5.1 Processing Time Considerations 126

7.5.2 Space Requirements 129

7.6 Summary e e 131
Chapter 8 Conclusions 132
8.1 Summary of Contributions.0 132
Appendix A Applying Approach of [59] to Virtual Clock 136

Appendix B Condition on W to Allow Large Throughput to be Achieved
in a CSGT Network 140

Appendix C Computing Maximum Deadline Range and Queue Size 142

Bibliography 145

Vita 153

xiii

1.1

3.1

3.2

7.1
7.2

List of Tables

Per-packet time budget at different link speeds 3

By,; values of some GR algorithms (For Delay EDD, dy ; is the desired

delay bound for flow f at server j) 33
Unfairness measures for some FT algorithms 43
Throughput of Different Components 122
Time and Space Complexities of Different Architectures 130

xiv

1.1
1.2

2.1
2.2
2.3

24

3.1
3.2

5.1
5.2

6.1
6.2
6.3

7.1
7.2

List of Figures

Typical Architectures of (a) a network, and (b) a router 4
Network Model o 10
Simulation environment: network topology and router architecture . 20
Region of applicability of the analytical model 24
99.9%-percentile of (a) end-to-end queuing delay and (b) normalized

inter-arrival time (for high packet frequency flows) 27

99.9%-percentile of (a) normalized end-to-end queuing delay and (b)

normalized inter-arrival time 28
Reference for Lemma 2. 48
Reference for proof of Theorem 3 53
The CSGT Network Architecture 81
Evaluation of a CSGT Network 91

Fairness Guarantee on Application Throughput in a CSGF Network 104

Fairness Guarantee on Network Throughput in a CSGF Network . . 105
Application Throughput Guarantee of a CSGF Network 107
Block Diagram of the IXP1200 System 113
Throughput of (a) Priority Bins, and (b) Routing 120

p. 4%

7.3
7.4
7.5
7.6
7.7

Throughput of Hashing
Priority Bins: Space vs. Accuracy tradeoff
Router Throughput in Different Network Architectures: (2,4)
Router Throughput in Different Network Architectures: (3,3)
Router Throughput in Different Network Architectures: (4,2)

xvi

Chapter 1

Introduction

1.1 The Opportunity

Next-generation networks will be required to provide to flows performance guaran-
tees with respect to end-to-end delay, throughput, fairness, and jitter. To see why,

consider the requirements imposed by emerging network applications.

o Real-time applications such as a stock-quote delivery service over the Inter-
net, require that information reaches clients shortly after it gets published
at the server; otherwise, it ceases to be of much value to the clients. Sim-
ilarly, mission-critical applications—for instance, a space-shuttle monitoring
system—may have data distributed across various locations. Any updates
made to the data at one location will need to be propagated to the other lo-
cations in a very short amount of time. In an enterprise setting, where a file
system is shared by developers distributed across a network, it may be imper-
ative that any file-system updates be propagated across the enterprise almost
instantaneously. To support such applications, networks need to guarantee

small end-to-end delays.

o Multimedia applications stream audio and video data across the network. To
ensure high quality output, the data needs to be displayed at the destination
in a timely manner. In order to ensure data availability at all times in spite of
variations in end-to-end network delay (jitter), these applications may initially
buffer some amount of data. The buffer space requirement, however, can grow
very large if the jitter is large. Media streaming applications therefore require

that network jitter be bounded and small.

Video streaming applications, in addition to jitter guarantees, require that
networks deliver video frames at the same rate at which they need to be
displayed. These high-bandwidth applications, consequently, impose large
throughput requirements on the network service, that need to hold even at

the short time-scales at which video frames are displayed.

To support applications of the above kind, networks need to provide, on a per-
application-flow basis, guarantees on the end-to-end network service.

Providing such per-flow guarantees allows a network service provider to offer
richer services than what are offered in the Internet today. Given that basic network
connectivity is commoditized, such an offering enables providers to differentiate
their service from competitors. Furthermore, when used in conjunction with pricing
schemes that charge more for the premium service classes, it provides a means
for increasing revenues. Thus, both application needs and economic considerations

necessitate that next-generation networks provide end-to-end service guarantees.

1.2 The Challenge

The design of network architectures for providing per-flow service guarantees is faced

with the following challenges:

1. Link capacities are increasing rapidly.

Capacity Packet Size (Bytes) | Per-packet Time
10 Mbps Ethernet | 64 — 1518 67.2 — 1240us
100 Mbps Ethernet | 64 — 1518 6.72 — 124us

1 Gbps Ethernet 64 — 1518 672ns — 12.4us
155 Mbps (OC3) | 53 3.3us

622 Mbps (OC12) | 53 833ns

2.45 Gbps (0OC48) | 53 208ns

9.6 Gbps (0OC192) | 53 52ns

Table 1.1: Per-packet time budget at different link speeds

Providing per-flow guarantees often requires networks to maintain per-flow
state and perform per-packet computations. Unfortunately, the amount of
time available to process packets in network nodes is decreasing over time. This
is because link speeds are increasing by around 100% every year [15], whereas
processing speeds are expected to increase at less than 50% [3]. Table 1.1 shows
the inter-arrival time of packets for different link speeds. As link capacities
grow up to the order of giga-bits per second, packets arrive at time-scales of
nano-seconds. Hence, it is important to minimize the amount of computation

performed for each packet, to allow network nodes to scale to high-speed links.

2. Internet traffic demands are increasing rapidly.

Traffic in the Internet is also estimated to increase by about 100% per year [15,
33]. To meet the rising traffic demands, networks must utilize their resources
efficiently. Further, routers must scale well as the number of application flows

in the network increases.

To summarize, the design of next-generation networks has to be guided by three
requirements: (1) providing per-flow guarantees on end-to-end service, (2) scaling
to high-speed links and large number of flows, and (3) utilizing resources efficiently.
The objective of this dissertation is to design network architectures that meet all of

these requirements simultaneously.

Input Output
Ports Interconnect P
Architecture orts
ROUTERS 1 ™| DEMUX MUX | . [[]+—=O0!
12— | DEMUX MUX . D,;, 02
I | pemux MUX | o TTH——o0p

(b)

Figure 1.1: Typical Architectures of (a) a network, and (b) a router

In the rest of this chapter, we first describe the state of the art in existing net-
work architectures and evaluate each with respect to the above set of requirements.
We then derive the two research directions we pursue and describe the contributions

made in this dissertation.

1.3 State of the Art

1.3.1 Background

Routers® are building blocks for networks. Figure 1.1(a) depicts the high-level archi-
tecture of a typical wide-area packet-switched network. For each packet that arrives
on an input link, the router determines the nezt hop on the end-to-end path of that
packet, and transmits the packet on the corresponding output link.

Figure 1.1(b) depicts a router in detail. Data traffic arriving on different
input links could be destined to depart on a common outgoing link. Since traffic
may arrive simultaneously on several input links, the router may have to buffer the

packets at the output link?, and use a packet scheduling algorithm to determine

In this dissertation, we use the terms router, switch, node, and hop, interchangeably.
2The above description is for an output-buffered switch. Routers may buffer packets at the input

the order in which they are transmitted. The choice of the scheduling algorithm
affects the ability of the router to provide service guarantees, such as bounds on the
maximum queuing delay suffered, or minimum throughput received by packets from
a given flow.

We next consider the state of the art in existing network architectures, based

on the choice of packet scheduling algorithms at different routers in the network.

1.3.2 Network Architectures

Conventional First-in-first-out Networks Routers in today’s networks use the
First-in-first-out (FIFO) link scheduling algorithm, that simply transmits packets
in the same order that it receives them. FIFO is the simplest known scheduling
algorithm and scales well as the number of flows in the network increase. However,
it is well-known that FIFO networks do not provide service guarantees to flows.
This is because FIFO routers do not protect flows from each other during times of
congestion; whenever a burst of packet arrives in one flows, it can cause significant

queuing delays to packets of all other flows.

Integrated Services Networks The Integrated Services (IntServ) network ar-
chitecture enables a network to provide per-flow service guarantees [54]. In order
to do so, this architecture (1) uses end-to-end signaling to set up packet classifi-
cation and reservation state on all routers, (2) uses admission control to ensure
that the amount of resources reserved does not exceed the available resources, and
(3) employs sophisticated per-flow scheduling algorithms at all routers. Over the
past decade, there has been a considerable amount of research on designing link
scheduling algorithms [6, 18, 22, 26, 64, 65] that provide service differentiation and

per-flow guarantees on the delay, jitter, throughput, and fairness properties of a net-

link itself, especially if the inter-connect between the input and output links does not operate fast
enough to keep up with the sum of input link speeds. Such routers are referred to as input-buffered.

work. However, these scheduling algorithms require routers to perform per-packet
flow classification, maintain per-flow scheduling state and perform packet sorting
to determine the order of transmission of packets. The complexity of these opera-
tions increases with the number of flows. They can therefore impose a significant
per-packet computational overhead on routers in high-speed networks—especially
routers in the core of networks, that carry a large number of flows. Routers in the

IntServ architecture, therefore, may not scale well to high-speed links.

Differentiated Services Networks The Differentiated Services (DiffServ) net-
work architecture has been proposed recently to provide network services in a scal-
able manner [44]. This architecture achieves scalability by offering only a fixed num-
ber of traffic classes, and letting each flow subscribe to a class. Complex per-flow
classification and conditioning functions are implemented only at the edge routers
of a network (which process lower volumes of traffic and lesser number of flows).
The core routers provide service differentiation inside the network only across traffic
classes, and not on a per-flow basis [13, 30, 31, 43]. By limiting the number of traffic
classes to a small, fixed value, this architecture achieves scalability of core routers.
However, core routers in this architecture do not protect flows within a traffic class
from each other, and hence, do not provide per-flow service guarantees similar to
IntServ networks.

To summarize, FIFO and DiffServ networks do not provide per-flow service
guarantees, whereas IntServ networks do not scale well. Existing network architec-
tures, therefore, only partially meet our design requirements of service richness and

scalability; none of them meets these requirements simultaneously.

1.4 Research Methodology

Observe that the FIFO and IntServ architectures lie at opposite ends of a spectrum—
FIFO networks are scalable, but do not provide per-flow service guarantees; IntServ
networks provide rich services, but do not scale well to large number of flows and
high-speed links. To design networks that meets all of our requirements simultane-

ously, therefore, the following two research directions can be followed:

e Enable scalable FIFO networks to provide service guarantees.

Recall that FIFO networks do not provide service guarantees in the presence
of bursty traffic. A natural approach to providing richer services in scalable
FIFO networks is to ask: can traffic conditioning mechanisms that prevent
bursty traffic from entering the network enable FIFO networks to provide per-

flow service guarantees?

e Simplify router mechanisms in the service-rich IntServ architecture to make it

scalable.

Recall that core routers in the IntServ network do not scale due to the need to
maintain per-flow state and perform per-flow packet classification. The natural
question of interest is: is it possible to provide end-to-end service guarantees,
similar to those provided by IntServ networks, but without maintaining or using

per-flow state in the core routers?

In this dissertation, we explore both of these research directions. First, we evaluate
the efficacy in providing per-flow service guarantees of constant bit-rate (CBR) traffic
conditioning used in conjunction with FIFO networks. Second, we develop a network
architecture that provides per-flow service guarantees similar to IntServ networks,
but without requiring per-flow state or per-packet flow classification in the core

routers of the network.

In what follows, we briefly summarize our contributions in both of these

directions.

1.5 Summary of Contributions

1.5.1 Evaluation of FIFO Networks

Past Work: Past work on the evaluation of the performance of CBR flows in
FIFO networks can be divided into three categories: (1) Bounds on end-to-end
delay experienced by CBR flows in FIFO networks have been derived in [4, 12, 39].
These bounds, however, are valid only under limiting network and traffic conditions,
and are not applicable to general and realistic FIFO networks. (2) Past analytical
work on modeling the end-to-end delay performance of CBR flows in FIFO networks
[19, 28, 42, 48, 50, 55] is complex and computationally intensive; consequently, it
does not yield a closed-form characterization of the performance of CBR flows. (3)
Past experimental studies that measure the end-to-end delay and jitter experienced
by CBR flows using simulations, are limited to networks that transmit fixed-sized

packets.

Our Approach We address the limitations of past analytical and simulation stud-
ies on the performance of CBR flows in FIFO networks in two steps: (1) we develop
an analytical model that yields a closed-form characterization of the end-to-end per-
formance of CBR flows in FIFO networks under asymptotic conditions of network
utilization and path length; and (2) we conduct simulations to verify the set of non-
asymptotic and realistic conditions under which the results of the model continue to

hold.

Analytical Results: We model the inter-arrival time between packets at the des-

tination for individual flows (including CBR flows) under asymptotic conditions of

network utilization and number of hops traversed [60]. Our model yields the follow-

ing key insights:

1. The variance in inter-arrival times for individual flows tends to infinity in the
asymptotic case, indicating that flows become heavy-tailed after traversing a

network of FIFO routers.
2. The aggregation of flows becomes a long-range dependent self-similar process.

The occurrence of heavy-tails in the inter-arrival times of flows implies that a non-
negligible fraction of packets experience significantly large delays. Since the model
results are valid even for CBR flows, it follows that shaping flows to CBR at the
edge of the network does not result in a low-delay performance in networks that

operate at high levels of utilization.

Experimental Results: Our results indicate that:

1. CBR flows can become heavy-tailed after traversing 10 — 20 hops in networks
operating at utilization levels of 40 — 50%, or after traversing just 4 — 5 hops

in networks operating at 80 — 90% utilization.

2. The difference in the performance of CBR flows in the FIFO and IntServ
architectures is significant in networks with heterogeneous packet sizes (like
the current Internet), and those that operate at moderate to high levels of

utilization (greater than 50 — 60%).

From the above studies, we conclude that FIFO scheduling is inadequate to design
scalable networks that devote a significant fraction of available resources to support

customers that require per-flow service guarantees.

EDGE ROUTERS

Figure 1.2: Network Model

1.5.2 Design of Core-stateless Guaranteed Services Networks
Problem Formulation

Figure 1.2 depicts edge and core routers in a typical network. The property of
not maintaining any per-flow state in the core routers is known as being core-
stateless [57]. The design of a core-stateless architecture is based on the following

simple observations:

e Core routers of a network are connected with high-speed links, and carry a
large number of flows. Hence, it is not feasible for these routers to maintain
per-flow state and perform packet classification, and yet operate at high link

speeds.

e Edge routers of a network operate on low-speed access links, and carry a
smaller number of flows. Hence, it is feasible for these routers to maintain and

use per-flow state.

A core-stateless architecture therefore promises to scale well as link speeds and

traffic increases in the core of networks. Many schemes have been proposed in the

10

recent past to provide service guarantees in a core-stateless architecture. We briefly

describe these next.

Past Work Depending on the type of service guarantees provided by core-stateless
schemes, these can be classified as those that provide statistical guarantees over large
time-scales, and those that provide deterministic per-flow service guarantees.

In the first category, fall a large number of schemes that provide approzimate
fairness in the long-term throughput achieved by different flows [10, 14, 46, 58]. Most
of these schemes employ preferential dropping mechanisms designed to drop packets
from flows roughly in proportion to their sending rates. At times of congestion,
therefore, more packets are expected to be dropped from flows with larger bit-rates,
thereby achieving fairness in the steady-state. However, such fairness is assured only
at very large time-scales; no guarantees on fairness or throughput are provided to
short-lived flows or during specific intervals of interest in the life-span of long-lived
flows.

In contrast, the Core Jitter Virtual Clock (CJVC) scheduling algorithm pro-
vides deterministic upper bounds on end-to-end network delay [59]. CJVC is the
core-stateless version of Jitter Virtual Clock, that provides ezactly the same end-to-
end delay guarantees while maintaining and using per-flow state only at the edge
routers of the network. Unfortunately, a CJVC network is non work-conserving,
which results in high average delays and limits the extent to which the network
benefits from statistical multiplexing gains. This is because non-work-conserving al-
gorithms shape the incoming traffic to the maximum of the reserved rate and sending
rate for that flow; when a flow sends a burst of packets at a rate greater than its
reserved rate, extra packets are held until their eligibility time (determined based on
the reserved rate for the flow), even if idle bandwidth is available for transmitting
these packets. A CJVC network, therefore, does not meet our design requirement

of utilizing resources efficiently.

11

In this dissertation, we design work-conserving core-stateless networks that
provide deterministic per-flow guarantees, similar to core-stateful networks, on end-

to-end delay®, throughput, and fairness.

Research Methodology Our approach blends theory and practice. We address
the theoretical aspects of designing core-stateless networks in two steps: (1) we
understand the end-to-end service guarantees that can be provided in core-stateful
networks; and (2) we design core-stateless networks that provide end-to-end ser-
vice guarantees similar to core-stateful networks. On the practice front, we design
and implement a router prototype to evaluate the feasibility of deploying our core-
stateless architecture, and investigate the scalability of routers. We summarize our

contributions below.

End-to-end analysis of core-stateful networks

Past Work Past analysis of Guaranteed Rate (GR) [25] networks derives the end-
to-end delay guarantees that can be provided using a core-stateful network architec-
ture. The Packet Scale Rate Guarantee (PSRG) [5] framework helps to understand
the end-to-end throughput guarantees provided by a fair queuing network. However,
there are no analyses that derive the end-to-end fairness properties of a core-stateful

network of fair servers.

Our Contribution We analyze networks that employ fair scheduling algorithms
to understand the end-to-end fairness guarantees that they can provide. Our anal-
ysis results in the first tight bound on end-to-end fairness for any network of fair
servers. We first argue that it is difficult to extend existing single-node fairness

analysis to an end-to-end analysis of a network where each node may employ a dif-

3Recently, and simultaneous to our work, work-conserving core-stateless networks that provide
delay guarantees have been proposed in [40, 66].

12

ferent fair scheduling algorithm. We then present a two-step approach for end-to-end
fairness analysis of heterogeneous networks. First, we define a class of scheduling
algorithms, referred to as the Fair Throughput (FT) class, and prove that most
known fair scheduling algorithms belong to this class. Second, we develop an anal-
ysis methodology for deriving the end-to-end fairness bounds for a network of FT
servers. Our analysis is general and can be applied to heterogeneous networks where

different nodes employ different scheduling algorithms from the FT class.

Designing core-stateless architectures

CSGR Networks We design a methodology to transform any core-stateful net-
work that employs scheduling algorithms from the GR class, to its core-stateless
version (CSGR) that provides the same end-to-end delay guarantee. The key insight
we use is that: upper bounds on packet deadlines at any core node can be computed
using per-flow state at the edge node. We demonstrate that a CSGR network, that
uses the upper bounds on deadlines, instead of actual deadlines, provides the same
end-to-end delay guarantee. Since the GR class is fairly general, this methodology
provides a tool to design a wide range of core-stateless networks that provide de-
lay guarantees. For instance, it is possible to design a core-stateless Delay-EDD

network, that decouples the delay and rate guarantee.

CSGT Networks We propose the Core-stateless Guaranteed Throughput (CSGT)
network architecture—the first work-conserving network architecture that provides
throughput guarantees to individual flows over finite time-scales, but without main-
taining per-flow state in core routers. We develop the architecture in two steps.
First, we show that for a network to provide end-to-end throughput guarantees, it
must also provide end-to-end delay guarantees. Second, we demonstrate that two
mechanisms —tag re-use and source rate control— when integrated with a work-

conserving, core-stateless network that provides end-to-end delay guarantees, lead to

13

the design of CSGT network that provides end-to-end throughput bounds within an
additive constant of what is attained by a core-stateful network of fair rate servers.

We demonstrate that the constant is small for current network topologies.

Providing Fairness Guarantees in Core-stateless Networks We propose
the Core-stateless Guaranteed Fair (CSGF) network architecture—the first work-
conserving core-stateless architecture that provides deterministic fairness guaran-
tees. We develop the architecture in two steps. First, we show that for a network
to provide fairness guarantees, it must also provide throughput guarantees. Second,
we demonstrate that a set of two mechanisms—{fair access at the edge and aggre-
gation of flows in the core—when integrated with a CSGT network that provides
throughput guarantees, lead to the design of CSGF networks that provide fairness
guarantees. The fairness guarantees provided by a CSGF network on application

throughput are comparable to those provided by core-stateful networks.

Scalability Evaluation on a Programmable Router Platform

We have shown that our core-stateless architectures come close to their core-stateful
counterparts in providing per-flow guarantees. We next evaluate the scalability of
routers in our architectures—and compare them to routers in FIFO and IntServ
networks—by implementing them on a programmable router platform. Our results

indicate that:

1. Core routers in core-stateless networks that employ source routing can support
best-case packet-processing speeds similar to those in conventional FIFO IP
networks; they halve the gap between the worst-case packet-processing speeds

of routers in FIFO and IntServ networks.

2. The memory space requirement of core routers in a core-stateless architecture

is similar to that of routers in conventional FIFO networks.

14

The rest of this dissertation is organized as follows. We present the eval-
uation of the performance of CBR flows in FIFO networks in Chapter 2. We
present the end-to-end analysis of core-stateful networks in Chapter 3. The design
of core-stateless networks that provide delay, throughput, and fairness guarantees,
is presented in Chapters 4, 5, and 6, respectively. The scalability evaluation of
the core-stateless architectures on a programmable router platform is presented in
Chapter 7. Chapter 8 presents the conclusions of this dissertation and directions for

future research.

1.6 Notation and Assumptions

Throughout this dissertation, we use the following symbols and notations.

p’} : the k* packet of flow f

a’}” ; @ arrival time of p’}’ at node j on its path

d’}, ; ¢ departure time of p’} from node j

l’} : length of packet p’}

Tf : rate reserved for flow f

j : upper bound on propagation delay of
the link connecting node j and (5 + 1)

C; : outgoing link capacity at node j

We use H to denote the number of routers along the path of flow f; the source of
flow f is connected to router 1 and the destination is connected to router H. The k"
packet transmitted from the source, p’}, is said to have a sequence number of k. A
source is said to transmit packets at least at its reserved rate, if a’},l < a’;,_ll—i-yg. We
use the terms server and router interchangeably; further, we make the assumption
that the sum of rates reserved for flows at any server does not exceed the server

capacity (i.e., the link bandwidth).

15

Chapter 2

Performance of CBR Flows in

FIFO Networks

Providing delay guarantees is fundamental to providing any other types of network
service guarantees. For instance, it can be shown that a network that does not
provide delay guarantees cannot provide throughput, fairness, or jitter guarantees.
It is well known that FIFO networks do not provide delay guarantees; a burst of
packet arrivals from a flow results in large queuing delays for all other flows sharing
the network. The natural question is: can FIFO networks provide a low-delay service
if bursts are not allowed into the network? In fact, the conjecture that preventing
bursts from entering a FIFO network is sufficient to provide a low-delay and no-loss
service is at the basis of the design of the well-known Virtual Leased Line (VLL)

service model [11, 31, 44]. In this chapter, we evaluate the validity of this conjecture.

2.1 Background

Evaluation of the performance of CBR flows in FIFO networks has generated interest

in the past. In [4], it is shown that given any level of network utilization, worst-

16

case examples of network topologies and input traffic can be constructed, such that
packets experience unbounded delay even when flows are shaped to CBR at the
source [4]. This demonstrates that CBR flows can become bursty as they traverse
a FIFO network. These examples, however, are artificial in nature, and do not
lend insights into the delay and jitter performance of CBR flows in realistic FIFO

networks.

Delay Bounds in FIFO Networks Worst-case bounds on end-to-end delay ex-
perienced by CBR flows in FIFO networks have been provided under special oper-
ating conditions in [4, 12, 39]. The bounds derived in [4] are valid only for networks
that operate at utilization lower than ﬁ, where H is the maximum number of
hops on an end-to-end path. The bounds derived in [12, 39] are valid when the
bit-rates of CBR sources are constrained by the total number of flows that share
any router with them on the end-to-end path. These delay bounds are, therefore,

not applicable to general and realistic FIFO networks.

Past Analytical Work A number of analytical models have been proposed for
characterizing the delay and jitter performance of flows in general FIFO networks [19,
28, 42, 48, 50, 55].

Bounds on the queue size distribution for superposed CBR streams with
heterogeneity in their periods have been derived in [50]. Techniques for estimating
the end-to-end jitter incurred to CBR traffic in an ATM network have been provided
in [42]. Their study is, however, limited to flows with fixed packet sizes, and does not
investigate the actual end-to-end delay incurred. A connection traversing multiple
hops has been studied in [28] and it has been observed that the end-to-end delay
distribution depends on the auto-covariance of the cross-traffic sharing the network
links. It has been shown in [19] that the inter-arrival time of packets becomes more

bursty in a traffic stream on passing through networks that carry packets of highly

17

variable size. However, this study focuses on non-CBR traffic, and it is not obvious
if the same result would hold for CBR networks. Furthermore, the analysis is carried
out assuming a single cross traffic stream and a small network. In [48], the authors
model CBR flows with an aggregated CBR background traffic at a single network
node, and extend it to the end-to-end case in [55] under high utilization. The main
inadequacy of these models is that these are very complicated, computationally
intensive, and do not yield any closed-form characterization of, or direct insights

into the performance of CBR flows.

Past Experimental Work A simulation study that directly measures the end-
to-end delay and jitter observed by CBR flows as they traverse large networks while
interacting with several cross traffic flows has been presented in [27]. However, their
study assumes fixed packet sizes, making the study applicable only to ATM-type

networks.

Our Approach We address the limitations of past analytical and simulation stud-
ies on the performance of CBR flows in FIFO networks in two steps: (1) we develop
an analytical model that yields a closed-form characterization of the end-to-end per-
formance of CBR flows in FIFO networks under asymptotic conditions of network
utilization and path length; and (2) we conduct simulations to verify the set of non-
asymptotic and realistic conditions under which the results of the model continue to
hold.

We present these in some detail in the rest of this chapter.

2.2 Analytical Model

We have developed an analytical model for the inter-arrival time between pack-

ets at the destination for individual flows (including CBR flows) under asymptotic

18

conditions of network utilization and number of hops traversed [60].

Our analysis proceeds in the following basic steps. First, it relates the vari-
ance in inter-arrival time of packets of a given flow at node j to that at node j — 1.
Next, it shows that the variance of the limiting distribution of inter-arrival times
is unbounded. It establishes that the mean of the limiting distribution, however,
is finite. Finally, it shows that a distribution with a finite mean, but unbounded
variance, is heavy-tailed'. In this section, we summarize the insights gained from
our analysis; the details of the model can be found in [60].

Our model yields the following key insights:

1. The variance in inter-arrival times for individual flows tends to infinity in the
asymptotic case, indicating that flows become heavy-tailed after traversing a

network of FIFO routers.
2. The aggregation of flows becomes a long-range dependent self-similar process.

The occurrence of heavy-tails in the inter-arrival times of flows implies that a non-
negligible fraction of packets experience significantly large delays. Since the model
results are valid even for CBR flows, it follows that shaping flows to CBR at the
edge of the network does not result in a low-delay performance in networks that
operate at high levels of utilization.

Observe that the analytical model predicts heavy-tails in flows when the
network utilization and path length are asymptotically high: 100% and infinite,
respectively. However, such conditions do not arise in practice. Hence, it is not
clear from the analysis alone, whether CBR flows become heavy-tailed even in re-
alistic networks. To address this question, we conduct experimental studies and
measure the delay behavior of CBR flows under non-asymptotic network and traffic

conditions. We describe these studies next.

! A heavy-tailed distribution is one in which the probability of taking very large values is non-
negligible.

19

Tagged /T\T

Cross traffic
entering the tagged path

traffic \\/

R1

O

H R2 \H R3 Rn
3

Cross traffic
leaving the tagged path

(a) Network Topology (b) Router Architecture

Figure 2.1: Simulation environment: network topology and router architecture

2.3 Experimental Evaluation

We have developed a network simulator using CSIM [1] to study the end-to-end
performance of CBR flows in large-scale FIFO networks. In this section, we describe

our simulation environment and the metrics for the performance evaluation.

2.3.1 Simulation Environment
Network Topology

For our experiments, we consider a linear, multi-hop network topology (see Fig-
ure 2.1(a)). This network model is fairly general and has been used in litera-
ture [28, 38, 42, 62]. Let M, denote a linear, multi-hop network topology with
n routers, and let R; (i € [1,n]) denote the ith router in the topology. Given such
a topology, we are interested in the end-to-end performance of the tagged traffic,
which refers to the set of CBR flows that enters the network topology at router R
and traverses the multi-hop network topology M,. Specifically, we measure how
the characteristics of the individual CBR flows aggregated in the tagged traffic are
altered as they interact with other CBR aggregates (referred to as the cross traffic)
that enter and depart the network at each router along the path.

We model each router in this network as having p input ports (I1,...,I,)

and p output ports (O1,...,0p). The network topology M, consists of n routers

20

such that, for all 7 (1 < i < n — 1), the output port O; of router R; is connected to
the input port I; of router R; ;. A tagged flow enters the network through port I
of router R;. Through each port I, ..., I, of router R;, aggregates enter the path,
and 1/p of each of these aggregates are routed to output port Oy (see Figure 2.1(b)).
In addition, the tagged traffic entering input port I; of R; is routed to output port
0O1. Thus, for each router, the traffic routed to the output port O; consists of:
(1) The tagged traffic (entering the router from port I1); and (2) 1/p of the flows
entering from input ports Iy, ..., I,. All of the remaining traffic entering each router
is routed to output ports Os,...,Op.

The above topology ensures that: (1) the tagged traffic that enters the net-
work at router R; is routed all the way through the multi-hop network M,,, and
(2) the cross traffic entering the network at router R; (¢ € [1,n]) interferes with the
transmission of the tagged traffic for a single hop, and leaves the network at router
R;+1. This topology facilitates experimentation with different compositions of the
cross traffic and different network depths. We have conducted experiments for p
ranging from 8 to 32. We present results for experiments with p = 8; these results

hold for other values of p too.

Modeling Cross Traffic

The extent to which the cross traffic entering each router affects the characteristics
of the CBR flows in the tagged traffic depends on the burstiness of the cross traffic.
Note that, although we have assumed that each flow entering the network is shaped
to CBR at the source, the aggregate cross traffic entering each router may be bursty.
This burstiness results from: (1) the heterogeneity in the inter-arrival times of the
CBR flows, and (2) the traffic distortions that result from flows traversing through
multiple routers in the network.

To reasonably approximate traffic distortions, we model the cross traffic en-

21

tering at each router in the network as consisting of two types of flows: (1) flows
that are at the beginning of their routes or have traversed through a small (M; or
M) number of routers, and (2) flows that are at the end of their routes or have
traversed through a large (Mzp) number of hops. This model closely approximates
the current Internet—each backbone router is a small number of hops away from
some set of hosts while being far away from some others.

To capture heterogeneity across CBR flows, we consider two classes of cross-
traffic flows—flows with large and small average packet inter-arrival times at the
source. We quantify the heterogeneity in cross-traffic flows in terms of the inter-
arrival time ratio (IATR), which is defined as the ratio of the average packet inter-
arrival times for these two classes of flows. We construct the two flow classes in the

following two ways:

1. CBR flows with heterogeneous packet sizes: All CBR flows have the same bit-

rate requirement, but their packet size is selected uniformly from two intervals.

2. CBR flows with heterogeneous bit-rates: All CBR flows have the same packet

size, but their bit-rate requirement is selected uniformly from two intervals.

2.3.2 Measuring Non-asymptotic Region of Heavy-tailed Behavior
for CBR Flows

The analytical model in [60] predicts a heavy-tailed behavior for CBR flows under
asymptotically high utilization and path length. In this section, our objective is
to compute—through simulations—the non-asymptotic set of network and traffic

conditions, under which CBR flows become heavy-tailed.

Tests Used to Detect Heavy-tailed Behavior in CBR Flows The literature

contains the following tests for identifying heavy-tailedness in flows:

22

1. LLCD Test: The log-log complimentary (LLCD) test is used to detect the
presence of heavy-tails in a flow. The complimentary distribution of the packet
inter-arrival times is plotted on a log-log scale. For a heavy-tailed flow with a
finite mean inter-arrival times, the distribution looks like a straight line with

slope a € (1,2), for large values of inter-arrival times.

2. Hill Test: Let Uy,...,U, denote the packet inter-arrival times of a given flow
in ascending order. The Hill function, hill(k), for a flow is defined as:
-1

hill(k) = kfkfl log o=t
i=0 Un—k

A source is said to be heavy-tailed with finite mean if hill(k) stabilizes to

a € (1,2) for large value of k.

Parameter Settings We simulate an M topology with 40M bps links. We select
a tagged flow with a bit-rate requirement of 4Mbps, and packets of size 100B5.
We use the following dimensions to identify the non-asymptotic region of

applicability of the model:

e Network Utilization: To identify the levels of network utilization above
which CBR flows exhibit heavy-tailed behavior, we conduct experiments with

link utilization varying from 20% to 99%.

e Path Length: The greater the number of hops a flow traverses, the larger
the likelihood of its inter-arrival time becoming bursty. We evaluate the effect

of increasing the number of hops—from 2 to 20—on the validity of the model.

e TATR: The greater the heterogeneity in the cross-traffic, the greater is its
interference with the tagged flow. We evaluate the effect of this parameter by

varying the IATR of the cross-traffic from 1 to 1000.

23

hops

4

2

(a) CBR: Heterogeneous packet sizes

T
IATR=1 -—

T
IATR=1 -—

|ATR=10 -+ |ATR=10 -+
IATR=100 -& IATR:

1 JATR=500 x| 1L
\ IATR=1000 & ,

x
#hops

¥
[-
¥
o

. N 2 L L L S L g L -

40

IATR=5!(4
IATR=1000 -4~

1 1 1
50 60 70 80 90 100 50 55 60 65 75 80
Utilization Utilization

(b) CBR: Heterogeneous bit rates

Figure 2.2: Region of applicability of the analytical model

We conduct experiments with network settings defined by a combination of specific
values for utilization, network depth, and TATR. Any network setting that yields a
heavy-tailed tagged flow (with a € (1,2)) at the destination is said to belong to the
region of applicability of the model.

Experimental Results For the two different cross-traffic settings, Figures 2.2(a)
and 2.2(b) plot the minimum utilization level versus the minimum number of router
hops at that utilization necessary for observing a € (1,2) for the tagged flow. In
each of these experiments, the tagged flow occupies 10% of the total traffic sharing
a link. For each value of IATR, the area above and to the right of its corresponding
curve identifies the region of applicability of the model. The following conclusions

can be drawn from these figures:

1. The greater the heterogeneity in the cross-traffic, the larger is the region of
applicability of the model (i.e., tagged flows show heavy-tailed behavior for a
larger set of network settings).

2. For same value of TATR, heterogeneity in packet-sizes results in a slightly

larger region of applicability of the model than heterogeneity in bit-rates.

24

100

3. More importantly, these figures demonstrate that flows can become heavy-
tailed in large heterogeneous networks running at relatively low utilization
levels (e.g., 40%), or after traversing as few as 4 hops in networks running at

high utilization levels.

These simulations demonstrate that the end-to-end delay performance of
CBR flows is not adequate for applications with timeliness requirements in large-
scale FIFO networks operating at moderate to high levels of utilization. The use
of per-flow scheduling algorithms has been widely suggested in the literature to
provide good end-to-end delay performance [18, 64]. In the following, we compare
the performance of CBR flows in FIFO networks to that in networks that employ

per-flow queuing mechanisms.

2.3.3 Comparing Performance of CBR Flows in FIFO Networks vs.

Per-flow Queuing Networks

Background To address the limitations of FIFO, several different packet schedul-
ing algorithms have been proposed [6, 18, 26, 64]. These algorithms maintain per-
flow state and provide bounded end-to-end delay guarantee to a flow regardless of
the behavior of other flows in the network. It can be shown that, for a CBR flow, the
maximum end-to-end delay in a typical network that employs per-flow scheduling

algorithms, is bounded by [25, 52]:

j=K
KxI;+ Y B (2.1)
j=1

where I = i—’; is the packet inter-arrival time of the CBR flow at the source, and g;
is a constant that depends on the scheduling algorithm at switch j. Additionally,

the inter-arrival time at the destination is bounded by [23]:

i=K

K+I;+ Y aj (2:2)
i=1

25

where a; is a constant that depends on the scheduling algorithm at switch j. When
normalized by Iy, both—the end-to-end delay and the packet inter-arrival time at
the destination— are bounded by the number of nodes on the end-to-end path (plus
a constant). Our objective is to compare the maximum delay experienced by CBR
flows in FIFO networks, to that in per-flow queuing networks that guarantee the

above bounds on worst-case performance.

Experimental Design We conduct experiments to compare the worst-case end-
to-end performance of CBR flows in networks where each router employs either
FIFO or per-flow queuing to arbitrate access to link bandwidth, and all flows are
shaped to CBR at the source or at the ingress routers. We use WF2Q+ [7] as a
representative per-flow scheduling algorithm. We experiment with different settings
of network utilization, path length, and heterogeneity among CBR flows (IATR). In
this chapter, we present results only for path lengths of 20; the detailed results can
be found in [52]. The link capacities are set to 40Mbps.

Heterogeneity Across CBR Flows We investigate the effect of heterogeneity in
both the bit-rate requirements and the packet sizes across CBR flows, on their end-
to-end performance. To conduct this experiment, we simulate a series of network
environments with different ratios of packet sizes (namely, 5, 30, 60, and 120) for the
two classes of CBR flows. For each environment, we select the bit-rate requirement
of flows such that the IATR varies from 15 to 130. Each network is operated at a
utilization of 97%. Figure 2.3 depicts the results of these experiments for the class
of CBR flows with high packet frequency.

Figure 2.3(a) plots the 99.9%-percentile of the distributions of the end-to-end
queuing delay as a function of the TATR. Each line represents cross-traffic scenarios
with the same ratio of packet sizes for the two classes of CBR flows. The graph

indicates the following. (1) Increasing heterogeneity in packet sizes increases the

26

99.9 % End-to-end queueing delay (sec)

0.45

0.4

Variation in normalized inter-pkt spacing of high frequency flows with maximum ratio of in
T T T T

ter-packet spacing
T

Variation in queueing delay of high frequency flows with maximum ratio of inter-packet spacing
T T T T T T

T
FIFO: packet size ratio = 5 <— 8

FIFO: packet size ratio = 30 —+-- FIFO: packet size ratib = 30 —+--

FIFO: packet size ratto = 60 -8-- 4 FIFO: packet sizé ratio = 60 -8--
FIFO: packet size Tatio = 120 -x FIFO: packet Size ratio = 120 -x
WF2Q+; packet size ratio = 5 - 7k WF2Qu+:-packet size ratio =5 -&- |

WF2Q+: packet size ratio = 30 -
WF2Q+: packet size ratio = 60 -<--
WF2Q+: packet size ratio = 120 - .

99.9 % Normalized Inter-pkt Spacing at Dest

WF2@+: packet size ratio = 30
WF2Q+: packet size ratio = 60 -o--

FIFO: packet size ratio = 5 <—

en

o
+

WF2Q+: packet size ratio = 120 -+

120 140 0 20

20

40 60 80 100 40 60 80 100
Maximum ratio of inter-packet spacing Maximum ratio of inter-packet spacing

(a) (b)

Figure 2.3: 99.9%-percentile of (a) end-to-end queuing delay and (b) normalized
inter-arrival time (for high packet frequency flows)

maximum end-to-end queuing delay. The maximum delay in a FIFO network can
be an order of magnitude larger than the end-to-end propagation latency (10ms).
(2) For networks that support CBR flows with small heterogeneity in packet sizes,
increasing the ratio of packet arrival rates (by changing the ratio of bit-rate re-
quirements of flow classes) does not yield any noticeable increase in the end-to-end
queuing delay. However, for network environments that support larger heterogene-
ity in packet sizes (e.g., packet size ratios of 60 and 120), increasing the ratio of
packet arrival rates increases the maximum end-to-end delay suffered by flows with
high arrival rates.

Figure 2.3(b) supports that same conclusion with respect to the normalized

inter-packet separation.

Effect of Network Utilization The previous experiments are conducting on
networks operating at 97% utilization. We next evaluate the effect of different
network utilization levels (ranging from 40% to 97%) on the results. Figure 2.4
plots the results of this experiment.

Figure 2.4(a) indicates that for flows with high packet arrival rates, with

27

140

Normalized End-to-End Queueing Delay

Variation in normalized queueing delay with network link utilization Variation in normalized inter-pkt spacing with link utilization
T T T T T

T T 6 T T

FIFO: IPSR = 64.77, PSR = 30 — FIFO: IPSR = 64.77, PSR = 30 —

'SR =60, PSR = 60 -+--

WF2Q+: IPSR = 60, PSR = 60.-<&-~ 5
WF2Q+: IPSR = 55.58, PSR = 120 -~

"

%
Normalized Inter-pkt Spacing at Dest
@

T

0 L L L L L

WF2Q+: IPSR = 60, PSR = -
WF2Q+: IPSR = 55.58, PSR = 120 -*--
vF

60 70 80 90 100 30 40 50 60 70
Link utilization (%) Link Utilization (%)

(a) (b)

Figure 2.4: 99.9%-percentile of (a) normalized end-to-end queuing delay and (b)
normalized inter-arrival time

FIFO scheduling, the end-to-end queuing delay reduces by a factor of 10 as the
network utilization decreases from 97% to 40%. To compare the delay in FIFO
networks with the bounds guaranteed by per-flow queuing networks, we normalize
it with respect to I, the inter-arrival time at the source. We find that FIFO delays
can not be bounded in terms of the intrinsic properties of a flow. In the presence
of heterogeneous CBR flows, FIFO yields higher end-to-end queuing delays than
WF2Q+ even at 40 — 50% utilization.

Figure 2.4(b) illustrates that normalized inter-packet spacing at the destina-

tion is relatively independent of the network utilization.

From the above experiments, we conclude that the difference in performance of
FIFO and fair queuing networks is significant in environments with heterogeneous
packet sizes (like the current Internet), and those that operate at moderate to high

levels of utilization (greater than around 50%).

28

100

2.4 Discussion

From the above studies, we conclude that FIFO scheduling is not sufficient to provide
a low-delay network service when CBR flows occupy moderate-to-large fractions of
available capacity. The reason for this is that bursts can accumulate even within
CBR flows as they traverse a network. These effects are more pronounced at higher
levels of network utilization. Thus, to provide a low-delay and no-loss service to
CBR flows, a FIFO network has to either limit the network utilization as seen by
CBR flows, or add mechanisms to prevent the accumulation of bursts. We discuss

both of these approaches:

1. A FIFO network can limit the network utilization seen by CBR flows (1) by
ensuring that the cumulative bit-rate of the CBR flows is a small fraction of
the total capacity, and (2) by assigning higher-priority to this class of flows.
Traffic classes that are assigned lower priority, for instance, best-effort traffic,
can utilize the remainder of the network capacity. This approach may be
sufficient if the network offers only one type of premium service; for a FIFO
network to offer multiple types of premium service classes, such as a guaranteed
throughput class, however, the above approach requires that the cumulative
bit-rate of flows from all of these classes be limited to a small fraction of the
total capacity. FIFO scheduling is therefore not adequate to design networks
that devote a significant fraction of their resources to support customers that

require some kind of absolute performance guarantees.

2. Accumulation of traffic bursts within the network may be eliminated by em-
ploying CBR shapers at all routers. However, such an approach requires main-
tenance of per-flow timers in addition to per-flow state, and requires packet
classification at core routers. As argued before, these requirements threaten

the scalability of core routers in high-performance networks. Further, per-node

29

CBR shapers render the network non work-conserving, which is undesirable.

Conclusion 1 A FIFO network can provide a low-delay network service by (1)
shaping flows that subscribe to this service class to CBR, (2) assigning higher-
priority to this service class, and (8) ensuring that the cumulative bandwidth occupied
by flows in this class is a small fraction of the total capacity. FIFO scheduling is
inadequate to design scalable networks that devote a significant fraction of available

resources to support customers that require per-flow service guarantees.

This chapter concludes our investigation of the performance of CBR flows in
FIFO networks. In the rest of this dissertation, we explore our second research direc-
tion of designing work-conserving core-stateless network architectures that provide

per-flow service guarantees.

30

Chapter 3

End-to-end Service Guarantees

in Core-stateful Networks

The need to provide per-flow service guarantees in networks has been recognized for
some time. In the last decade, several sophisticated packet scheduling algorithms,
that provide per-hop guarantees with respect to delay, throughput, fairness, and
jitter, have been proposed [7, 22, 26, 65]. To provide such guarantees, however, these
algorithms need to maintain per-flow state. As a measure against which to evaluate
the service guarantees provided by core-stateless network architectures that do not
maintain state in the core, it is important to understand the end-to-end guarantees
provided by core-stateful networks.

In general, the end-to-end analysis of a network of servers, each of which
provides a per-hop service guarantee, is not straightforward. This is due to two

main reasons:

1. The literature contains single-server performance analyses only for specific
scheduling algorithms [6, 7, 22, 26]. In a wide-area network, however, each
router may employ a different scheduling algorithm. Hence, an end-to-end

analysis should be applicable to such heterogeneous networks.

31

2. Most single-server analyses of scheduling algorithms assume certain input traf-
fic models. Due to the variability in the delay experienced by packets at a
server, traffic gets distorted as it traverses the network. Therefore, input traf-
fic models that enable analysis at the first server in a network, may not remain
valid at subsequent nodes. Hence, it is not straightforward to extend existing

single-server analyses of scheduling algorithms to end-to-end analyses.

In this chapter, we build upon past work to understand the end-to-end delay and
throughput guarantees that can be provided in core-stateful networks, and present

a novel analysis to derive end-to-end fairness guarantees.

3.1 End-to-end Delay Guarantees

Single-server Delay Guarantees
The expected arrival time of packet p’} of flow f at server j is defined as [64]:
lk—l
EAT;(p}) = max (af;, BAT;(pi™)) + J;—f k>1

Then, server j is said to provide a delay guarantee to flow f, if it provides an upper
bound on (d’}, i — EAT; (p’})), the difference between the departure time of p’} from
the server and its expected arrival time at the server [61]. Note that given a source
traffic characterization, such as leaky-bucket, a delay guarantee can be used to derive
upper bounds on the delay suffered by packets of a flow at server j [25].

Most per-flow scheduling algorithms proposed in the literature provide delay
guarantees. In [25], the Guaranteed Rate (GR) framework has been defined to

characterize such algorithms. The formal definition is as follows:

Definition 1 A scheduling algorithm at server j belongs to class GR for flow f if
it guarantees that packet p’} will be transmitted by GRC’}“,]- + By, where GRC’}“,]- =

32

GR algorithm Bs.

Virtual Clock ez /C;
Packet-by-Packet GPS e /Gy

Self Clocked Fair Queuing Zm 2107 lma‘” /C;

Delay EDD TG+ dyy — ey

Table 3.1: B¢ ; values of some GR algorithms (For Delay EDD, dy ; is the desired
delay bound for flow f at server j)

EAT;(p}) + i

v and By ; is a constant which depends on the scheduling algorithm

and the server.

From the deﬁnition it follows that the delay guarantee of a GR server is given by:
d —EAT;(p f) +ﬁ ¢ ;- Table 3.1 lists the values of 3 ; for some GR algorithms
(derlved in [25]).

Deriving End-to-end Delay Guarantees

Consider a flow f that traverses a path of H servers through a network. The network
is said to provide an end-to-end delay guarantee if it provides an upper bound on
(d? g — EATy (p’})), the difference between the departure time of the packet from
the network and its expected arrival time into the network (at the first server).

An end-to-end analysis of a network of GR servers has been presented in [24],

which derives the following end-to-end delay guarantee:

Theorem 1 If the scheduling algorithm at each of the servers on the path of a flow
belongs to GR for flow f, then the departure time of packet p’} from the last node in

the network is given by:

L z' H
dl}H < EATl(pl}) +-Ly (K —1) max —. Z By, + mj)
’ Tt 161 k] Tf =

33

Past work on the end-to-end analysis of GR networks, thus, helps us understand
the end-to-end delay guarantees that can be provided using a core-stateful network

architecture.

3.2 End-to-end Throughput Guarantees

Single-server Throughput Guarantees

The throughput of a flow in a time interval is defined as the number of bits belonging
to that flow delivered by a server (or a network) during that time interval. A
flow with a reserved rate of r; at a server, would expect the server to provide it
throughput, during any time interval, at least at the rate ry. To capture such a

service semantics, we define a single-server throughput guarantee as follows:

Definition 2 A server is said to provide a throughput guarantee to a flow f, whose
source transmits packets at least at its reserved rate, if in any time interval [ty,ts],

the server guarantees a minimum throughput to flow f, Wy ;(t1,t2), given by:
Wy,j(t1,ta) > rp(ta —t1) — 15 vy, (3.1)
where 7 ; is a constant that depends on the traffic and server characteristics.

From the definition, a server guarantees a non-zero throughput to flow f if to —¢; >
7}‘%; thus, the value of ,an&tl bounds the longest time interval for which a flow may
receive no throughput from the server. Clearly, the smaller the value of 7}‘33, the
better the quality of service for applications that require sustained throughput.
Observe that most scheduling algorithms that provide delay guarantees, also
guarantee an average throughput at the reserved rate; however, these algorithms
differ in the time-scales (namely, the value of 7?33) at which this guarantee is pro-
vided. For instance, at a server that employs an unfair packet scheduling algorithm

(e.g., Virtual Clock or Delay EDD), the throughput received by a flow during a time

34

interval is a function of the throughput received by the flow in the past. In fact, for
such servers, 7¢,; is not bounded, indicating that an unfair server cannot guarantee
non-zero throughput at finite time scales.

It has been shown that most fair queuing algorithms provide single-server
throughput guarantees [6, 22, 26]. The Packet Scale Rate Guarantee (PSRG) frame-
work proposed recently is useful to capture the throughput properties of such algo-

rithms [5]. We recall the definition below.

Definition 3 A server j is said to provide a “packet scale rate guarantee ry with

latency €7 to a flow f if the departure time of packet p’} satisfies [5]:

df; < Fi(p§) +ep

where Fj is recursively defined as:

ll
Fi(p}) = a},j+£
i
Fi(ph) = maa:(a’;’j,min(d’;;l,Fj(p’;_l)))+;, E>1 (32

Fair scheduling algorithms such as PGPS [47] and WF2Q [6] have been shown to
provide the packet scale rate guarantee.
Lemma 1 shows that a server that provides a packet scale rate guarantee,

also provides a single-server throughput guarantee.

Lemma 1 A server j that provides a “packet scale rate guarantee ry with latency
€7 to a flow f, the source of which transmits at least at its reserved rate ry, also
provides a minimum throughput to flow f, during any time interval [t1,t2], given

by: r(ta—t1) —7f €55 — 21}”‘”, where l}n‘”" is the largest packet size used by flow f.

lk—l
Proof: Observe that: F; (p’]i_l) > okt 4 _fTT Also observe that if the source of

fi
k—1
. . k-1 ! k—1
flow f transmits at least at its reserved rate, then a’},j <ap; + —’;T < Fj(pf)-

35

Using this fact and decomposing the maz term in (3.2), it can be observed that for
such a source:
k
i
rf
Consider any time interval [t1, ¢2]. Consider the following two cases:

Fi(p}) < Fi(of ") + (3:3)

o There is no backlog of packets of flow f at t;.

Let p’} be the first packet to arrive in the interval [¢1,¢2]. Then al}’;l < t1, which

o 15t ik -1 gk
implies that a’},j <t + ’;f . Therefore, Fj(p’}) = a’},j + % <t + frf + %

o There is a backlog of packets of flow f at ty.

Let p’} be the packet of flow f with the smallest F; value in the backlog. Then

d’};l < t1 (by definition of p’}), and al}’j < t1 (because p’} is backlogged). From
lk

(3.2), it can therefore be observed that Fj(pl}) <t + ;?

Next observe from the definition of packet scale rate guarantee, that any packet
assigned an F}; value no more than ¢ — €y ;, will depart the server by ¢5. This implies
that among the packets that depart the server after ¢;, those with Fj € [t1,t2 — €y],

will depart the server in the time interval [t1,?2]. From the two cases above, if p’} is

L
the packet with the smallest F; value to depart after ¢1, then Fj(pk) < t1+%+’;—f <
lk |maw
t, + % + ’;f . From (3.3), therefore, it can be seen that among packets that

depart after ¢;, packets with a total of at least rf(to — t; — €f,;) — 2[79% bits are
assigned F; values that lie in the interval [¢;, t2 — €y ;]—the second I79% term appears

because the F; value of the last of this sequence of packets could lie anywhere in

lmaz
ty —€s; — L—,ty — €7 ;]. Therefore, the throughput received by flow f during the
f:] Tf f:] g
time interval [t1,%2] is at least r(ta —t1) — 7y €55 — 21;"‘“’. [|

Deriving End-to-end Throughput Guarantees

A flow that reserves a rate of r; at all servers in its path, would expect the network

to provide it throughput at least at the rate ry. This is captured by an end-to-end

36

throughput guarantee defined below.

Definition 4 A network is said to provide a throughput guarantee to a flow f, whose
source transmits packets at least at its reserved rate, if in any time interval [t1,ts],

the network guarantees a minimum throughput to flow f, W}f‘}}(tl,tz), given by:

WG (b1, ta) > rp(ta —t1) —rp V7% (3-4)

where fy?,?] is a constant that depends on the traffic and server characteristics at

different nodes on the end-to-end path.

An end-to-end Packet Scale Rate Guarantee for a network of servers has been
derived in [5]'. Using Lemma 1, a corresponding end-to-end throughput guarantee

can be stated as:

Theorem 2 A network of H servers, each providing a packet scale rate guarantee
to flow f, the source of which transmits packets at least at its reserved rate during,

provides an end-to-end throughput guarantee to flow f of the form:

H H-1 lmarl:
Win(tyte) > rp(ts—t1) —rp | Y eps+ > mi+ (H + 1)—J;f
j=1 =1

where vy is the rate reserved for flow f and €;; is the latency term in the packet

scale rate guarantee of server j.

A network of core-stateful fair servers, therefore, provides an end-to-end throughput
uarantee characterized by: v7¢ = S H e, 4 S H 1o 4 (H + 1)l}nam
g Y- Ve H T 225=1€fj j=1 Tj T
!The analysis in [5] is conducted for networks with zero link propagation latencies—it can,
however, be extended to networks with non-zero propagation latencies.

37

3.3 End-to-end Fairness (Guarantees

3.3.1 Background
Single-server Fairness Guarantees

In any time interval during which flows are backlogged?, an ideal fair server pro-
vides throughput to flows ezactly in proportion to their reserved rates. This idealized
notion of fairness, however, is infeasible to realize in a packetized system. Fair algo-
rithms for packet scheduling, instead, guarantee an upper bound on the difference
in the normalized throughput (weighted by the reserved rate) received by flows at a
server in intervals during which they are continuously backlogged [22]. This notion

of a fairness guarantee is formally defined as follows:

Definition 5 The scheduling algorithm at node j is said to provide a fairness guar-
antee if in any time interval [t1,ta] during which two flows f and m are continuously
backlogged, the number of bits of flows f and m transmitted by the server, Wy ;(t1,t2)
and Wy, j(t1,t2) respectively, satisfy:

W7'(t1,t2) W, J tl,tz
D e (35)

where Ty and rm are the rates reserved for flows f and m respectively, and Uj (7 m)
is the unfairness measure—a constant that depends on the scheduling algorithm and

traffic characteristics at server j.

Different fair scheduling algorithms [6, 7, 22, 26, 47] differ in the value of Uj (¢ m1,
the unfairness measure. Table 3.2 lists the Uj () values for several known fair
scheduling algorithms.

Fair scheduling algorithms, in addition to providing throughput guarantees

to backlogged flows at short time-scales, allocate idle link capacity to competing

%Fairness in throughput allocation is usually defined only with respect to flows that are back-
logged. This is because the throughput of a non-backlogged flow may be constrained by the source
traffic rather than by the allocation of link capacity.

38

flows in proportion to their weights (or reserved rates). This is desirable from
an economic perspective. Consider, for instance, the case when a network provider
charges its customers based on their reserved bandwidth. In such a network, if a user
A pays twice as much as user B, then A expects the network to allocate bandwidth
in the ratio 2:1 to users A and Bj; any other allocation would be considered unfair.
Fair scheduling algorithms allow a network to ensure this proportionate allocation

property independent of the amount of available bandwidth.

End-to-end Fairness Guarantees

Note that from an end-user perspective, it is more important to define a notion
of end-to-end fairness. Additionally, from a network provider’s perspective, quan-
tification of end-to-end fairness guarantees is necessary for offering service level
agreements (SLAs) to customers. In Definition 6, we generalize Definition 5 to an
end-to-end fairness guarantee. Observe that the fairness property is meaningful only
across flows that share a resource; thus, the notion of end-to-end fairness is defined

only across flows that share the same end-to-end network path.

Definition 6 A network is said to provide an end-to-end fairness guarantee if in any
time interval [t1,ta] during which two flows, f and m, that traverse the same network
path of length H hops, are continuously backlogged at the first server, the number
of bits of flows f and m that depart the network, Wy p(t1,t2) and Wy, g(t1,t2)

respectively, satisfy:

th,t 1 (t1, ¢ o
Winltnto) Wnnltut)| o e, (3.6)

Ty Tm ’

where UI'}“"E f.m} is a constant that depends on the server and traffic characteristics

at the different hops in the end-to-end network path.

There is no analysis in the literature that derives an upper bound on the unfairness

measure, U}’Iff £,mp for a network of fair servers. It may seem tempting to reason that,

39

since the throughput of a flow is determined by the rate allocated at a “bottleneck”
server along its path, the end-to-end fairness guarantee for two flows would be the
same as the fairness guarantee provided by the bottleneck server. Unfortunately,
such a reasoning is incorrect. This is because, end-to-end throughput received by a
flow at short time-scales depends on the queuing delay suffered by its packets. At
short time-scales, individual packets of flows may encounter queuing delay at several
servers, even when at large time-scales, a single bottleneck server may determine the
average bandwidth allocated to a flow. Therefore, the end-to-end fairness guarantee

is not the same as the fairness guarantee provided by any single server.

Our Contributions We present the first end-to-end fairness analysis of a network
of routers, each employing a fair scheduling algorithm. We argue that it is difficult to
extend existing single-node fairness analysis to an end-to-end analysis of a network
where each node may employ a different fair scheduling algorithm. We then present a
two-step approach for end-to-end fairness analysis of heterogeneous networks. First,
we define a class of scheduling algorithms, referred to as the Fair Throughput (FT)
class, and prove that most known fair scheduling algorithms belong to this class.
Second, we develop an analysis methodology for deriving the end-to-end fairness
bounds for a network of FT servers. Our analysis is general and can be applied to
heterogeneous networks where different nodes employ different scheduling algorithms

from the FT class.

3.3.2 End-to-end Fairness Analysis: Challenges

As mentioned earlier, designers of individual fair scheduling algorithms generally
prove fairness bounds (Uj,{ f,m}) with respect to throughput achieved by different
flows only at a single server [6, 22, 26]; the literature does not contain analysis that

net

prove fairness bounds (UH, { f,m}) for the end-to-end throughput achieved by flows

in a network of fair servers. Unfortunately, extending existing single-server fairness

40

analyses of fair scheduling algorithms to an end-to-end analysis is not straightfor-

ward. This is due to two main reasons:

1. The literature contains single-server fairness analyses only for specific schedul-
ing algorithms [6, 7, 22, 26]. In a wide-area network, however, each router
may employ a different scheduling algorithm. Hence, an end-to-end fairness

analysis should be applicable to such heterogeneous networks.

2. Most single-server analyses of fair scheduling algorithms presented in the lit-
erature derive fairness bounds only over intervals during which the concerned
flows are simultaneously and continuously backlogged. Due to the variability
in the delay experienced by packets at a server, traffic gets distorted as it
traverses through the network. Therefore, flows may not be simultaneously or
continuously backlogged at all the servers along the path and during all time
intervals, even if they are at the first server. Hence, it is not straightforward
to apply existing single-server analyses to determine bounds on end-to-end

network fairness.

We address these challenges in two steps. First, we define a general class of Fair
Throughput (FT) servers; we show that most of the known fair scheduling algorithms
belong to this class (Section 3.3.3). Second, we develop an analysis methodology for
deriving end-to-end fairness bounds for a network of FT servers (Section 3.3.4). Our
analysis is general, and can be applied to networks where different nodes employ

different scheduling algorithms from the FT class.

3.3.3 The Class of Fair Throughput Servers

Recall that the fairness guarantee in Definition 5 is applicable only to time intervals
during which both flows are continuously backlogged. As discussed in Section 3.3.2,

there may be time intervals during which one or both of the flows may not be

41

continuously backlogged at subsequent servers. To facilitate fairness analysis during
such time intervals at subsequent servers, we define the class of Fair Throughput
(FT) scheduling algorithms [36]. An algorithm in the FT class provides a stronger
notion of the per-node fairness guarantee—if a flow m is continuously backlogged
during an interval, then the normalized throughput received by any other flow f
(whether continuously backlogged or not during the interval) does not exceed the
normalized throughput received by flow m by more than a bounded quantity. We

formalize this notion below.

Definition 7 The scheduling algorithm at node j belongs to the class of Fair Through-
put servers if in any time interval [t1,ts] during which a flow m is continuously
backlogged, the number of bits transmitted by the server for any flow f and flow m,
Wy i(t1,t2) and Wy, j(t1,t2) respectively, satisfy:

Wy .i(t, ta) < Wm,j(tlatz)JrIjmf
Ty Tm B

where I, ¢ is a constant that depends on the server and traffic characteristics at

node j.

From Definition 5 and Definition 7, it is easy to observe that all F'T algorithms
also provide fairness guarantees with Uj (¢) = max (Lim, 5 L fm)-

The definition of the class of FT scheduling algorithms is fairly general,
and most well-known fair scheduling algorithms—such as Generalized Processor
Sharing (GPS) [47], Self-clocked Fair Queuing (SCFQ) [22], Start-time Fair Queuing
(SFQ) [26], Worst-case Weighted Fair Queuing (WF2Q) [6]— belong to this class.
We derive the Uj (7 m) and I m ¢ values for these algorithms below, and summarize
them in Table 3.2. GPS, by definition [47], provides ideal fairness with U; 17y =

Ijm,s =0.

42

FT algorithm | Uj (7m) L,z

GPS 0 0

SCFQ . T8

SFQ s T

WE?Q me (=) | Tt (- 2)

Table 3.2: Unfairness measures for some FT algorithms

SCFQ [22]

Let v(t1,t2) be the difference in system virtual times at ¢; and to > ¢1. Let vg(tq,t2)
be the difference in virtual time of flow f at ¢; and ts.
Since flow m is continuously backlogged throughout [¢1,%2], we have from

Corollary 4 of [22]:

me t ,t |maz
Wan(t1,t2) > oty ty) — 2 (3.7)
Tm Tm

Consider flow f. Break [t1,t2] into sub-intervals belonging to two sets: B, the set
of sub-intervals during which f is continuously backlogged, and N B, the set of
sub-intervals during which f is not backlogged. From Definition 5, the differential

service lag function for flow f, ¢, is defined as:

5f(t1,t2) = U(tl,tz)—Uf(tl,tz)
= ot t2) — Y vt ") — vp(t', 1)
[t,t"]€eB [t',t"]eNB
= wt,,ts) — Y, Wit t')— > o{,t”)
[t',t]eB [¢',t’]eNB

where we use Definition 3 and 4 of [22]. From Lemma 2 of [22], we know that v(t)

is a non-decreasing function of time. Therefore,

Syt te) < wlty,te) — Y, Wi, t”)
[t',t"]eB
< oty te) — Wit t2) (3.8)

43

max

l
From Theorem 1 of [22], we know that d¢(t1,%2) > £—. Therefore, we get:

rf
max
wtate) 2 Wiltyte) = < (3.9)
From (3.7) and (3.9) we get:
Wf(tlat2) Wm(t17t2) + l;’rr:am 4+ l'}”‘az
Ty - Tm Tm Tf
lmaz lmaz
Therefore, for an SCFQ server, Uj rfm} = Ijm,s = 22—+ et

SFQ [26]

Let v; and v, respectively, be the wvirtual times at t; and t3. Since flow m is

backlogged throughout [¢1,%2], we have from Lemma 1 of [26]:

Wn(t1,t2) > rp(vy —vp) — 0% (3.10)
From Lemma 2 of [26], we have for flow f:

Wi(ti,t2) < rp(vz —v1) +17 (3.11)

From (3.10) and(3.11), we get:

Win(t1,t2) N [mazr We(t1,ta) B L

> vy — v >
Tm T'm rf rf
. Wiltito) _ Wt to) | Ine® | 1™
Ty Tm T'm Tf
lrmnaz lma:c
Therefore, for an SFQ server, Uj (rm} = Ijm,f = 2= TR

WEF?Q [6]

According to Theorem 1 in [6], the work done for a flow f at a WF2Q server, Wy,
is related in the following ways to the work done for the flow in a corresponding

GPS [37] server, WfGPS:

IA

2
WfGPS(tl,t2) - W}/VF Q(tl,tz) [mee (3_12)

Wt 1) — WEPS(t1,) < (1— Lyipes (3.13)

44

Given two flows f and m in a GPS server, of which flow m is continuously backlogged
during a time interval [¢1,t2] (and flow f is not necessarily backlogged), we have the
following:
WEPS (b1, ta) WEPS(t1,1t9)
Tf Tm

Using (3.12) and (3.13), we get:

2
W9 (b, 1)

- r_f)l}naa: - WfPS(thtz) - ngs(tl,tQ) - W7ZVF2Q(t1,t2) . [maz

Ts ¢’ rp — Ts - Tm - Tm Tm

WWFzQ t ,t WWF2Q t t lmaz lmaw lmaa:
= f—(lz) < m (t1,12) n g
Tf Tm Tm Tf C
Therefore, for a WF2Q server:
lmaa: lmaw lma.’l)
Limys = I _J

Tm Ty c

lmaa: 1 1 lmaa: 1 1
Ujgrmy = max{ rs +lm (a—5>a " +1f <E_6>}

- lma$<i+i_1)
m ry C

We expect that any fair scheduling algorithm that provides per-node fairness
guarantee (Definition 5) can be shown to belong to the FT class. This is because,
during sub-intervals in which f is also backlogged, the difference in normalized
throughput received by flows f and m is bounded (due to the fairness guarantee
provided by the fair scheduling algorithm). On the other hand, during sub-intervals
in which f is not backlogged, its throughput is zero, which can not exceed the
throughput received by flow m. A formal proof for this assertion, however, is beyond

the scope of this analysis.

3.3.4 End-to-end Analysis of FT Networks

Given a network of FT servers, our objective is to derive an upper-bound on

Wi a(tiste) Wi m(t1,t2)
rf T'm

, the difference in normalized throughput received during

45

any time interval [t1, 2] by flows f and m that traverse the same end-to-end path of
H servers, assuming that the flows are continuously-backlogged at the first server.
In the following, we first present the methodology for conducting the end-to-end
fairness analysis, and then present the formal lemmas, theorem, and their proofs.
For simplicity of exposition, we assume zero propagation latencies on the links con-
necting servers while discussing the methodology; the formal analysis in the Lemmas
and Theorem is, however, presented for the general case of links with non-zero prop-

agation latencies.

Analysis Methodology

As mentioned in Section 3.3.2, one of the main challenges in extending single-server
fairness analysis to an end-to-end analysis is that flows may not remain continuously
or even simultaneously backlogged at subsequent servers. The question we would
like to answer is: given that the first server provides a fairness guarantee to the two
backlogged flows, can we say something similar about the throughput received at the
second, third, fourth, and so on, servers? If we can relate the fairness guarantee
provided at a server to the fairness guarantee provided at the previous server, then
by using a recursive argument, we would be able to answer the above question in
the affirmative. In particular, we need to answer the transformed question: given
U}f},m}, the bound on difference in normalized throughput achieved at j* server,
can we compute jnﬁ, {fm}’ the bound on difference in normalized throughput at the
(5 + 1)t server?

For any time interval [t1,ts] at the (j + 1) server, we consider the following

two cases:

o If none of the flows are backlogged at the time instants t; and t2, then the
throughput received by the two flows in the interval [t1,?2] is the same as the

throughput they receive at the previous server in this time interval (assuming

46

zero propagation latencies). This is because, no packets that were received
before t1 get served in [t1,t2] (since there is no backlog at 1), and no packets

received during [t1,t2] get served after to (no backlog at ¢o either).

Therefore, for such time intervals, the difference in normalized throughput of

the two flows at server j + 1 has the same upper bound as that for server j.

If either one of the flows is backlogged at server j + 1 at t; or ts, then the
number of packets of that flow served during [¢1,¢2] at server j + 1 may be
different from those served at server j. This is because, some packets that are
backlogged at ¢; may get served in [¢1,%2], and some packets that arrive from
server j in [t1,?2] may not get served and may remain backlogged at ¢2. The
throughput of the flow during [¢1, 2] at server j + 1 is therefore determined
not only by its throughput at server j, but also the backlogs at server j + 1
at times ¢; and t2. It follows that to derive the fairness guarantee of server
j + 1 during such time intervals, we additionally need to bound the difference

in the normalized backlogs of the two flows, at both ¢; and ts.

Let us consider a time instant tg, smaller than ¢;, at which none of the flows
are backlogged at server j + 1. The backlog of either flow at ¢; (or ¢2) can
be computed as the number of packets that arrive in [¢g, ¢1] (or [to,t2]) minus
the number of packets that are served in the same time interval. From the
fairness guarantee of server j, we know that the difference in (normalized)
number of packets that arrive at server j + 1 in [¢g, 1] (or [to,t2]) for the two
flows is bounded. It follows that to bound the difference in normalized backlogs
at t1 (or tg) at server j + 1, we need to bound the difference in normalized

throughput during [¢g,t1] (or [to, t2])-

To compute the difference in normalized throughput of flows f and m at server

j + 1 during [to, t1] (or [to,t2]), we consider the following two scenarios:

47

atleast one of the flows backlogged

'

f backlogged

I__Il
Ly

Figure 3.1: Reference for Lemma 2

— Both flows are backlogged at t1 (or t2).
Lemma 2 establishes a lower bound on the normalized throughput during
[to, t1] of either flow (say, f) in terms of the normalized throughput of
the other (flow m). The proof methodology for this lemma is based on
the following two observations. Let t' € [tg,t1] be the last time instant

before which f is non-backlogged (see Figure 3.1).

1. The throughput of flow f in [tg,?'] at server j + 1 is the same as its
throughput in the same time interval at server j (since no backlogs
at either ¢y or t'). At server j, the throughput of flow f is lower
bounded in terms of the throughput of flow m (due to the fairness
guarantee of server j). Further, the throughput of flow m at server
j+1 during [to, '] (no backlog at t) cannot exceed the corresponding
throughput at server j.

2. Flow f is continuously backlogged in [t', ;] and Definition 7 can be
applied to this interval to establish a lower bound on throughput of

flow f in terms of throughput of flow m.

— Only one of the flows is backlogged at t1 (or t3).

As described above, Lemma, 2 can derive a lower bound on the normalized
throughput during [to, t1] of the backlogged flow (say, f) in terms of the
throughput of the other (flow m).

48

To compute the reverse relation, that is, a lower bound on throughput of
flow m, first observe that during [to, 1], the throughput of flow m at server
j+11is the same as its throughput at server j (since no backlogs at either
to or t1). At server j, the throughput of flow m is lower bounded in terms
of the throughput of flow f (due to the fairness guarantee of server j).
Further, the throughput of flow f at server j+1 during [¢, ?1] (no backlog
at tp) cannot exceed its throughput at server j. These observations are
used in Lemma 3 to compute a lower bound on the throughput of flow

m in terms of that of flow f.

Therefore, by using Lemma 2 and Lemma 3, we can compute upper bounds on
the difference in normalized throughput of the two flows during both [¢g, ¢1]

and [to,t2]. The sum of these two bounds then gives a candidate value of

net
J+1,{fm}

[t1,t2]. Lemma 4 helps tighten this value, based on the fairness guarantee of

the upper bound on the difference in normalized throughput during

the FT algorithm at server j.

Formal Analysis and Proofs

Using the methodology described above, we derive the end-to-end fairness guarantee
of a network of FT servers in Theorem 3. The following lemmas, which are used in
the proof analysis, are proved in the appendices. For the remainder of the analysis,
we use 7;(t) to denote the propagation latency experienced—on the link connecting
server j and j + 1—Dby the last packet of either flow received at server j + 1 by time
t.

Lemma 2 If flow f is backlogged at server j+1 at time t and if ty is a time instant

smaller than t such that neither f nor m is backlogged at ty,, and at least one is

49

backlogged at tg, then:

Weii1(to,t Wn.iv1(to, t
Wyjnlto,t) > Win,j+1(to, £) +a' = I, fm
'r'f Tm

where o' = Wy j(to — mj(to),t' — mj(t'))/rf — Win,j(to — wj(to),t' — 7;(t'))/Tm, and

t' € [to,t] is the latest time instant at which f becomes backlogged.

Proof: Since packets arrive at server j + 1 in the same order they are transmitted
at server j, it follows that the packets received at server j + 1 during [to,t'] are the
packets transmitted from server j during [t — 7;(to),t' — m;(t)].

Since f is not backlogged at ¢~ and ¢y, we have: Wy j11(to,t') = Wy ;(to —
wj(to),t'—m;(t')). Further, since flow m is not backlogged at ¢, , we have: Wy, j11(to,t") <
W,j(to — mj(to), t' — m;(t')).

Since a' = Wy j(to — mj(to),t' — mj(t')) /1 — Wi j(to — mj(to), t' — m;(t'))/Tm-
Then, we have:

Wiini(to:t') o Wmjsi(to,t')

+a (3.14)
Tf Tm

Since flow f is continuously backlogged during [¢', ¢], and server j+ 1 belongs

to the FT class, we have from Definition 7:

W iv1 (¢ Weii(t t
m,]+1()) < f,]—|—1(’)+Ij—|—1,f,m (315>
Tm Ty
From (3.14) and (3.15), we get:
Wy js1(to,t) W, j+1(to,t)

!
a —1I;
Ty T + Jjt+1,fm

Lemma 3 If flow m is not backlogged at server j + 1 at time t and if to is a time
instant smaller than t such that neither f nor m is backlogged at ty, and at least

one s backlogged at tg, then:
Wiji(to,t) o Wign(tot)

Tm Ty

where a = Wr,j(to — j(to), t — mj(t)) /15 — Wn,j(to — mj(to),t — m())/Tm-

50

Proof: Since packets arrive at server j + 1 in the same order they are transmitted
at server j, it follows that the packets received at server j + 1 during [to,t] are the
packets transmitted from server j during [ty — mg,t — 7.

Since m is not backlogged at ¢ and t;, we have: Wi, j11(to,t) = Wi, j(to —
wo,t—m). Further, since f is not backlogged at ¢, , we have: Wy ;1 (to,t) < Wy j(to—
o, t —).

Since a = Wy, j(to — mo,t —) /rg — Wi j(to — o, t — 7)/rm, We have:

Wn,j+1(to, t) Wyiti(tot)
Ty Tm

Lemma 4 If during a time interval [to,t], the numbers of bits transmitted by a server
for flow f and m satisfy (5) with unfairness measure H', and if ay = Wy j(to,t1) /75—
Win,j(to,t1)/Tm, and ag = Wy j(to, t2) /1 — Wi, j(to, t2)/Tm, where to < t1 < tp <t,

then
—H'Saz—al SHI
Proof:
Wf’j(tl,tz) _ Wf,j(to,tz) B Wf,j(to,tl)
rf rf rf
Wn.i(to, t Wmn.i(to,t
— m,y(0, 2) +a]_ . ma](0, 1) — ay
™m ™m
W i(t1,t
_ m,](1, 2)+a1_a2
Tm

Since the number of bits transmitted during the interval [¢1,ts] should satisfy (5)

with unfairness measure H', it follows that: —H' < ay —a; < H'. [|

Theorem 3 If the throughput obtained by two flows, f and m, at the first node in

a network of FT servers satisfies (5), and if they share the same end-to-end path

51

of H hops, then during any time interval [t1,t2], the end-to-end throughput of the

flows are related as:

Wi m(ti,t W g (t1,t H
f,H’r(fl 2) _ m,H’r(1 2) < Ul,{f,m} + Z(Ih,f,m + Ih,m,f) (3]_6)
m h=2

Proof: The proof is by induction on j.

Base Case: j = 1. Since the flows f and m are assumed to be simultaneously and
continuously backlogged at the first server, and since the first server belongs

to the FT class, we have from (5):

Wei(ti,ta) Wpa(t, t2)
2 — 2 < U 3.17
Ty T > 1,{f,m} ()

Therefore, (3.16) is true for the base case.
Induction Hypothesis: Assume (3.16) is true for all servers 1,..., j.

Induction Step: We need to show that (3.16) holds at server j + 1. Without loss

of generality, assume that

. It follows that to prove

Wy it1(ta,t2) > Win,j+1(t1,t2)
'I"f Tm

(3.16), we only need to show that:

Wei(ts,t W1 (t1,t i+
Wit t2) < Wina(t1,t2) + Uy (fmy + Z(Ih,f,m + Inmy) (3.18)
Tf Tm T h—o

Let tg < t; be the largest time instant such that none of the two flows are

backlogged at server j + 1 at t; (see Figure 3.2).

Difference in normalized throughput during [to, ¢1]:

Consider the following two cases at ¢;:

e If flow f is backlogged at t; (see Figure 3.2), then from Lemma 2, there

exists t3 € [tg,t1], such that:

Weiri(to, t1 W jt+1(to, t1
fi+1(to, 1) > Wiy (to, t1) tas— Tt gm
7'f Tm

52

f backlogged m backlogged

T 1

L -

3 4 b b
Figure 3.2: Reference for proof of Theorem 3

Where az — Wf’j(to — Wj(to),t3 — 7Tj(t3))/’r'f — Wm,j(to — Wj(to),tg —
j(t3))/Tm-
o If flow f is not backlogged at 1, then from Lemma 3, we have:

Wi jt1(to, t1) S Wm,j+1(t0,t1)+

=z al
Tf Tm
W,j+1(to, t1
Z m,J+ () + a]_ _ I]+1’f,m
m

where a1 = Wy ;(to — mj(to),t1 — mj(t1))/rs — Winj(to — (o), t1 —

3 (0)) /7.
Therefore, in either case, there exists some t' € [tg, 1], such that:

Wi ji1(to, t W, j+1(to, ¢
f.i+1(to, t1) > m,j+1(to, 1) +d— L1, fm (3.19)
Tf Tm

where o’ = Wy j(to — mj(to), t' — mj(t'))/rs — Wi j(to — mj(to), t' — m;(t'))/Tm.

Difference in normalized throughput during [to, t2]:

Consider the following two cases at ta:

e If flow m is backlogged at ¢ (see Figure 3.2), then from Lemma 2, there

exists t4 € [to, t2], such that:

W] tat W t,t
Wgnltots) o Wrnlets) 0 po

53

where aqs = Wy ;(to — mi(to),ta — mj(ta))/rs — Wm,j(to — mj(to), ta —
mj(ta))/Tm-

o If flow m is not backlogged at t2, then from Lemma 3, we have:

Winji(to,t2) o Wyji(to,t2)

=z — a2
m Tf
We.i1(to,te
> —f’ﬁrﬁ .t2) —a2 — ljt1my

Where as = Wf’j(to — Wj(to),tz — 7Tj(t2))/7'f — Wm,j(to — Wj(to),tg —
mj(t2))/Tm-

Therefore, in either case, there exists some t” € [ty, t2], such that:

W, ; to,t Wy t at 9
m,]—l];.l(0, 2) > .7"7]4‘7’1‘1(r 0 2) —a’ - Ij—|—1,m,f (320)
m

where a” = Wy j(to—m;(to), t” —m;j(t"))/rf — W, j(to—m(to), t” —m;(t”))/Tm.

Difference in normalized throughput during [t1, t2]:

From (3.19) and (3.20), we get:

Wi ivi(ti, ta) — Wy,j+1(to, t2) o Wi,j+1(to, t1)
rf rf rf
Win j+1(to, t Win,j+1(to,
< M +a" + Ijtim,s — M —a'+ I;(33h
m m

From the induction hypothesis and Lemma 4, we know that: —(Uy (5 m}) +
E{l:z(Ih,f,m‘FIh,m,f)) < a”—a < Ul,{f,m} +E']7;:2(Ih,f,m +Ih,m,f)- Therefore,
from (3.21), it can be seen that (3.18) holds at server j + 1.

Hence, the theorem follows by mathematical induction. |
Theorem 3 states that the unfairness measure for a network of servers is a

linear function of the unfairness measures of the individual servers. An interesting

54

property of the guarantee is that unlike end-to-end guarantees on delay (Theorem 1)
and throughput (Theorem 2), which in addition, are linear functions of link propaga-
tion latencies, the bound on end-to-end fairness in Theorem 3 is independent of link
propagation latencies. The end-to-end fairness guarantees of wide-area networks
may therefore be similar to those of local-area networks, as long as the number of
servers on a typical path are similar.

It is important to observe that the analysis of Theorem 3 can be used to derive
end-to-end fairness guarantees even for flows that are not continuously backlogged
at the first servers. The only condition that needs to be satisfied at the first server
is that the difference in normalized throughput of flow f and m at the first server
is bounded. This may be true even if the flows are not continuously backlogged, for
instance in the case when the difference in (normalized) number of bits that arrive
from the respective sources is bounded. To obtain the end-to-end fairness guarantee
for such cases, U ;) is replaced in (3.16) by the bound on difference in normalized

throughput at the first server.

Note 1 Note that we have assumed that Ty, the rate reserved for flow f, is the same
at all routers on its path. There are many ways to compute r¢. For instance, vy could
be the minimum rate acceptable to the end-user, or it could be the rate determined
according to the max-min fair rate allocation scheme—such a scheme allocates to a
flow a rate at each router that is no more than the fair rate allocated to that flow
at its bottleneck router. The problem of determining the rate vy is orthogonal to the

problem of end-to-end fairness analysis, and is outside the scope of this analysis.

Our analysis of a network of F'T servers, thus, helps us understand the end-
to-end fairness guarantees that can be provided using a core-stateful network archi-

tecture.

55

3.4 Summary

The single-server delay, throughput, and fairness guarantees provided by several
sophisticated scheduling algorithms are well-understood. In this chapter, we focus
on understanding the end-to-end guarantees that can be provided using a core-
stateful network architecture.

We build on past work to understand end-to-end delay and throughput guar-
antees, and present a novel analysis to derive end-to-end fairness guarantees of core-
stateful networks. Our analysis results in the first tight bound on end-to-end fairness
for any network of fair servers. We first argue that it is difficult to extend exist-
ing single-node fairness analysis to an end-to-end analysis of a network where each
node may employ a different fair scheduling algorithm. We then present a two-step
approach for end-to-end fairness analysis of heterogeneous networks. First, we de-
fine a class of scheduling algorithms, referred to as the Fair Throughput (FT) class,
and prove that most known scheduling algorithms belong to this class. Second, we
develop an analysis methodology for deriving the end-to-end fairness bounds for a
network of FT servers. Our analysis is general and can be applied to heterogeneous
networks where different nodes employ different scheduling algorithms from the FT
class.

Having understood the end-to-end delay, throughput, and fairness guarantees
that can be provided in core-stateful networks, we next explore—in Chapters 4-6—

the design of core-stateless networks that provide similar guarantees.

56

Chapter 4

Core-stateless Guaranteed Rate

Networks

Providing delay guarantees is fundamental to providing other types of service guar-
antees. In this chapter, we take our first step in designing core-stateless network
architectures by designing one that provides end-to-end delay guarantees. In what
follows, we first describe past work in this direction, and then present our methodol-
ogy to derive the core-stateless version of any GR network [24] that provides exactly

the same end-to-end delay guarantee.

4.1 Past Work

CJVC 1In [59], a core-stateless version, namely Core Jitter Virtual Clock (CJVC),
of the Jitter Virtual Clock scheduling algorithm has been proposed. CJVC provides
the same delay guarantees as Jitter Virtual Clock, while maintaining and using
per-flow state only at the edges of the network. CJVC, just like JVC, is non-work-
conserving, which implies that it employs a constant bit-rate (CBR) per-flow shaper

at every router. Queue lengths observed in a network of such servers are generally

57

smaller than in networks of work-conserving schedulers. This further reduces the
computation complexity of implementing such a scheduler.

Unfortunately, the non-work-conserving nature of the CJVC algorithm limits
the extent of statistical multiplexing gains that the framework can benefit from. This
is because non-work-conserving algorithms shape the traffic to the maximum of the
reserved rate and sending rate for that flow; when a flow sends a burst of packets
at a rate greater than its reserved rate, extra packets are held until their eligibility
time, even if idle bandwidth is available for transmitting these packets. Such an
approach may under-utilize available network resources. As argued in Chapter 1,
to meet rising traffic demands, it is important for networks to utilize their resources
efficiently. Hence, core-stateless networks that provide delay guarantees and also
are work-conserving are desirable.

In order to design such networks, we first ask the question: can the techniques
used in deriving CJVC from JVC be applied directly to derive core-stateless versions
of work-conserving algorithms like Virtual Clock? In Section 4.1.1, we show that

this is not the case.

4.1.1 Extending the CJVC Design Methodology to Virtual Clock

We begin by first outlining the technique of deriving CJVC from JVC. The Jitter
Virtual-Clock (JVC) algorithm assigns to packet p’} a deadline D’;,j at each server

j as follows:

eri = aj (4.1)

e, = max(ak;+g5; 1, D57 (4.2)
lk

Dj; = e’},fréa Jk>1 (4.3)

where gl;ﬂ-_l is the amount of time by which the packet is transmitted before its

deadline at server j—1, and e’}, ; denotes the eligibility time—the time at which packet

58

p’}becomes eligible for transmission—at server j. The JVC algorithm transmits
packets in the increasing order of their deadlines.

As is evident, to derive the eligibility time and hence the deadline of a packet,
JVC—and many other guaranteed rate algorithms such as Virtual Clock—requires
the server to remember for each flow the deadline D’]f,;l of the previous packet (used
in the max-term computation of Equation (4.2)). In deriving the Core-stateless
Jitter Virtual Clock (CJVC) algorithm, the authors of [59] observe that the need
to maintain such per-flow state at core routers can be eliminated by introducing a
per-packet slack variable, 6%, that accounts for the maximum difference between the

two quantities in the max-term computation. For CJVC, this translates to deriving

5’} such that for servers j > 2:
0f+af;+9j1 > Dpy (4.4)

In [59], authors derive a lower bound on the value of 6%; further, they demon-
strate that by using this lower bound, a network of CJVC server provide the same
end-to-end delay guarantee as the network of JVC servers. The derivation of the
lower bound on 5;2 exploits a key property of the JVC algorithm: the non-work
conserving JVC algorithm at each server shapes flows to their reserved rate and
delays any packets arriving earlier until their eligibility time. This property enables
the JVC algorithm to bound jitter, which in turn bounds the difference between the
deadline of a packet and the eligibility time of the next packet of the same flow.
Thus, (D?;l - a’}J- — g’},jfl) is upper-bounded for all k¥ — this is used as a lower
bound for 5’;.

Now consider Virtual Clock [65]—a work-conserving packet scheduling algo-
rithm. The Virtual Clock algorithm assigns to each packet p’; a virtual clock value

VC}“’J- at server j as follows:

VC}; = aj;+% (4.5)

lk
k k k—1
VCE; = max(df;,VCE)+£ (4.6)
Packets are transmitted in the increasing order of their virtual clock values.
To eliminate the need for maintaining VC}“;I in routers, if we apply the

technique used to derive CJVC from JVC, then we need to compute a per-packet

slack variable 5’)3 such that for servers j > 2:
5 > VOt —ak; (4.7)

Unfortunately, in a network of work-conserving Virtual Clock servers, unlike in a
JVC network, packets can arrive back-to-back at a core router. The larger the
number of back-to-back arrivals, the greater is the difference between the deadline
of the penultimate packet of the burst and the arrival time of the last packet in
the burst. Hence, to account for such bursty arrivals, the lower bound on 5’; grows
with k. Consequently, we find that a network of core-stateless Virtual Clock servers
(derived using the technique presented in [59]) does not preserve the delay guarantee
of the corresponding network of VC servers. Appendix A presents a detailed analysis
of this effect.

In what follows, we present a general methodology to derive the core-stateless
version of any Guaranteed Rate (GR) [24] scheduling algorithm. Our methodology
applies both to work-conserving and non-work-conserving algorithms in GR; further,
we demonstrate that a network of such core-stateless GR servers provide the same
delay guarantee as the corresponding network of GR servers.

We first present our methodology for deriving the core-stateless version of a
specific GR algorithm, namely, Virtual Clock. Later, we generalize the methodology

to the design of core-stateless versions of any GR network.

60

4.2 Design Methodology

Virtual Clock (VC) belongs to the GR class (Definition 1). Therefore, the end-to-
end delay guarantee provided to packet p’} of a flow f by a network of VC servers is
characterized in terms of the upper bound on VC’;% > the deadline of p’} at the last
server H. The deadline of packet p’} at any node, on the other hand, is computed
using the deadline of the previous packet p’;fl at the same node (see Equation (4.6)).
In order to compute deadlines for packets of flow f, therefore, a VC server needs to
maintain per-flow state information about the deadline assigned to the most recent
packet of that flow. In a core-stateless architecture, however, core routers do not
maintain per-flow state, and hence, can not compute deadlines as given by Equation
(4.6). So the problem of providing end-to-end delay guarantees in a core-stateless
network, similar to a Virtual Clock network, boils down to answering the question:
how can one compute deadlines in a core-stateless network that does mot maintain

per-flow state?

4.2.1 Key Insight

Observe that in order to compute deadlines without using per-flow state, we need
to remove the dependence of the deadline of a packet on the state of the previous
packet, and compute it using only the state of the same packet.

Our methodology for providing end-to-end delay guarantees without main-

taining per-flow state at core routers is based on the following observations:

1. Although the deadline of a packet depends on the state of the previous packet
at the same node, the upper bound on the deadline can be computed using

only the state of the same packet at the previous node.

2. By using the above observation recursively, the upper bound on the deadline

of a packet at any node can be computed using the state of the same packet

61

at the first node in the network.

3. Since the first node is an edge router of a core-stateless architecture, it does
maintain per-flow state. This implies that the first node is capable of com-
puting the upper bound on the deadline of a packet at any subsequent node

in the network.

4. Finally, we show that if core nodes use the upper bound on deadlines, instead of
the actual deadlines, to schedule packets for transmission, the network provides

the same end-to-end delay guarantee.

Based on these insights, we formally present our methodology next.

4.3 Design of a CSVC Network

The following lemma (stated and proved in [24]) provides the key property that we

use in the design of core-stateless versions of Virtual Clock and other GR algorithms:

Lemma 5 If the scheduling algorithm at server j in a network belongs to the class
of GR algorithms for flow f, then

%

k k f
GRCf; < GRCY; ,+ 1161[13)121 E + i1+ Bj—1

where m;_1 is the propagation delay on the link connecting node (j — 1) and j.

Note that for Virtual Clock, VC’}“’]- = GRC’}“,]-. From the above lemma, therefore,

we get:
k k Iy iy
7
Vi = VCfja+ max " Tt (4.8)

The upper bound on deadline of packet p’} at node j can, therefore, be computed

using its deadline at node j — 1.

62

4.3.1 Definition

We define the core virtual clock of p’} at server j, VC’ore’},j, as follows:

VC’ore’}’l = VC’}“,l (4.9)

li
VCorek;, = VCoref, |+ s 1+mj_1+ ig[llaulcc] T—f, j>2 (4.10)
k) T

lr_naz . .
where By ;_1 = C’,J‘_ll We define server j to be a Core-Stateless Virtual Clock server

if it schedules packets in the increasing order of their VC’ore’JE,j values. From (4.8)-
(4.10), it is easy to see that VCore’}J- > VC}“J-.

Thus, we have eliminated the need to maintain VC’}“’;l, to compute the max
term of Equation (4.6). Additionally, by enabling edge routers to encode the rate
r’)f, and enabling server j — 1 to encode VC'ore’},jf1 in the packet, we can eliminate
the need to maintain any per-flow state in the core routers of the network.

We now prove that the end-to-end delay bound of a network of such Core-
Stateless Virtual Clock (CSVC) servers is the same as that of a network of Virtual

Clock servers.

4.3.2 Delay Guarantee of a CSVC Network

To prove the delay guarantee of a network of CSVC servers in Theorem 5, we first
prove the deadline guarantee of a single CSVC server (Theorem 4). In the following,
a non-preemptive scheduling algorithm is one that does not preempt the transmission
of a lower priority packet even after a higher priority packet arrives. On the other
hand, a preemptive scheduling algorithm always ensures that the packet in service
is the packet with the highest priority by possibly preempting the transmission of
a lower priority packet. A non-preemptive algorithm is considered equivalent to a
preemptive algorithm if the priority assigned to all the packets is the same in both.

To simplify the proof of Theorem 4, we first state and prove the following Lemmas.

63

Lemma 6 The core virtual clock of packet p’} satisfies

lk
VCoref] > VC’oref,] + é,
Proof: Observe that
i
max —'f > max v
16[1 k] Tf 16[1 k— 1] Tf

Also observe that by repeatedly applying 4.10, we get:

k>1

It —
VCore’};l = VCore’};1+(j—2) max r_f Z (B, +m)
=2

i€[l..k—1]

’L

— VO 4+ (-1 by
fi1 +)ieﬁﬁcxl r}

Similarly,

Z

VCore’},j = VC}“J +(j —1) max L4 Z (B, +mi)

Z (B, + i)
-1

(4.11)

(4.12)

(from(4.6))

(from(4.11))

(from(4.12))

i€[1..k] Tf i1
k—1 l’; lf =
> VCiTT 4+ = j—1
> VO -1 e = +§ (Bfi + i)
i R
> yokty L 1 —1 —
z VO + o (j)zeﬁl‘%xl] i +¢221 (By,i +)
lk

> VCOTef] +-L

) lrf

Lemma 7 If the jt* server’s capacity is not exceeded, then the time at which packet

p’} departs a Preemptive CSVC server, denoted by LZJCSVC(p’}), 18

j k k
L}Csvc(pf) < VCorej

64

j=1

(4.13)

Proof:

At server j, define the quantity Ry ;(t) for flow f as follows:

Ro) = d T i 3k2(@h; <OAVCorert <t <VOoreh))
fJ =
0 otherwise

(4.14)

Let S be the set of flows served by server j. Then server j with capacity Cj is
defined to have ezceeded its capacity at time t if s Ry, j(t) > Cj.

The proof of Lemma 7 is by induction on j.
Base Case: j =1
The first server in a CSVC network runs the Virtual Clock algorithm, for which the
theorem is proved in [25].

Induction Hypothesis : Assume 4.13 holds for 1 < j < m.

Induction : We will show that 4.13 holds for 1 < j <m + 1.
From (4.18) and the Induction Hypothesis (which implies that g’]?,m > 0) we get

lk
VC’orelfc,mH > a’},mH + —]I: (4.15)

T
f

Let K¢(t1,t2) be the set of all flow f packets that arrive in interval [t;, o]

and have virtual clock value no greater than ¢3. For packet p’}, let lef, j denote the

following quantity
T}"’j = VCore’},j — max (al}’j, VCorel},;l)

It is easily observed from (4.14), (4.15) and Lemma 6 that

t2 . . . It .
Rimu(dt= 3 (fmia*Thme) 2 D (hmn* D) > 3k
1 iGKf(tl,tz) iEKf(tl,tz) f iEKf(h,iz)

Therefore, the cumulative length of all flow f packets that arrive in interval [¢;, to]

and have virtual clock value no greater than ¢y, denoted by APy(t1,t2), is given as
t2
APy(t1,t2) < Ry ;(t)dt (4.16)

t1

65

We now prove the lemma by contradiction. Assume that for packet p’}, LZ‘&L;VC (p’}) >
VC’ore’},m +1- Also, let tg be the beginning of the busy period in which p’} is served
and tg = VC’ore’},m 11~ Let t1 be the least time less than ¢y during the busy period
such that no packet with virtual clock value greater than ¢, is served in the interval
[t1,%2]. We claim that such a ¢; exists. If not, then either packet p’]i,m 11 is the first
packet in the busy period or preempts the service of the previous packet on arrival.

In either case, the packet gets served immediately on arrival, and
lk

k k
Lpisve(Pf) = fmu+ Cf+1 < VCorefmi
m

which violates our assumption. Therefore, such a t; exists.

Clearly, all the packets served in the interval [¢1,%2] arrive in this interval
(else they would have been served earlier than ¢1) and have virtual clock value less
than or equal to t3. Since the server is busy in the interval [t1,t2] and packet p’} is

not serviced by ¢y, we have:

ZAPf(tl,tz) > Cm+1(t2_t1)

fes
t2
Z/ Rf,m_|_1(t)dt > Cm+1(t2—t1)
fes t1
to
> Rpmii(t)dt > Crmpa(ta —t1) (4.17)
t fes

Since the server capacity is not exceeded, 3 scs Rfm+1(t) < Cmy1. Hence,
ttf Y tes Rymr1(t)dt < Cpia(t2 — t1). This contradicts (4.17) and hence the in-
duction step is proved. From induction, the lemma, follows. |

The following lemma is stated and proved in [25].

Lemma 8 If PS is a work conserving preemptive scheduling algorithm, NPS its
equivalent non-preemptive scheduling algorithm and the priority assignment of a

packet is not changed dynamically, then

lmaw

Lyps(®®) — Lps(p®) < c

66

where Lps(pk) and LNps(pk) denote the time a packet leaves the server when PS and
NPS scheduling algorithms are employed, respectively. Also, 1™ is the mazimum

length of a packet and C is the capacity of the server.

Theorem 4 If a server’s capacity is not exceeded, then the time at which packet p’}
departs a Core Stateless Virtual Clock server, denoted by Lésvc(pl}), 18

j k k P
where C; is the capacity of the server and *** is the mazimum length of a packet

serviced by server j.

Proof: AsPreemptive CSVC algorithm is work conserving and does not dynamically
change the priority of a packet, Theorem 4 follows immediately from Lemma 7 and
Lemma 8.]

Theorem 4 states that the deadline for the departure of packet p’} at server
Jis (VC’ore’}J- + B¢,j)- To avoid errors in computation of VC’ore’ji,j_1 and m;_; due
to inaccuracies in clock synchronization and imprecise knowledge of propagation

delays, Equation (4.10) can be rewritten in terms of an alternate set of variables as:

VCore: . = a* k l} i > 2 4.18
f:j - afaj+gf’j_1+ max ‘7_ ())

e[tk

where g’j?, jo11s the amount of time by which p’} departs before its deadline, (VC’ore’},j,1+

Bf,—1) at server j — 1.

Theorem 5 The delay guarantee of a network of CSVC servers is the same as that

of a network of Virtual Clock servers.

Proof: Using Theorem 4, Equation (4.9) and repeated application of Equation
(4.10), it follows that the time at which packet p’} departs the last server in a

67

network of H CSVC servers, Lgsvc(p’}), is given by:

Lisvof) < VCorey+ Bu

i H-1
k
< VC§,+(H-1) zlenla)l(c E Z_Zl (Bfi +) + Bu
. lljcE z' H-1
< FEAT - H-1) —.
< 1(pf)+rf +(zJtenlaulcc ¥ 1_21 (Bt +mi) + Bu

max

where (; = - The delay guarantee of a network of H Virtual Clock servers has

been shown to be the same as the above in [24]. []

4.4 Generalizing to CSGR Networks

In this section, we generalize the methodology described in the previous section
to define a core-stateless version of any GR network, which gives the same delay
guarantee as the original network.

We define the core guaranteed rate clock (GRCore) for packet p’} at server j,

GRCore? j» as follows':

GRCore%, = GRCF,+ Bs1 (4.19)
lz'
GRC’ore’},jH = GRCoref] + 7 + n[lla}lcc] _f + Brj41, J 21 (4.20)
For every GR algorithm, we define a corresponding Core-Stateless GR algorithm at
servers j > 1, that assigns GRCore values to packets of all flows as defined above,

and schedules packets in the increasing order of their GRCore values?.

We derive the delay guarantee of a CSGR network below.

!This definition of GRCore differs from the one given in [35]. The definition and analysis

.7

methodology given in [35] works only for GR networks in which gf; >

*Note that for CSVC as defined in Section 4.3, VCoref] = GRCoref] ﬂf,J Since By,; =
is the same for every packet at server j, it can be seen that the packet transmission sequence—and
consequently, the end-to-end delay bound—would remain the same if they are transmitted in the
increasing order of their GRCore values.

lmam

68

Lemma 9 The core guaranteed rate clock of packet p’} satisfies

k

l
GRC’ore’}j > GRC’ore’Jigl + _f, E>1
I,) rf

Proof: Observe that by repeatedly applying (4.20), we get:

k-1 _ k=1 (-
GRCore; ;- = GRCore};" + (j— l)zeriazle E 121#1 + Zﬁf,
. l'z j—1
= GRCK1i(i-1 £ 4.21
fal (G —1) max rf+§ (Bgi +mi) + By (4.21)
Similarly,
z' j—1
GRCO’I‘@I}J- = GRC;?J (j —1) max — + Z (Bt +mi) + Br,;
k=1 l? Iy (3
> GRCY; -1 —
> it U)12[1% = +§ (Byi +) + By,
1, Iy -
> GRCY + — —1 —
2 GROf 40+ (-1, max, o0 +; (Bra+mi) + By
lk
> GRC’ore’Jf;1 +-L (from(4.21))
) frf

[|

Lemma 10 establishes the deadline guarantee of a CSGR server. Its proof
methodology is based on the following insights. A CSGR server is a Delay-EDD
server; the latter has been shown to have the largest schedulability region among
all non-preemptive scheduling algorithms. If the corresponding GR algorithm was
employed at the server, it would guarantee the departure of packet p’} by GRC’ore? I
It follows that a CSGR server, being a Delay-EDD server that transmits packets in

the increasing order of their GRCore values, would also provide the same guarantee.

Lemma 10 If the schedulability conditions of the corresponding GR algorithm at
the jt* server are met, then the time at which packet p’; departs a CSGR server,

69

denoted by LéSGR(p’}), is given by:

L%,*SGR(PI;) < GRCOTel;,j j=>1 (4.22)

Proof: The proof of Lemma 10 is by induction on j.

Base Case: j =1

The first server in a CSGR network is a GR server. By definition of the GR class,
packet p’} departs server j = 1 by GRC']’%1 + B = GRCore’}J. Therefore, (4.22)
holds at server j = 1.

Induction Hypothesis : Assume (4.22) holds for 1 < j < m.

Induction : We will show that (4.22) holds for 1 < j <m + 1.
From the Induction Hypothesis, we get: a’;,m 1 < GRCore’j“:m + 7. From (4.20),

therefore we get:

1k
GRCorel 1 > af g+ é + Bfmit (4.23)
From Lemma 9, we get:
1k
GRC’ore’},mH > GRC’ore’};T}H + r_f (4.24)

f

We use the following claim to prove the induction step.

Claim 1: For all k > 1, GRCorek ., > GRC} .| + Bfmi1-

Proof of Claim 1: We use induction on &k to prove the claim for all £ > 1.
Base Case: k=1
ll
G’RC’}M+1 = a},mﬂ—i—;?. From (4.23), therefore, G’RC’ore}e’mJr1 > G’RC}’mH—i—

/Bf,m+1-
Induction Hypothesis : Assume GRC’oregf,m+1 > G’RC’;},m+1 + Bfm+1, for

1<i<k-—1.
Induction : We will show that the claim holds for 1 < i < k.

Consider two cases for packet p’}:

70

Case 1: af ., > GRCf m1- From (4.23), we get:

lk
GRC.I;"’”"'I - af:m+1 T f

< GRCoref’mH — Bfm+1

Case 2: af ma1 < GRC’f m41- From the induction hypothesis and (4.24):

lk
k k-1 f
GRCf,m—I—l - GRCf,m-‘rl E

lk
G’RC’oref T r — Bt m+1

IA

< GRCore} fomt1 — Brmi1

Hence, the induction step is proved, and it follows from induction that the

claim is true for all k£ > 1.
The following observations complete the proof of the induction step:

Observation 1: If the corresponding stateful GR algorithm is used at server m+-1,
and its schedulability conditions are met, then for the same sequence of packet
arrivals, it would guarantee that packet p’} would depart by G’RC}“’m 41t
Bfm+1. From Claim 1, this also implies that the stateful GR algorithm guar-

antees that packet p’} would depart by GRCorel}’m 41

Observation 2: Observe that:

GRCO'I"@?’]' = GRC‘I;-J + (GRCOTCI},]‘ — GRC}C,])
lk
= max (afJ’ GRCf,J)+ rr L4 (GRCOTeI;,j - GRC?J)

Since a CSGR server transmits packets in the increasing order of their GRCore
lk

values, it is a Delay-EDD [20, 34, 67] server with D%, = % + (GRCorek ; —

G’RC’;?’]-), where D;i’ j is the delay bound for p’} at server j [25].

71

Observation 3: It has been shown in [21] 3, that Delay-EDD has the largest
schedulability region among all non-preemptive scheduling algorithms—this
implies that if a GR algorithm at server m + 1, which guarantees that p’} will
depart by GRCore’},m +1 (Observation 1), is replaced by a Delay-EDD sched-
uler that transmits packets in the increasing order of their GRCore values,

packet p’]i would still be guaranteed to depart by GRCore’}’m 41

From Observations 2 and 3, the induction step is proved. From induction, the lemma

follows. u

Theorem 6 The delay guarantee of a network of CSGR servers is the same as that

of a network of corresponding GR servers.

Proof: From Lemma 10, the time at which packet p’} departs the last server in a

network of H CSGR servers, Ll g(p%), is given by:
LgSGR(p’}) < GRCore’},j

= GRC}il + (H — 1) max l—{ + (Bt + ™) + Br,u
1k]_;i H-1
= BAT(p§) + 2+ (H —1) max -+ 3" (87 +m) + Brm
f i€[1..k] T¢ =
The delay guarantee of a corresponding network of H GR servers has been shown
to be the same as the above in [24]. []
From Theorem 6, it follows that for every GR algorithm, we can define a
Core-Stateless GR algorithm that would preserve the delay properties of the original
GR algorithm. Of particular interest is the design of Core-Stateless-Delay-EDD, a
work-conserving GR algorithm that has the desirable property of decoupling the

delay and rate guarantees [17, 63].

3The result in [21] has been shown only for flows where the inter-arrival time of packets is at
k

l
least é However, in a networking environment, inter-arrival times may become smaller than that.

It has been shown in [25], that regardless of the inter-arrival times, Delay-EDD guarantees the
departure of packets by their deadline.

72

4.5 Summary

In this work, we propose a methodology for transforming any Guaranteed Rate (GR)
network into its core-stateless counterpart, that eliminates the need for maintaining
per-flow state or performing per-packet classification in core routers. Our method-
ology is based on the key insight that: upper bounds on packet deadlines at any core
node can be computed using per-flow state at the edge node. We demonstrate that
a CSGR network, that uses the upper bounds on deadlines, instead of actual dead-
lines, provides the same end-to-end delay guarantee. Since the GR class is fairly
general, this methodology provides a tool to design a wide range of core-stateless
networks that provide delay guarantees.

It is worthwhile to note that core-stateless networks that provide end-to-end
delay guarantees, while being work-conserving, have also been presented in [40, 66].
Core-stateless networks with other desirable properties such as decoupling the delay
and rate guarantees have also been proposed in [66], independent of our work.

Observe that the method for deriving core-stateless versions of GR algorithms
described above preserves only the delay property of the GR algorithms. Hence, this
approach can be used to derive core-stateless versions of all unfair, work-conserving
algorithms (such as Virtual Clock, Delay EDD) in GR. However, if this approach
is applied to algorithms in GR that provide other forms of guarantees (e.g., fair-
ness), then the resulting core-stateless algorithm may not provide the same type
of guarantees. For instance, if the above technique is applied to the Weighted Fair
Queuing (WFQ) [18] algorithm, then the resulting core-stateless algorithm will have
the same delay property as WFQ, but would not guarantee fairness. The design of
core-stateless networks that provide throughput and fairness properties is the sub-

ject matter of subsequent chapters in this dissertation.

73

Chapter 5

Core-stateless Guaranteed

Throughput Networks

In this chapter, we design a core-stateless network that provides end-to-end through-
put guarantees at short time-scales, similar to those provided by core-stateful net-
works. We achieve this objective in two steps. First, we show that for a network
to provide throughput guarantees, it must also provide end-to-end delay guaran-
tees. Second, we demonstrate that two mechanisms —tag re-use and source rate
control— when integrated with a core-stateless network that provides end-to-end
delay guarantees, lead to the design of the Core-stateless Guaranteed Throughput
(CSGT) networks that provide end-to-end throughput bounds within an additive
constant of that attained by a core-stateful network of fair servers. Throughout this

chapter, we assume that a source transmits equal-sized packets.

5.1 Need for Delay Guarantees

The following theorem establishes that delay guarantees are necessary for providing

throughput guarantees.

74

Theorem 7 If a network provides lower-bounds on throughput of the form: Wy g(t1,t2) >
T¢(ta—1t1)—® to any flow f whose source transmits at least at its reserved rate, then it

also provides to flow f an end-to-end delay guarantee of the form: d’}7 y—EATy (p’}) <
@_}_lmaz
rf .
Proof: Consider ¢, = a}, and ty = d% ;. Then Wy m(a},,d%) = Zf:; I%. Substi-
ll
tuting into the throughput bound, we get: d’}’H < a}’l + % + Zle % Since the

. . 4 b
source transmits at least at its reserved rate, EAT} (p’;) = a}J +Ek 1 2£ . Therefore,

=1 rf'
P41k
dl},H _EATl(pI}) < Tfi <

(I)—Jr::ﬁ, for all k. Therefore, the network provides a
delay guarantee to flow f. |

The converse of Theorem 7 indicates that a metwork that does not pro-
vide delay guarantee to packets cannot provide throughput bounds. Hence, a work-
conserving, core-stateless network that provides delay guarantee is a crucial building
block for designing CSGT networks.

CSGR networks, described in Chapter 4, are core-stateless networks that
provide the same delay guarantee as a network that employs stateful GR scheduling
algorithms at the core routers. As we illustrate below, a work-conserving CSGR
network, however, does not provide throughput guarantees at short time-scales.
Our design of a CSGT network uses the CSGR network as a building block and
enhances it with a set of end-to-end mechanisms that allow the network to retain
its delay properties while providing throughput guarantees at short time-scales. We
describe the derivation of a CSGT network in the context of a Core-stateless Virtual

Clock (CSVC) network [35, 66]—a specific instance of the class of CSGR networks.

5.2 Defining CSGT Networks

Throughput in CSVC Networks We have previously shown that a CSVC net-

work (Section 4.3) provides a deadline guarantee: packet p’} is guaranteed to depart

75

server j by (VC’ore’},j + B4,;). However, the following example shows that a CSVC

network does not provide throughput guarantees at finite time-scales.

Example 1 Consider the first server, with a transmission capacity of 10 pack-
ets/sec, in a CSVC network. Let the sum of reserved rates of all flows be equal
to the capacity. Let the rate reserved by a flow f be 1 packet/sec. At time t = 0,
let f be the only backlogged flow. In this setting, by t = 1, 10 packets of flow f
are serviced by the server; further, VC’O?"e},l1 = 11. Now, let all other flows become
backlogged at time t = 1. Since the server services packets in the increasing order of

virtual clock values, packet p}l

may not be serviced until t = 10; hence, flow f re-
ceives no throughput during the interval [2,10]. Given any time interval of arbitrary
length, it is easy to extend this example to show that flow [receives no throughput

during the interval of interest. Therefore, for any interval length, the CSVC server

does not provide any non-trivial (non-zero) lower bound on throughput.

In the above example, until time ¢ = 1, because of the availability of idle
bandwidth and the work-conserving nature of the CSVC server, flow f receives ser-
vice at a rate greater than its reserved rate. Due to the way deadlines are computed,
though, during the same period, flow f accumulates a debit at the rate r; (indicated
by the increase in its VCore value much beyond current time ¢), and is subsequently
penalized for the duration of the accumulated debit once all the other flows become
backlogged. It is important for networks to provide throughput guarantees at short
time-scales, independent of the past usage of idle bandwidth by a flow, for two

reasons:

1. In many settings, is is difficult for sources to predict precisely their bandwidth
requirements at short time-scales. For instance, the bit-rate requirement of
a variable bit-rate video stream may vary considerably and over short time-

scales. At the onset of transmission, therefore, it may be difficult to predict

76

accurately the rate to reserve—sometimes the video stream may use less than
its reserved rate, sometimes it may use more. Suppose a video stream, with
a reserved bit-rate of 1Mbps, transmits at 2Mbps for 4 seconds using idle
bandwidth. In a network that does not provide throughput guarantees, the
video stream may not receive any throughput at all in the next 4 seconds.
The performance of the video application in such a network may therefore be

unacceptable.

2. Tt is in the best interest of a network to allow sources to transmit data in tran-
sient bursts (i.e., at a rate greater than the reserved rate); bursty transmissions
allow a network to benefit from statistical multiplexing of the available net-
work bandwidth among competing traffic. In networks that penalize sources
for using idle bandwidth, however, sources have no incentive to transmit bursts
into the network. They may prefer to use constant bit-rate flows, instead of al-
lowing the network to enforce arbitrary penalties. This, in turn, would reduce
the statistical multiplexing gains and thereby reduce the overall utilization of

network resources.

It is important to observe that while a CSVC network does not provide lower
bounds on throughput at finite time-scales, it does guarantee an average throughput
at the rate of 7y to a backlogged flow f over infinite time-scales. This implies that,
the throughput of flow f in any interval [t1, 3] would be below its reserved rate rf
only if the flow f receives service at a rate higher than r; prior to ¢;. In such an
event, there must exist ¢',¢” < t; such that during interval [t',¢”], packets of flow f
arrive at the destination much ahead of their deadline guarantee (derived based on
the reserved rate r¢). More formally, for packets p’} that reach destination at time

t during the interval [t', "], VC’ore’}’ g >t

7

The Principle The property of allowing a flow to accumulate arbitrarily large
amount of debit —by increasing the deadline values (or service tag values) assigned
to packets of the flow much beyond the current time— is central to the inability of
CSVC networks to provide throughput guarantees at small time-scales. Hence, for
a network to provide throughput bounds at small time-scales, it must reduce debit
accumulation; this can be achieved by allowing the ingress routers to re-use for future
packets the deadline (or service tag) values of packets that reach the destination much
prior to their deadlines. This is the central concept in transforming a CSVC network

into a CSGT network that provides throughput bounds.

The Definition of CSGT Network A CSGT network, like the CSVC network,
consists of two types of routers: edge routers and core routers. The ingress edge
router, in addition to maintaining per-flow state, maintains a sorted-list R of re-
usable tag vectors. On receiving a packet p’} of flow f, the ingress router assigns to
it a service tag vector [Fy (p’}), Fy (p’}), vy Fg (p’})] where H is the number of servers
along the path, and F} (p’]i) is the service tag for server j. The assignment of the tag
vector to packet p’} proceeds as follows: If R # (), an incoming packet is assigned

the smallest tag vector from R. Otherwise, a new tag vector is created as follows:

~ 1k
Fi(p}) = max(af;, F(a},))+ v (5.1)
j—1 l}
() — K G
Fi(p}) = Fi(pf) + };(ﬂf,h + 7 + oax, Tf)7 Jj>1 (5.2)

where 37, = %, and F (t) is the maximum of the service tags for server 1 assigned
to any packet by time ¢. All servers in the CSGT network transmit packets in the
increasing order of their service tags for that server.

Observe that if R = (), then the assignment of tag vector in CSGT is identical
to the CSVC network. When R # (), then, by reusing a tag assigned to an earlier
packet, CSGT prevents accumulation of unbounded debit for flow f. To instantiate

such a CSGT network, we need to address the following issues.

78

1. When can an ingress server reuse a previously assigned tag vector for a new
packet? What are the constraints that govern the re-usability of tag vectors?
How does the ingress router create and maintain the sorted-list R? We address
these questions in Section 5.2.1.

2. With the reuse of previously assigned tag vectors in the CSGT network, pack-
ets of flow f with higher sequence number may, in fact, carry a smaller tag
value (i.e., Fh(pzc) < Fh(p’j}) even if i < j). Since the tag values determine the
priority for servicing packets in each router, it is quite possible that packet
pjc may reach the egress edge router prior to packet pff, even though packet
pjf was transmitted prior to packet p? at server 1. We discuss the associated

packet re-ordering requirement in Section 5.2.2.

5.2.1 Maintaining the Sorted-list of Re-usable Tag Vectors

Reusing tag vectors allow CSGT networks to prevent unbounded debit accumulation
for flows. Determination of whether a tag vector is eligible for reuse, however, is

tricky because of two reasons.

e A CSGT network must ensure that the reuse of tag vectors for packets of flow

f does not violate the deadline guarantees provided to other flows.

To meet this requirement, the tag assigned to a packet p’} must differ by at
least % from the tags assigned to all packets p’J} that were transmitted prior
to packet p’} but have not reached the destination. This is because, if the
separation is less than i—’;, then flow f will be guaranteed service at a rate
greater than its reserved rate ry; this, in turn, could violate the deadline
guarantees provided to other flows.

o A CSGT network must ensure that it can provide a deadline guarantee on the

re-used tag vector.

To meet this requirement, at the time of assigning a re-usable tag to a packet,

79

the ingress router must ensure that the tag value for the first server exceeds

the current time by at least %

Using these eligibility criteria, we formally define re-usability of a tag vector

as follows.

Definition 8 A previously assigned tag vector [Fy, Fs, ..., Fi| is said to be re-usable
for a packet pf' at time t if it satisfies the following properties:

i i !
voj €U |F - R 2> (5.3)
t < B-Y (5.4)
Ty

where U 1is the set of packets transmitted by server 1 prior to packet p}n but have

not reached the destination by time t.

A CSGT network can enforce these conditions as follows.

1. An ingress router should consider a tag vector for re-use only after a packet
carrying that tag vector departs the egress router H. This ensures that condi-
tion (5.3) is met. This can be achieved by requiring the egress router to send,
on transmitting a packet p’’ of flow f, an acknowledgment for that packet to
the ingress router for flow f. The ingress router, on receiving such an acknowl-
edgment, can add the tag vector assigned to packet p%' to the sorted-list R of
re-usable tag vectors for flow f.

2. On receiving a packet p’} from flow f at time ¢, the ingress router can scan
through the sorted-list R, discard all the tag vectors that violate condition
(5.4), and assign to packet p’} the first re-usable tag that meets condition
(5.4).

Observe that the tag vector assigned to a packet p;en is likely to re-usable

l.e., satisfy condition (5.4)) only if packet p’* departs server sufficiently” prior
i tisf diti 5.4 ly if packet }nd t H “sufficiently” pri

to its deadline. In particular, if D™" is the minimum latency incurred by the

80

Customer Customer

Cloud Cloud
Ingress Core Egress
Router Router Router Sequencer
O—E
1 2)— Y
O——(1) O

Source v v Destination

Network Application
Throughput Throughput

Figure 5.1: The CSGT Network Architecture

acknowledgment packet to reach the ingress router, then using (5.4), the tag vector
of packet p* can be re-used only if: dfy + D™ < Fy (p7) — % From (5.2), this

is the same as:

H-1 i min
m < my _ . . °f min f .
e < Fu(®}) Azl(ﬂf’ﬂ+”1+12%rf)+l) + v (5.5)
J:

Thus, the egress server sends an acknowledgment to the first server, only if packet
p’} departs the network much before—as given by condition (5.5)—its deadline. We
prove, in Lemma 13 (see Section 5.3), that if a CSGT network reuses tag vectors
in accordance with the scheme described above, then it provides the same deadline-

guarantee as a CSVC network.

5.2.2 Addressing Packet Re-ordering Requirements

With the tag re-use scheme described above, in a CSGT network, packets of flow
f may reach the egress router out-of-order. For applications that desire in-order
delivery semantics, a CSGT network needs to employ a sequencer that can buffer
packets received out-of-order and then deliver to the applications packets in-order.
A sequencer can reside either on the egress router, on a special network appliance lo-
cated between the egress edge router and the destination node, or on the destination
node itselfl. Figure 5.1 depicts the setting where a sequencer is logically inserted

between the egress router and the destination node. For the simplicity of analysis,

'Deploying a sequencer on the destination node itself may require changes to end-hosts. Hence,
the architectural options of instantiating the sequencer on the egress router or on an appliance
located at the edge of the customer network may be more desirable.

81

we assume zero propagation delay between the egress router and the sequencer.
Now, let us consider the issues in designing the sequencer. The following
example shows that, in a naive implementation of a CSGT network, the number of

packets that may need to be buffered at the sequencer is not bounded.

Example 2 Consider the case when the tag vector of packet p’} becomes re-usable
at the source, there are n unacknowledged packets, pl}"'l, .. ,p’}"'" , with larger tag
vectors in the network. Let the tag vector of pl} be re-assigned to packet p’}+n+1. Now
let the tag vectors of the first (n — 1) unacknowledged packets p’}"’l, e ,p’}"'"_l also
become available for re-use; let these tag vectors be assigned to subsequent (n — 1)

packets, namely, p’}+"+2, - ,p’}+"+". Consider the case where packet p’}+n departs

k+n+1 k+n+n

k+ny Since packets Py ooy D

the egress mode at its deadline, FH(pf have

smaller deadlines, they are guaranteed to depart the egress router earlier than pl}’m.
Therefore, these n packets need to be buffered, simultaneously for some time, at the
sequencer till packet p’fr” arrives. Larger the value of n, the larger the buffer space

requirement at the sequencer.

In practice, a sequencer would have a fixed amount of buffer space. In order
to avoid packet loss due to overflow of the sequencer buffers, therefore, the aggres-
siveness of sources using a CSGT network may need to be controlled. We do this by
employing a flow control algorithm that limits the maximum number of deadlines
that are simultaneously in use for packets of a flow. Specifically, the flow control
algorithm ensures that at any point in time ¢, no packet is assigned a deadline larger
than ¢+ W%, where W is a configuration parameter. When a packet arrives at time
t, if no deadline smaller than ¢ + W% is available for assigning to it, the packet is
held till one is available.

Observe that a large value of W increases the buffer space requirement at the
sequencer (Example 2). A small value of W, on the other hand, limits the extent

to which the source can utilize idle bandwidth in the network. In fact, if W = 1,

82

the first server does not transmit a packet before its expected arrival time; in this
case the server reduces to the non-work-conserving Jitter Virtual Clock server. In
practice, the largest value of W—such that buffer overflow at the sequencer can be
avoided—should be selected. If B denotes the available sequencer buffer space, in
units of the packet size Iy, then Lemma 11 provides a condition that when satisfied

by W, avoids packet loss due to buffer overflow.

Lemma 11 Packets of flow f will not be dropped at the sequencer due to unavail-
ability of re-ordering buffers if W satisfies:
(N+1)(W —1) = (N)(NV +)55, if Tmin > 2

= W(W-1) ; min _ lf
2kmin Zf T <E

(5.6)

where N = [Z‘,’,;,?J, Emin = %, and T™" is a lower bound on the round-trip

time?.

Proof: We refer to packets that are assigned re-used tags as future packet. We
assume that a future packet is removed from the sequencer re-ordering buffers as
soon as all packets with smaller sequence numbers arrive.

Let B(t) denote the occupancy of the sequencer re-ordering buffers of a flow
f at time ¢. Let ¢; denote the time instant at which the i* future packet is removed
from these buffers. For ease of analysis, we assume that even if all packets with
smaller sequence numbers reach the sequencer before it, a future packet is still
buffered and removed (in such as scenario, at time instances ¢; and ¢; respectively).
Let to denote the initial time at which the source starts transmitting packets, and
B(tg) = 0. It follows that, B(t;) < B(t;) — 1 (more than one future packets may
be removed from the buffers at the same instant). The buffer occupancy in any

time interval [t;,%;11) is non-decreasing with time (since no packets are removed in

2rmin 4s o lower bound on the time difference between the transmission of a packet at the first
server and the arrival of its acknowledgment at the first server. For instance, the sum of propagation
and minimum transmission latencies on all the links on both the forward and reverse path qualifies

as a lower bound.

83

this interval). Therefore, the maximum buffer occupancy in this interval is given by
B(t7,)-

Consider the first server (ingress node) at a time ¢;. Consider all future
packets transmitted by this server, that have not departed the sequencer (by time
t;). Of these, let by denote the future packet with the smallest sequence number.
Consider the set of all packets with smaller sequence numbers than packet by, that
have not yet (at ¢;) reached the sequencer. Among these, let p' have the largest
tag-vector—then all of these packets would reach the sequencer at most by time
(Fu(p') + Bf,m), and the packet b; would not need to be buffered after that.

Let ¢’ be the time at which packet p’ arrives at the first server, and is assigned
a tag-vector. Since all future packets that have not departed the sequencer by time
t;, have a larger sequence number than p’, they are transmitted from the first server
after t'. Let B” be the total number of future packets that get transmitted from the
first server in the interval (¢, Fy(p')], with smaller tag-vectors than p’. Since p’ has
not reached the sequencer by t;, any future packets transmitted after ¢’ with larger
tag-vectors than p’ have also not reached the sequencer. Hence, B(t;) < B”, and
B” is the maximum number of future packets that would need to be buffered at the

sequencer before p' gets delivered, that is, B(t;, ;) < B”.

Due to source flow control, observe that: ¢ > Fi(p’) — W x lf/ry. The
number of distinct tag-vectors that lie in the interval (¢, Fy(p')] is given by: W' =
[%J < W — 1. Let T™" denote a lower bound on the round-trip time—
the time difference between the transmission of a packet at the first server and the
arrival of its acknowledgment at the first server. The maximum number of tags that
can become re-usable from the interval (¢, Fy(p')] after time ¢, which is an upper

bound on B(t;), is given by:

B(tiy1)

IN

W'+ (W' = [K™m]) + o (W' = [N'E™]), i Tmin > oL
e | + L)+ [2] if Tmin < Lt

Tmin

min __
where k = L

and N' = [I;V—,;L_TlJ The right-hand-side of the above is an

84

increasing function of W'. Since W/ < W — 1,

B < | NN 1) - (I + DEFE, i i > 2
(i+1) = v[;(kvx;n, if T < Iy
Tf

where N = [ZV—,,;%J Since this upper bound on B(t;,,) is independent of 4, it is an
upper bound on the maximum buffer occupancy in all time intervals [t;,t;11),7 > 0.
Therefore, if the provisioned buffer space, B, is at least as large as given by this
upper bound, no packets are lost at the sequencer re-ordering buffers. |

Given the largest value of W that satisfies (5.6), there is a bound on the
maximum amount of available bandwidth that a flow f can utilize. Conversely, one
can provision buffer space at the sequencer that allows a flow to utilize up to a
maximum bandwidth (say r'). In Appendix B, we show that to allow a source to

utilize bandwidth r/, the chosen value of W should satisfy the following condition®:

, [H-1 H
wo> ;— S mi+ > B+ D™ |+ H+1 (5.7)
f — —
Jj=1 Jj=1

Such a value of W can then be used to provision the sequencers with the appropriate
amount of buffers. In particular, given r’, the maximum bandwidth that a flow
should be allowed to utilize, one can derive a bound on W using (5.7); this value
of W when substituted in (5.6) determines the minimum buffer requirement at the

sequencer.

5.3 Properties of CSGT Networks

5.3.1 Delay Guarantee

Lemma 12 establishes the deadline guarantee of a preemptive CSGT server.

Lemma 12 If the j** server’s capacity is not exceeded, then the time at which packet
J

3The condition in (5.7) can be intuitively seen to be a form of the commonly used delay-bandwidth
product rule-of-thumb.

85

p’} departs a Preemptive CSGT server, denoted by L;JCSGT(p’}), 18

Dposer(®}) < Fi(h) j21 (5.8)

Proof: Let Sj(p’;) = Fj(p’}) —l’;/rf. At server j, define the quantity Ry ;(t) for flow

f as follows:

Rp;(t) = (5.9)

ry if 3k 3 (af; <t) A (S;(0h) <t < Fj(p})
0 otherwise

Let S be the set of flows served by server j. Then server j with capacity C; is
defined to have ezceeded its capacity at time ¢ if > .5 Ry j(t) > Cj. Let Ky ;(t1,1t2)
be the set of all flow f packets that arrive at server j in interval [¢1,%2] and have
deadlines no greater than ty. For packet p¥, let T, = Fj(p%) — max (ak ;, Sj(p%)).
The proof of Lemma 12 is by induction on j.

Base Case : j = 1. From (5.1) and (5.4), we have: F1(p%) > a%, +1%/r%. Then it
can be observed from (5.3) and (5.9) that:
t2 . . . It)
/ Rpatydt = > (b +Ti) > Y (hyxD)y > Y 4
t1 €K (t1,t2) €K 5 (£1,t2) " €K 5 (t1,t2)

Therefore, the cumulative length of all flow f packets that arrive in interval [t1, t2]
and have deadline value no greater than t,, denoted by AP;(t1,ts), is given as
APy(ty,t2) < [}2 Ry 1(t)dt.

We now prove the lemma by contradiction. Assume that for packet p’},
L},CSGT(p’;) > F (p’}) Also, let ¢y be the beginning of the busy period in which
p’} is served and to = F} (p’}) Let t; be the least time less than ¢, during the
busy period such that no packet with deadline value greater than t» is served in the
interval [t1,t2]. We claim that such a ¢; exists. If not, then either packet p’},l is the
first packet in the busy period or preempts the service of the previous packet on

arrival. In either case, the packet gets served immediately on arrival, and

lk
Lpcsye(®f) = a’ff,1+€f1 < VCore%,

86

which violates our assumption. Therefore, such a #; exists.

Clearly, all the packets served in the interval [t1, to] arrive in this interval (else
they would have been served earlier than ¢;) and have deadline value less than or
equal to t2. Since the server is busy in the interval [¢1, t2] and packet p’} is not serviced
by ts, we have: 3 ;cg APy(t1,t2) > Ci(tz —t1). Since APj(t1,t2) < [Ry1(t)dt,
we have:

/tz S Rpa(t)dt > Cy(ta—t1) (5.10)

t1 jes
Since the server capacity is not exceeded, 3¢ g Ry,1(t) < C1. Hence, fttf Ytes Rpa(t)dt <
Ci(t2 — t1). This contradicts (5.10) and hence the base case is proved.
Induction Hypothesis : Assume (5.8) holds for 1 < j < m.

Induction Step : We will show that (5.8) holds for 1 < j < m + 1.

From (5.2) and the Induction Hypothesis, we get: F, 1 (p’}) > alff,m+1 + l’]f/r?. The
induction step can now be proved in exactly the same manner as the base case.
Therefore, from induction, the lemma follows. |

The following lemma proves that deadline guarantees of CSVC are preserved

in a CSGT network.

Lemma 13 A packet p’} is guaranteed to depart server j in a CSGT network by
(F;(0%) + Br.)-

Proof: Since Preemptive CSGT is work conserving and does not dynamically change
the priority of a packet, lemma 13 follows immediately from Lemma 12 and Lemma 8.

5.3.2 Throughput Guarantee

To quantify the effect of packet re-ordering on the throughput received by the appli-
cations, we define two different throughput measures. We define network throughput

as the number of bits that depart the egress router during a given time interval, and

87

application throughput as the number of bits that depart the sequencer (after re-
ordering) during the interval. Note that the application throughput in any given
interval may be different from the network throughput. Theorem 8 provides lower

bounds on the network and application throughput in a CSGT network.

Theorem 8 If the source of flow f transmits packets at least at its reserved rate, and
D™ 45 an upper bound on the latency after which an acknowledgment packet sent
by the egress node reaches the ingress node, then the network guarantees a minimum

throughput in any time interval [t1,t2], Wy u(t1,t2), given by:

Wina(tite) > rpta—t) —ry ((H+2 + Z mj +Zﬁf1) —rpx DT

Jj=1 Jj=1

Further, the sequencer guarantees a minimum throughput, W)?p P(t1,t2), given by:

H-1 H
a ly
Wfpp(tl,tz) > ’I"f(tg—tl)—rf ((H+1 v + 27(] +Z’8f-7> _,r.f*Dmaz W xl;
j=1 j=1

Proof: Since D™%® is the maximum latency after which a packet from the egress
node reaches the ingress node, the following condition is sufficient to ensure that

the tags of packet p’} will be reused by the ingress node:
lk
di g+ D™ < Fi(p}) - —f (5.11)
Consider any tag value F' at the last server H. Let kr denote the sequence number
of the last packet that is ever assigned the deadline tag F at server H. Then the
departure time of packet p’;F from the last server, dl;IF , must not satisfy condition
(5.11)—otherwise, tag F' would be re-used for another packet, and p’}p does not

qualify to be the last packet to be assigned the tag F. We therefore have:

k H-1
l’L
F_dkp Dmaz f _f
H < ’; + Jz_l (Bs.j +m; +1gzl§:;ccp rf)

Let T be the upper bound on the right hand side of the above for all F. That is,
for a source with equal-sized packets, let T = pmaz 4 H —f— + E 1 i+ Z —1 ﬁf,]

88

Now consider any time interval (¢1,¢2). From the definition of T, we know
that given any F > (¢1 + IA") that has been assigned as a deadline tag at the last
server H, at least one packet with this tag F' will be delivered after time ¢; (this
is true even for t; = a},l, since F} (p}) < a},l + ’f) Further, from Lemma 13, we
know that any packet with an assigned deadline tag F' will be delivered no later
than F + 3 . Therefore, for every F € [t; +T,ts— Bf,m] that has been assigned as
a tag to any packet, at least one packet with that deadline tag will depart the last
server in the time interval (¢1,%3). Let B(tg,t) represent the total number of bits in
packets that are last assigned deadlines that lie in any time interval (¢o,t]. Then,
Wy m(t,t2) > B(ty + T, ts — Br,n)-

Let t3 = 1 —I—Tf and t4 = t2—f(f . Let tg > t3 be the smallest time instant that
coincides with a deadline—let the corresponding packet be p’}g'. Let tj < t4 be the
largest time instant that coincides with a deadline—let the corresponding packet be
pl}“. Then, since the source transmits at least at its reserved rate, the total number of
bits in packets with deadline in the range (t3,t}) is given by: B(t5,t}) = r¢(ty —t3).

Now note that t3 < t3 + If/rs. This is so because otherwise, F(p’}:“*l) €

[t3,t3), which violates the definition of ¢5. Similarly, ¢} > ¢4 — lz/ry. This is so
because otherwise, F(p’}”l) € (t}, ta], which violates the definition of ;. Therefore,
we have: tj —t5 > (t4 —t3) — 2ly/rs. Therefore, we get: Wy p(t1,t2) > B(ts, t4) >
B(t5,ty) = r(ty —t3) > rg(ta — t3) — 2ly. This implies,

H-1

H
l
Wit te) > rpta—t1) —ry ((H+2)i + Z i+ Zﬁf,j) —rpx D™
=1

j=1
Next, consider a time instant ¢5 € (¢3,t4) that coincides with a deadline tag at the
last server. Let pl;f be the last packet that is assigned the deadline ¢5. Then p’}"ﬁ
is received at the sequencer in the interval (t1,t2). If p’;f is not a future packet, it
departs the sequencer (for simplicity, we assume that packets depart the sequencer
instantly). If not, it has to be buffered till all packets with smaller sequence numbers

reach the sequencer as well. Among all these packets with smaller sequence numbers

89

than p’}5, let p’ have the largest deadline (if there are more than one such packets,
let p’ be the last packet to be assigned that deadline).

Packet p'}s arrives for transmission at the first server latest by Fy (p’}5)—l’;5 /5.
Let t' be the time at which p’ arrives for transmission at the first server. Since p’ has
a smaller sequence number than p’jf’, t' < Fy (p’jf’) — 11}5 /rs. Further, due to source
flow control, Fy(p') < t'+Wxls/rs. Therefore, Fi(p') < Fl(p’}5)+(W—1)*lf/Tf =
Fyu(p') <ts+ (W —1) xls/rs.

Since p’ is guaranteed to be delivered at the sequencer by Fy(p') + Bf.u, p’}5
will also be delivered by this time. This implies that, for any deadline in the interval
(ty + Tty — B, — (W —1) xlg/rg), the last packet to be assigned that deadline
will depart the sequencer in the time interval (¢1,t2). Therefore, the number of
bits that depart the sequencer in the time interval (¢1, t2), W}zp P(t1,ts), is given by:
WP (t1,t2) > B(ts, ta — (W — 1) « ,lu—’;) > Bltg, ty — (W — 1) = i—;) > ry(ts — t3) —
2rf,{—§ — (W — 1)l4. This implies,

H-1 H
l
app f . . —
Wit (t1,t2) > rp(ta —t) — 7y ((H+ l)rf +]-221 j +]E:1 ﬁfd> rpx D™ — W x [y

|

The bound on the network throughput derived in Theorem 8 for a CSGT

network differs from that provided by a core-stateful network (Theorem 2), by a

constant term Ey = r¢ x [D™ — Zle(e #.; — PB#;)] + 1f. The bound on application
throughput differs by the additional term Ey = (W — 1) 4.

Observe that for a CSGT network derived from CSVC, 8¢, = ™% /C;.

Further, for most stateful schedulers, e7,; > ™" /C}. Therefore, Ey < rpx D™ 41,

which is primarily governed by D™%* the maximum latency on the reverse path.

90

Non-zero throughput minimum-timescale (ms)

160

140 -

120 +

100

80

60

40 b

WF2Q+ ——

Net: D=pi -~ .
Appl:D=pi K-+
Net: D=2pi oll
Appl:D=2pi " --#--
Net:g=3pi -~
Appl:D=3pi - @~
' - |
-
o - K
e ° 4"/ H*
o w7 K
e - LXK -
o W * o "8 ol
o cl
2 3 4 5 6 7 8 9 10
H : Path Length

(a) Non-zero throughput time-scale

Sequencer Buffer Space Requirement (B)

1.8e+06

Rmax /=2 ——
Rmax /r =4 -
1.6e+06 |

reference
1.4e+06
1.2e+06

1e+06

800000 [e
600000 %x
ke o VR
400000 [K RO V.
* VB X
O

200000 Mi

0

Rmax /r=5 =¥

2 3 4 5 6 7 8 9
Reserved Rate, r (Mbps)
(b) Sequencer buffer space requirement

Figure 5.2: Evaluation of a CSGT Network

5.4 Evaluation of CSGT Networks

5.4.1 The Throughput Guarantee

net

Theorem 8 states that when measured over any time interval larger than 77%, the

network guarantees a non-zero throughput at a rate equal to the reserved rate.

As discussed in Section 3.2, the smaller the value of 'y?,‘}tl, the better the network

can support applications with stringent timeliness requirements.

To evaluate the

throughput guarantee of a CSGT network numerically, we compute fy"“ for example

networks, where link capacities are 100M bps and link propagation latencies are 1ms.

net

In figure 5.2(a), we plot 77%

against the number of hops on the end-to-end path of a

sample flow with a reserved bit-rate of 10Mbps. D™4® is varied from a multiple of 1

to 3 of the end-to-end propagation latency on the reverse path. For comparison, we

also plot 'y"et for a representative core-stateful network of fair W F2Q+ [7] servers.

We observe the following:

1. When D™@? js equal to the end-to-end link propagation latency, the through-

put guarantee of the CSGT networks is similar to that of the core-stateful

W F2Q+ networks.

91

net

2. 7¢% increases with D™%*. Therefore, the throughput guarantee of a CSGT
network improves by provisioning low-delay feedback channels. However, even
when D™ ig three times the end-to-end propagation latency, the application

is guaranteed a non-zero throughput over any time interval larger than 150ms.

These observations imply that by provisioning low-delay feedback channels, a CSGT
network can provide non-zero throughput guarantees at very short time-scales, and

similar to those in core-stateful networks.

5.4.2 Sequencer Buffer Space vs. Maximum Throughput

Recall that there is a tradeoff between the amount of buffer space required at the
sequencer and the maximum rate that the source is allowed to achieve. We numeri-
cally characterize this tradeoff for the same example network as above (link capacity
= 100Mbps, link propagation latency = 1ms). In figure 5.2(b), we plot the mini-
mum sequencer buffer space required to allow sources to achieve a given maximum

bit-rate, R™* (varied from 2 to 5 times the reserved rate). We observe that:

1. To enable a flow, with a reserved bit-rate of up to 10Mbps, to achieve an end-
to-end bit-rate of up to 5 times that (50Mbps), less than 1M B of sequencer
buffer space is sufficient.

2. The buffer space requirement grows slower with increase in the bit-rate of the
sample flow (for reference, we plot a line where the buffer requirement grows

at the same rate as the reserved bit-rate).

These observations imply that a small amount of sequencer buffer space is sufficient
to allow flows to utilize bandwidth up to multiple times their reserved rate. Further,
a CSGT network can reduce the total buffer requirement at the sequencer by aggre-
gating into a single large flow, all micro-flows that traverse the same path between

a pair of edge routers.

92

5.5 Summary

In this chapter, we present the Core-stateless Guaranteed Throughput (CSGT)
network architecture—the first work-conserving network architecture that provides
throughput guarantees to individual flows over finite time-scales, but without main-
taining per-flow state in core routers. We develop the architecture in two steps.
First, we show that for a network to provide end-to-end throughput guarantees, it
must also provide end-to-end delay guarantees. Second, we demonstrate that two
mechanisms —tag re-use and source rate control— when integrated with a work-
conserving, core-stateless network that provides end-to-end delay guarantees, lead to
the design of CSGT network that provides end-to-end throughput bounds within an

additive constant of what is attained by a core-stateful network of fair rate servers.

93

Chapter 6

Core-stateless Guaranteed Fair

Networks

Fairness guarantees differ from delay or throughput guarantees in a fundamental
way; unlike delay and throughput guarantees, that can be characterized entirely in
terms of the intrinsic properties of a flow (such as its reserved rate), the definition
of a fairness guarantee is inherently a function of the state of all other flows sharing
a resource. In this chapter, we explore the design of networks that provide fairness
guarantees without maintaining per-flow state in core routers. Our design proceeds
in two steps. First, we show that for a network to provide fairness guarantees,
it must also provide throughput guarantees. Second, we explore mechanisms that,
when integrated with a CSGT network that provides throughput guarantees, lead to
the design of the Core-stateless Guaranteed Fair (CSGF) network architecture—the
first work-conserving core-stateless architecture that provides deterministic fairness

guarantees.

94

6.1 The Need for End-to-end Throughput Guarantees

Theorem 9 indicates that providing throughput guarantees is necessary for providing

fairness guarantees in work-conserving networks.

Theorem 9 A work-conserving server that provides fairness guarantees to a continuously-

backlogged flow m of the form:

— Ing,m .

Tf Tm

where f is any other flow (not necessarily backlogged), also provides to flow m a

throughput guarantee of the form:

Wm,j(ti,ta) > rm(tz —t1) — Tm * Ym,j

reUs
where Y j = l"(';;m + 2 rer "1 Uit sm) -

Cj

Proof: A work-conserving server that has at least one continuously backlogged flow

in [t1,t2] would satisfy:

Z nyj(tlat2) > C](t2 — tl) _ |maz
fEF

where the ™% term appears due to packetization effects.

Consider a particular interval [t1,%3]. Let a = Winjlta=t1) = pyom (6.1), for

Tm

any other flow f (whether continuously backlogged or not), we have: Wy ;(ta —t1) <

r¢*a+r1f*Ujpmy. Therefore,

Cj(tz — tl) —[mer < Z Wf,j(tlatZ)
ferF

ax Y ri+ Y Ut pm)
fEF fEF

a * Cj + Z T‘fU~’{f,m}
feF

IA

IN

95

This implies,

lma.'t

71U 1 f,m}

I jeF G

a > (ta—t1)—

mazx U; m
Therefore, Wiy, j(t1,t2) > rm(ta — t1) — T'mYm,j, where vp, ; = lc‘ + Ljer Tf_ Afm}

J CJ

|

The converse of the above theorem states that a server that does not provide
throughput guarantees cannot provide fairness guarantees. A core-stateless network
that provides throughput guarantees is, therefore, a crucial building block for the
design of one that provides fairness guarantees. Note, however, that a network
that provides throughput guarantees need not be fair. For instance, a network may
provide throughput exactly at the reserved rate to one flow, but may allow another
flow to use significantly more than its reserved rate.

A simple scheme for providing fairness in a network that provides throughput
guarantees is to employ a set of two mechanisms: (1) treat the aggregate traffic
between a pair of edge routers as a single flow and provide throughput guarantees
to it, and (2) employ a fair scheduling algorithm at the ingress node that allocates
a fair share of the aggregate throughput to individual flows within the aggregate.
With such a scheme, packet departures at the last node in any time interval [¢1, t2]
can be equated to packet departures at the ingress node in some other time interval
[t],t5]; the end-to-end fairness guarantee of the network is, therefore, exactly the
same as the fairness guarantee of the ingress server.

To design a core-stateless network architecture that provides fairness guaran-
tees, we use the above set of mechanisms in conjunction with a CSGT architecture,
that provides throughput guarantees. The resultant architecture—referred to as a

Core-stateless Guaranteed Fair (CSGF) network—is defined below.

Definition of a CSGF network: The ingress router for F, a set of flows sharing

the same end-to-end path in a CSGF network, has two logical component:

96

e Deadline Assignment: A packet that belongs to the “aggregate” flow is
assigned a tag-vector exactly as in a CSGT network; new tag-vectors are

computed using a reserved rate of R =3 rcp 7.

o Packet Selection: The next packet to be assigned a deadline is selected
according to a fair schedule of transmission across flows in F. We use a Start-
time Fair Queuing (SFQ) [26] scheduler to determine the next flow to select
a packet from. SFQ has the desirable property of fair allocation even when
the available capacity is fluctuating, which is the case in a dynamic network

environment.

The core routers and the egress router in a CSGF network function in the same
manner as in a CSGT network. The “aggregate” is split into micro-flows at the
egress; for traffic classes that require in-order delivery semantics, a sequencer re-
orders packets before they are split into micro-flows.

In Section 6.2, we derive the fairness guarantees of a CSGT network. In the
rest of this chapter, we assume that all flows between the same pair of edge routers

transmit packets of the same size .

6.2 Fairness Guarantees in a CSGF network

S Wiom(tst Wi g1 (b1t . . .
Our objective is to compute —~ HTEII 2) _ ""ifll 2), the difference in normalized

throughput received by two backlogged flows f and m during time interval [t1,t2].
Recall that two kinds of throughput can be defined in a CSGT (or a CSGF)
network— the application throughput and the network throughput—depending on
whether it is measured after packets are reordered by the sequencer (if at all), or

before. Correspondingly, fairness in a CSGF network can be defined with respect

11f {™a® is the maximum allowed packet size, it is reasonable to expect a source that is backlogged
with data to transmit, to use packets of size [™*”.

97

to either the application or the network throughput. For service classes that guar-
antee an in-order delivery semantics to applications, end-to-end fairness applies to
the application throughput. For applications that do not require in-order delivery
semantics—such as large file transfers— however, it is important to characterize

fairness in network throughput as well.

6.2.1 Fairness in Application Throughput

Let p1 and p2, respectively, be the first and last packets belonging to the aggregate
that depart the sequencer during a time interval [¢1,¢2]. Then, since packets depart
the sequencer in increasing order of deadlines, all and only packets transmitted
between p; and py at the ingress node, depart the sequencer during [t1,t2]. The
unfairness measure guaranteed to flows for the application throughput during [¢1,t2]
in a CSGF network is, therefore, equal to that of the SFQ server at the ingress node
during some other time interval. For any two backlogged flows f and m, it follows

that:

WZPP(t,t app
7 (ty,t2) < W (tl,t2)+UsﬂzzQ

’f'f Tm

(6.2)

6.2.2 Fairness in Network Throughput

It may be tempting to conclude that the fairness guarantee on the network through-
put received by two flows in a CSGF network also has the same fairness guarantees as
the fair ingress server. This is, however, not the case. This is so because the under-
lying assumption behind equating the fairness of the network to the fairness of the
ingress server is that packets depart the network in the same order as transmitted
at the ingress server. In a CSGT network, however, packets may get re-ordered in
the network due to deadline re-use. As a result, packet departures at the last node
in any time interval [t1,%2] may not be equal to packet departures at the ingress

node in any other time interval. For instance, if p; is the first packet to depart the

98

last node during the time interval [¢1,?2], then some packets transmitted after p; at
the first node (with smaller deadlines than p;), may depart the last node before ¢;.
Similarly, some packets transmitted before p; at the first node (with larger deadlines
than p;), may depart the last node after ¢1. So the natural question is: how ezactly
is the end-to-end fairness guarantee on metwork throughput related to that of the
ingress server? We answer this question in the rest of this section. In the following,
let T} (p) denote the departure time of packet p from node h.

Let n}' (p,t) denote the number of packets of flow f transmitted after packet
p at the first node, which depart the last node before time t. Let n;(p, t) denote
the number of packets of flow f transmitted before packet p at the first node, which
depart the last node after time t. Let p| and p) denote the packet with the smallest
deadline to depart the last node after time ¢; and to, respectively. Then, it follows

that:

Win(tits) = Wei(Tiph), Ti(p)) + Uxng (p1,t1) — L nf (P, t1)

— Uxny (ph, t2) + 1 nf(ph, t2)

Therefore, end-to-end fairness can be computed using:

Win(ti,te) Wana(t,t) _ We(Ti@1), Ti(ph) Wma(Ti(p1), Ti(ph))
'rf T'm a Tf m

. nt (p],t1) B n}—(Plptl)
T'm Tf

s n., (P, t1) B n;(pll,h)
Tm T

e n,t (ph, t2) B n}F(PImh)
Tm Ty

s <n7n(p’2,tz) B n}(p’z,tQ))

Tm Tf
To compute the unfairness measure, we need to compute an upper bound on the right

hand side of the above relation. For computing the n;}, n. n}L, n; terms, we assume

99

that the number of packets transmitted from flow f and m during [T (p}), F1(p})]

and [Ty (ph), F1(ph)] are equal. If not, then the term Wia(T1(p1)T1(p3)) _ Wina (Th (1), Ta (p3))
2 2

Tf Tm

captures the difference.

nm(phot) nf(p’ptl)>: Let §, = DT of 16

Computing maximum (e v = /R

packets transmitted at the first node before p}, only those with deadlines larger
than p| may depart the last node after ¢; (follows from the definition of p}). If p}
is the first packet to be transmitted with the deadline F(p}), then no packets with
larger deadlines could have been transmitted before pj. If p} is the n'* packet to
be transmitted with the deadline Fy(p}), then the (n — 1)** such packet departs the
last node before ¢; (follows from the definition of p}). It follows that of the packets
transmitted at the first node before pj with larger deadlines, only those may depart
the last node after ¢;, which were transmitted after such an (n — 1) packet with
deadline Fi(p}). The maximum number of such packets of flow m, is given by:
n (p},t1) < W — ;. The minimum number of such packets of flow f is given by:

ny (p1,t1) > 0. Therefore,

(6.3)

Tm

<n;z(p'1,t1) B nf(pllvt1>) < W — 61

Tm Ty

+
nfl(’latl) _ nx(pll ’tl)
T Tm

Computing maximum () ¢ Any packet transmitted from the
first node after p), and assigned at least as large a deadline as p|, would depart the
last node after ¢; (since p}, which departs after ¢;, can not overtake such packets).
Therefore, n}" (p!,t1) is the total number of packets of flow f transmitted from the
first node after p|, and assigned a smaller deadline than p>2.

These packets are transmitted during [T3(p}), F1(p}) — %] (since a packet

transmitted after Fy(p}) — L can not be assigned a deadline smaller than F(p})).
1) " & 1

The throughput of the first node during the interval [T} (p}), Fi (p}) — <] satisfies the

?Note from the definition of p}, that all such packets depart before ¢;.

100

fairness property—that is, the difference in number of packets transmitted during
[T1(p}), Fi(p}) —] from flow f and m is bounded. Of these packets of flow f and

m, some may be transmitted with smaller deadlines than Fj(p}), and some with

+a + (!
n t1 it
larger. (#t) (e t)

v P~) is maximized when the following conditions are met:

1. Packets with smaller deadlines predominantly belong to flow f.

The transmission of packets from the first node is interleaved across flows
(due to the fair schedule of transmission). Therefore, the above condition is
satisfied when deadlines assigned to sequentially-transmitted packets are also
interleaved between those that are smaller than F;(p)) (assigned to packets of

flow f) and those that are larger (assigned to packets of flow m).

2. The number of packets of flow f (and therefore, flow m) is mazimized.

The number of flow f packets get maximized when (i) f and m are the only
flows backlogged at the first node, so that the fair-share throughput of each is

at its maximum, and (ii) deadlines get re-used the maximum number of times.

At time Ty (p}), deadline-reuse is maximized when §; packets with deadlines
smaller than Fi(p}) and W — §; packets with larger deadlines are transmitted.
Then, among packets transmitted with smaller deadlines, the normalized number of

packets of flow f (or m) may exceed the number of packets of flow m (or f) by at

[01] W—[éi]).
rf) Tm

most min (

The next set of packets are transmitted no earlier than at time 7} (p}) +7™",
where T™" is the minimum latency after which the acknowledgment for a packet
can arrive at the first node. At time T} (p}) +7™™", at most d; — k™" packets with
deadlines smaller than F (p}) and at most W —d; +k™" packets with larger deadlines
can be transmitted, where k™" = %. Again, among packets transmitted with
smaller deadlines, the number of packets of flow f may exceed the number of packets

of flow m by at most min (L‘SI’T’;’”Z”J, W [d1—k™"]).

Tm

101

By repeating the above construction of packet transmission for the complete
duration of the time interval [Ti(p}), Fi(p}) — %], we find that the total number
of packets of flow f transmitted during this interval with deadlines smaller than

Fi(p)), may exceed those of flow m by up to:

+
(nf (1, t1) _ ”%(pllvtl)) < min(Lé—lJ,iw — o]+ 1)
s Tm Ty Tm
5 _kmz’n W — 5 _kmin 1

+min(|_l J’ |-1]+)_+_
Ty Tm

+min(L61—Nk J’W—[él—rNk]+1)
’f'f m

where N = [‘Sl_vlJ.

kmzn

Computing an upper bound on (n;(pll’tl) - nm(p’l’tl)) + (nmp’l’tl) - anr(pll’tl)):

Tf Tm Tm Tf

Since 41 € [0, W], the above term is maximized for §; = W, and reduces to:

1+ (L™ + 1) + ...+ (|[Ak™"] + 1) N (W — [(A+ 1)k™"]) + ...+ (W — [NE™"])

Tr Tm
- 1+(kmi"+1)...+(ﬁkmin+1)+(W—(ﬁ+1)kmin)+...+(W—Nkmm)
B Ty Tm
< (n-l—l)+kminn(n+1)+(N—n)W_kmin*(N(N+1)_n(n-l—l))
Tf 2rf Tm 2rm 2rm,
n nn+1), 1 1 N-—-7n : N(N +1
o G @D 1 (N AW NN D),
Tf 2 TP Tm Tm 2rm

where N = |W_1| and 7 is such that: % — 1< 7 < 5%, which is satisfied

kmzn 2kmzn

by n = [LJ It can be seen that —1 < % —n < 1. Therefore, the above term

2kmin
reduces to:
Tf 2 TP Tm Tm Tm
S (n+1) +kminn(n+1)(l + i)+ (n+2)W
Tf 2 TF Tm Tm

102

ny (pht2) n:n(pg,tz)>_|_(n$(pg,t2) _ nfifyta)

T‘f Tm Tm T‘f

Computing () : By repeating the above

analysis for packet transmissions around packet ph, we get:

(n} (P, t2) n;(p'z,m) N (n;<pg,t2> ny <p'2,t2)>

Tf Tm Tm Ts
< (n+1) +kmm7’i(ﬁ+l)(i n i) n n+2)W
Tf 2 TF o Tm Tm

Computing the Unfairness Measure The total unfairness measure is therefore

given by:

Wf,H(tla t2) Wm,H (tl, t2)

Ty Tm

SN e I A+ 2)WI
< UZr@ 2R+ 1)— + k™MaA 4+ 1)(— + —) + (R 2W

6.4
Tf TF Tm Tm (6.4)

and T™" is the minimum latency after which the

w min __ Tmin
I

wheren:[W = l/R ,

acknowledgment for a packet can arrive at the first node.
It follows from (6.4), that a CSGF network provides deterministic fairness

guarantees to flows on network throughput as well.

6.2.3 How Good Are CSGF Fairness Guarantees?

The CSGF is the first work-conserving core-stateless network architecture that pro-
vides deterministic end-to-end fairness guarantees. We next address the question:
how do the fairness guarantees of a CSGF network compare to those provided by
core-stateful fair networks? To answer this question, we compute the value of the
unfairness measure for an example network topology where the link capacities are

100Mbps and the end-to-end link propagation latency on a 10-hop path is 10ms.

Fairness in Application Throughput Observe that the fairness guarantee on
application throughput in a CSGF network (given in (6.2)) is even better than that

provided by core-stateful networks (derived in Theorem 3). The reason for this is

103

Unfairness Measure (sec)

1 2 3 4 5 6 7 8 9 10
Reserved Rate (Mbps)

Figure 6.1: Fairness Guarantee on Application Throughput in a CSGF Network

that while packets depart the sequencer in a CSGF network exactly in the same order
as transmitted by the fair ingress server, packets from different flows that share the
same end-to-end path in a core-stateful network may not depart the network in the
same order. The end-to-end fairness guarantee of a core-stateful network, therefore,
can not be equated to that of its ingress server. Figure 6.1 plots the unfairness
measure in a CSGF network as well as a core-stateful network of SFQ servers [26],
each with the topology configuration described above, for different values of the
reserved rates of micro-flows (assuming r¢ = r,,). We observe that, for large-scale
network topologies, the unfairness measure in a core-stateful architecture can be an

order of magnitude higher than in a CSGF architecture.

Fairness in Network Throughput Observe that the unfairness measure on
network throughput in (6.4) is a function of W and the bit-rates of the flows under
consideration, ¢ and rp,. Recall from Chapter 5 that W is a function of R™%, the
maximum rate the aggregate traffic between the pair of edge routers is allowed to
achieve, and D™%® the maximum latency experienced by acknowledgments on the

reverse path. In Figure 6.2(a), therefore, we vary the reserved rate for the micro-

104

Unfairness Measure (sec)

- SFQ —— - SFQ ——
\ Rmax/R=2,Dmax=PI| - o Rmax/R=2,Dmax=P| -~ 1
Rmax/R=3,Dmax=P| -*-- - S 25¢ Rmax/R=3,Dmax=P| -+
Rmax/R=2,Dmax=2P| e Rmax/R=2,Dmax=2P| =
Rmax/R=3,Dmax=2P| ---=--- m 5 Rmax/R=3,Dma)’(,=,2PI fffffff
= 15¢ -
‘\ >, \\\ (7)) -
VN e e § . .
N S = 1 [o “ -3
-§ P T— e e) -
‘\\ m S e - ol .
o S —— 05 g
\T\t\'\ ‘ ; 0 \ \ \ \ \ \ \ \
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9
Reserved Rate (Mbps) Reserved Rate: r (Mbps)
(a) Unfairness Measure (b) Maximum Difference in Throughput

Figure 6.2: Fairness Guarantee on Network Throughput in a CSGF Network

flows (assuming ry = r,,), and plot the unfairness measure for different values of
R™3% /R and D™ For reference, we also plot the unfairness measure for a core-

stateful network of SFQ [26] servers. We observe that:

1. A CSGF network provides a smaller unfairness measure when throughput

received by flows with larger reserved rates are compared.

2. The unfairness measure increases when the aggregate traffic between a pair of
edge routers is allowed to utilize bandwidth multiple times the total reserved

rate for the aggregate.

3. The unfairness measure decreases with reduction in D™%*. The fairness guar-
antee of a CSGF network, therefore, improves by provisioning low-delay feed-
back channels. However, even when D™%® is equal to the end-to-end link
propagation latency (II), the unfairness measure in the CSGF network is an

order of magnitude larger than in a core-stateful SFQ network.

Figure 6.2(a) indicates that the throughput received in a CSGF network by two
flows f and m, during a given time interval, may differ by an amount worth playing

out for a few seconds. To put this observation in perspective, we plot the reserved

105

rate multiplied by the unfairness measure, in Figure 6.2(b). We observe that, during
a given time interval, the network may deliver a few mega-bytes of more data for
one flow, in comparison to other flows.

To summarize, the fairness guarantees on application throughput provided
by a CSGF network are even better than those provided by core-stateful networks;

fairness guarantees on network throughput are, however, weaker.

6.3 Throughput Guarantees in a CSGF Network

Theorem 8, which derives the application and network throughput guarantees of
a CSGT network, indicates that the aggregate traffic between the pair of edge
routers in a CSGF network is guaranteed a minimum throughput characterized
by R = 3 tcp 7y, the cumulative reserved rate. Since each flow gets a fair share
of this throughput, it follows from Theorem 9, that each micro-flow is provided a

throughput guarantee as well.

Application Throughput Guarantee The application throughput guarantee
of a CSGT network derived in Theorem 8, when applied to a CSGF network that

re-orders packets, implies that

I H-1 H
Wg™(t1,t2) > R(ta —t1) — R ((H 15+ Somi+) Bri+ D"m) — W 1 (6.5)
j=1 7j=1

Let o = Yol (tit2) pyom (6.5) and (6.2), it follows that:

r

H-1 H
R(tz—tl)—(?(lzﬂ)l 7T Zw]-+2ﬂf,j> — R« D™ _ W %1

< Z W}lpp(tl,tz)
fer

< Za*rf—l—rf*Uf’f;Q
fEF

106

350 ¢

'CSFI: Rmax/R=1.5 ——
CSFI: Rmax/R=2 ——
80T CSFIl: Rmax/R=3 - 1

m
£

Q *

3 CSGT: Rmax/R=1.5

@ 250 CSGT: Rmax/R=2 = A
£ CSGT: Rmax/R=3 -~ o --
= R

= 200

o

z

S 150

<]

= 100

o

N 50|]
C

[e)

Z 0

1 2 3 4 5 6 7 8 9 10
Reserved Rate (Mbps)

Figure 6.3: Application Throughput Guarantee of a CSGF Network

l
< _
_G*R+er(rm+
feF

l

< —_
_a*R+TmR+ g l
feF

This implies:
;] H-L H
WEPP(ty,ts) > rTmlta —t1) — Tm ((H)5+ ; m +j;ﬁf,j + D"m)

Tm Tm

=Wl RfEZFl l (6.6)
A CSGF network, therefore, provides a per-flow application throughput guarantee
characterized by (6.6). To compare (6.6) to the application throughput guarantee
of a CSGT network, we compute 7}1"}3—the minimum timescale at which non-zero
application throughput is guarantee—for an example network topology where link
capacities are 100Mbps, end-to-end propagation latency is 10ms, D™ = 10ms,
and path length is 10. Figure 6.3 plots fy;}jfl as a function of the reserved rate for
a flow, for different values of R™% the maximum rate that sources are allowed

to achieve. We find that for flows with small reserved rates, the per-flow applica-

107

l
—)
rf

tion throughput guarantee of a CSGF network may be even better than that of a
CSGT network. This is because fy?"}fl is inversely proportional to ry; the throughput
guarantee provided to the aggregate in a CSGF network is, therefore, better than
that provided to a micro-flow in a CSGT network. Since the unfairness measure
on application throughput in a CSGF network is small, the throughput guarantee
provided to a micro-flow in a CSGF network may be better than in a CSGT net-
work. The difference between the two networks is less for flows with large bit-rates.
More importantly, we find that a CSGF network is capable of providing application

throughput guarantees at small time-scales of hundreds of milliseconds.

Network Throughput Guarantee Since the unfairness measure that charac-
terizes fairness in network throughput for a CSGF network is large, ’y}lffl —the
minimum time-scale at which non-zero network throughput is guaranteed to a flow
f— in the corresponding throughput guarantee of a CSGF network is also large (of
the order of seconds). A CSGF network, therefore, does not provide per-flow net-
work throughput guarantees comparable to those provided by CSGT or core-stateful

networks.

6.4 Summary

In this chapter, we present the Core-stateless Guaranteed Fair (CSGF) network
architecture—the first work-conserving core-stateless architecture that provides end-
to-end fairness guarantees. We develop the architecture in two steps. First, we show
that for a network to provide fairness guarantees, it must also provide throughput
guarantees. Second, we demonstrate that a set of two mechanisms—fair access at
the edge and aggregation of micro-flows in the core—when used in conjunction with
a CSGT network, lead to the design of a CSGF network architecture that provides

deterministic fairness guarantees. We find that the fairness guarantees provided by

108

a CSGF network on application throughput are better than those provided by core-
stateful networks, although fairness guarantees on network throughput are worse.
Similarly, application throughput guarantees of a CSGF network are comparable to
those provided by core-stateful networks, whereas network throughput guarantees
are not. As part of future work, we plan to investigate the design of core-stateless

networks that provide better fairness guarantees on network throughput as well.

109

Chapter 7

Scalability Evaluation on a

Programmable Router Platform

We have shown that our core-stateless architectures come close to their core-stateful
counterparts in providing per-flow guarantees. We next address the question: what
are the scalability limits of routers in the core-stateless network architecture? The
performance of routers is challenged because they operate under stringent time and

space constraints.

1. The time constraints arise from the need to operate the router at “line speeds”;
in particular, the amount of time spent in processing packets in a router to
realize a service must be kept within a time budget (see Table 1.1). Routers in
different network architectures perform different sets of functions, with vary-
ing levels of complexity; the packet processing speeds of routers in different

architectures may, therefore, differ.

2. The space constraints arise because routers need to maintain and update com-
plex data structures (for instance, per-flow state or routing state). These data

structures often occupy a large amount of the available high-speed memory;

110

if a router is to provide simultaneously multiple functionalities, the limited
amount of high-speed memory available in these routers becomes a constraint.
Further, the overhead of accessing (often with mutual exclusion) these data

structures can prevent the router from operating at line speeds.

We evaluate the performance of routers in different network architectures by com-
paring (1) the link speeds to which they can scale, and (2) the high-speed memory
requirements they impose. The specific values taken by these two quantities de-
pends not only on the network architecture, but also on the router platform. In
this chapter, therefore, we evaluate the relative performance of different network
architectures on the same router platform. The natural question to address is: what
platform should be used? We address this question in Section 7.1.

For our scalability evaluation, we examine the core functions needed in
routers in each architecture (Section 7.2), and evaluate these building blocks along
the two dimensions of time and space in Sections 7.3 and 7.4, respectively. In Sec-
tion 7.5, we then evaluate routers, constructed using one or more of these building

blocks, in different network architectures.

7.1 Choice of Implementation Platform

Traditionally, high performance routers have been designed using single-function,
Application Specific Integrated Circuits (ASICs) that process packets at high speeds.
Generally, these ASICs have long design and development times and are difficult to
upgrade to add new functionality. To allow rapid deployment of new network ser-
vices, next-generation routers are likely to be built using programmable network
processors that support the programming of packet processing functions in soft-

ware. For our implementation, therefore, we use Intel’s IXP1200 programmable

111

router platform [32]. In what follows, we first describe briefly the architecture! of
the IXP1200 network processor, and introduce the constraints and challenges in

programming network services on it.

The IXP1200 Router Platform

Hardware Overview Intel’s IXP1200 network processor platform contains 4
MAC ports, a StrongARM core processor, six RISC CPUs (known as microengines),
a proprietary bus (the 64-bit 66MHz IX bus) controller, a PCI controller, control
units for accessing off-chip SRAM and DRAM memory, and a small amount (4KB)
of on-chip scratchpad memory (see Figure 7.1). The StrongARM Core is used for
control path processing, such as handling slow path exception packets, managing
routing tables, and other network state information. Microengines, on the other
hand, are used for data path processing; they process multiple packets in parallel.
Each microengine is associate with a 4KB instruction store. Both the StrongARM
and the microengines are clocked at 200MHz.

To enable a network processor to process packets at line speeds, it is essen-
tial to hide the latency incurred while accessing memory during packet processing.
To achieve this, each microengine supports 4 hardware threads; a microengine can
switch context from one hardware thread to another in a single cycle. Lock acqui-
sition is implemented on the IXP1200 using a single queue to which the request for
any lock—whether available or not—is enqueued. Lock-requests are served in the
FIFO order from this queue, which may lead to delays due to head-of-line blocking.

Although not explicitly required, the most natural use of DRAM is to buffer
packets. This is a function of the size (256 MB for our evaluation system) and
the speed of memory access (33 — 40 cycles). SRAM is the natural place to store

frequently accessed control information, such as routing table, per-flow state, etc.

1Our overview of the IXP1200 architecture is sufficient to understand the implementation chal-
lenges; for a detailed description of IXP1200, see [32].

112

IXP1200 Chip

——
——
L 0
—— 5
6 Micro < FIFOs —e 2
. Q
Scratch Engines <
i —— =
——
——
SRAM IX
StrongARM Bus
SDRAM |—

Figure 7.1: Block Diagram of the IXP1200 System

SRAM is relatively small in size (8M B in our case) and has a much smaller access
time (16 — 20 cycles). The on-chip scratchpad is used to read and write short control

messages and data that are shared between microengines and the StrongARM.

IXP1200 Software Architecture Packet processing on the I/O-optimized IXP1200
router platform is divided into two stages: the receive stage and the transmit stage.
Each thread is statically assigned to a port—threads assigned to input ports exe-
cute the receive stage and threads assigned to output ports execute the transmit
stage. A receive thread transfers an incoming packet to the DRAM. It processes the
packet, identifies the outgoing port (either through the per-flow state or the routing
table), and enqueues the packet descriptor in the queue (may be a priority queue)
corresponding to the outgoing port. When an outgoing port becomes available for
transmission, the corresponding transmit thread dequeues a packet descriptor from
the queue for that port, and transfers the corresponding packet from the DRAM to
the port.

Due to the limited amount of instruction cache available per micro-engine,

113

it is desirable to execute the same code on all threads of a given micro-engine. In
addition, when different threads within the same micro-engine execute similar code,
their memory access patterns are similar, and accesses can be interleaved efficiently.
Memory latencies can, therefore, be hidden effectively. It follows that each one of
the 6 micro-engines can either be a receive or a transmit micro-engine, with all 4
threads on it executing either the receive or the transmit stage, respectively. The 4
threads on each receive (or transmit) micro-engine are statically assigned to the 4

input (or output) ports.

7.2 Router Building Blocks in Different Network Ar-

chitectures

Consider the core functions needed in routers in the following network architectures:

1. FIFO Networks

The main function performed by routers in conventional FIFO IP networks
is that of routing. IP routers maintain per-destination routing state, and
for every incoming packet, search the state to identify the outgoing port on
which to forward the packet. Packets destined for the same outgoing port are

transmitted in the FIFO order.

A simpler conceivable FIFO network is one that uses source-routing, instead
of maintaining and using routing state at all routers. Routing state encoded
in the packet header at the edge of the network is used to identify the output
port. We use routers in such a network as the base-case against which to

compare the performance of routers in more complex network architectures.

2. Integrated Services (IntServ) Network Architecture

An IntServ network requires all routers to maintain per-flow state and perform

114

packet classification to identify the flow to which an incoming packet belongs.
For traffic classes that require flow identification, routing state can be main-
tained as part of the flow state; this eliminates the need to perform IP routing
for every incoming packet. However, in multi-class networks, some classes—
for instance, the best-effort traffic class—do not require flow identification; to

support such classes, the router needs to maintain routing state.

Additionally, each router employs a scheduling algorithm that assigns priority
values to packets and maintains a priority queue to transmit them in the

increasing order of their priorities.

. Core-stateless Network Architecture

In a core-stateless architecture, such as the one proposed in this dissertation,
per-flow classification and state maintenance is performed only at the edge
routers of the network. Core routers use flow state encoded in the packet

headers by the edge routers.

The core routers maintain and use routing state in order to forward packets.
However, if source-routing is used, routing state can also be encoded in the

packet headers for this traffic class.

Each router also maintains a priority queue to transmit packets in the increas-

ing order of their priorities.

. MPLS-based Guaranteed Services Architecture

An MPLS network [51] performs flow classification only at the edge of the
network. Core routers do maintain per-flow state, but use a flow-identifier
encoded in the packet header to directly index into the flow state. Routing
state can be included in the per-flow state; in multi-class networks, however,
routers may need to maintain routing state to support service classes that do

not require flow identification.

115

Each router also maintains a priority queue to transmit packets in the increas-

ing order of their priorities.

To summarize, routers in the above architectures need to perform one or more of
the following main functions: (1) flow classification and per-flow state maintenance;
(2) routing and per-destination state maintenance; and (3) packet ordering. We

examine each of these functions in some detail below.

7.2.1 Routing

Routing refers to the process of identifying the next-hop for a packet, based on
the destination IP address. Since IP addresses are hierarchically allocated, routing
tables at routers generally maintain next-hop information for IP address prefixes
(that represent a collection of hosts with the same IP address prefix). Route selection
for an incoming packet at a router, therefore, involves determining the longest prefiz-
match in the routing table for the destination host TP address. Several Trie-based

schemes [9, 56] proposed in the literature are well-suited for this function.

7.2.2 Flow Classification

Flow classification is the process of locating the descriptor of the flow to which
an incoming packet belongs. For the purpose of this evaluation, we define a flow
to be a sequence of packets flowing between two specific application end-points. In
case of IP networks, these two points are completely specified by the 5-tuple each
packet carries; the elements of the 5-tuple are the IP addresses of the source and
the destination, the transport protocol ID, and the port numbers at the source and
the destination. Hence, the flow classification problem reduces to an exact match
on the 5-tuple.

We consider the use of chain-hashing for solving the exact match on 5-tuples.

Three reasons motivate the selection of hashing as a flow identification mechanism.

116

First, the basic hashing algorithm is simple and can be implemented efficiently
in routers. Second, hashing schemes have a very good average-case performance.
Finally, hash-based classification schemes can be analyzed for their worst case be-

havior [29], and hence are suitable to engineering.

7.2.3 Sorting

Link scheduling algorithms that enable routers to provide per-flow guarantees, assign
priority values to packets and require routers to transmit packets in the increasing
order of their priorities. This implies maintaining a priority queue data structure for
each outgoing port, into which incoming packets are enqueued, and from which pack-
ets are dequeued for transmission. Priority queue implementation with logarithmic
complexity of the enqueue and dequeue operations are well-known [16]. Recently,
though, constant-time implementations of priority queues, that trade sorting accu-
racy for processing complexity, have been proposed [41, 49]. These implementations
use variants of the Bin-sort [8] sorting algorithm, where each bin represents a range
of priority values. We use such a constant-time priority-queue implementation; we
refer to it as Priority Bins. Incoming packets are enqueued into the bin corre-
sponding to their priority value. A dequeue operation involves searching through a
bit-vector that indicates whether each bin is empty or not—packets are dequeued for
transmission from the first non-empty bin. It can be shown that the approximate
sorting of packets in Priority Bins increases the upper bound on the delay suffered
by packets in the router queue, only by binSize, the length of the time interval
represented by a bin.

Observe that Priority Bins can guarantee constant-time operations only if
the number of bins is bounded. This implies that that the range of priority values
assigned to packets simultaneously present in the queue, should be bounded. In

Appendix C, we derive the following bounds on the number of packets (maxP) that

117

may be present at a router, as well as the range of their deadline values (mazRange),
assuming that the summation of the peak rates at which sources transmit does not
exceed the link capacity:

hy—1

~ l
mazrRange =~ Z (mj — @) + (hy — 1) x r_f + 2B,
j=1 !
hy—1
mazrBytes =~ Cp, o(mi—=)+ > (hy—1)xly
Jj=1 feF
where hy is the hop-count of the router on the end-to-end path of flow f. The
maximum number of packets, mazP, can be calculated as: mazP = %,

where /™" is the minimum packet size. For the example network we considered
before, the maximum number of flows in a priority queue for a 100Mbps link is
around 1000. Using this we get maxP ~ 10000. Since there are 4 ports on an IXP
router, the maximum number of flows and packets would be a total of around 4000
and 40000 respectively. We use these computations in our scalability evaluation of
Priority Bins.

In what follows, we first evaluate each of the above building blocks along the
time and space dimensions, and then evaluate routers in different network architec-

tures constructed using one or more of these building blocks.

7.3 Evaluation Along the Time Dimension

Our aim is to compare, through experiments, the throughput of hash-based flow
classification, routing, and packet ordering, on the IXP1200 platform. For each
of these components, we measure—in terms of packet processing rate (in millions
of packets per second)—the best-case and worst-case performance, when different
amounts of processing resources (e.g., microengines and threads) are allocated to
the component. These measurements help us understand the relative cost of imple-

menting these components on network processors.

118

Experimental Settings We conduct experiments with three different combi-
nations of (number of receive micro-engines, number of transmit micro-engines)
: (2,4), (3,3), and (4,2). All experiments are run in the IXP simulator environment
shipped along with the hardware platform.

For experiments in this section, we consider an IXP router operating in a net-
work with a maximum hop-length of 10, maximum end-to-end propagation latency
of 10ms, minimum reserved rate of 100K bps for any flow, and minimum and maxi-
mum packet sizes of 64B (IXP mpackets) and 15008 (~ Ethernet maximum segment
size), respectively. For such a network, using the formulation in Section 7.2.3, we

can calculate: mazP ~ 16K, and nBins ~ 1K (using binSize ~ 1ms).

Priority Queue

We measure the throughput of the packet ordering component by measuring the time
taken to perform a total of 30K enqueue and dequeue operations in a Priority Bins
data structure. For Priority Bins, best-case performance is measured by ensuring
that packets arrive at times close to their deadlines. This is because, the dequeue
operation does not require multiple reads of the bit-vector in order to identify the
first non-empty bin. The worst-case performance is measured by ensuring that
packets arrive much ahead of their deadlines—the dequeue operation then requires
several reads of the bit-vector (and hence several memory references)—and that the
ensue and dequeue threads pay lock synchronization overheads by accessing the same
bins simultaneously. Figure 7.2(a) plots the best-case and worst-case throughput
for different combinations of the receive and transmit micro-engines. We observe
that the effective throughput is best with a combination of (2,4) micro-engines,
indicating that dequeue operations are, in general, more expensive than enqueue
operations. The Priority Bins data structure is capable of supporting a throughput

of 0.97Mpps in the worst-case, and 1.4Mpps in the best case.

119

Ju—
W
)

Megapackets per second
e
W

o
2

=
<

= 6
=
<)
S
)
wn
5
24
17,}
~—d
5]
Y
)
80
<
=)
g
0 j
2/4 3/3 4/2 8 12 16
Threads Threads

(a) (b)

Figure 7.2: Throughput of (a) Priority Bins, and (b) Routing

Flow Classification

The processing complexity of chain-hashing depends on the number of memory ref-
erences required to resolve hash collisions—we conduct experiments for different
settings of the number of such memory references. Hashing is usually accompanied
by modification of the flow descriptor hashed into. This requires the descriptor to be
locked, and multiple threads hashing onto the same flow pay lock synchronization
overheads. We conduct experiments with the best-case and worst-case scenarios,
where different threads either hash onto different or the same flows, respectively.
Figure 7.3 plots the throughput of chain-hashing, for these two scenarios, as a func-
tion of k, the number of hash collisions encountered. Note that the number of
threads performing chain-hashing with the stage combinations of (2,4), (3,3), and

(4,2), are 8, 12, and 16, respectively. We observe:

1. The throughput of the hash table decreases as k, the number of collisions
encountered, increases. In fact, the memory reference overhead imposed by

a large k overshadows the lock synchronization overheads incurred when dif-

120

77777 Best
s Worst

Classification benchmark

4+ * ‘8threads best]

% 12 threads best -
16 threads best -
o7 8 threads worst &
- 12 threads worst --#--
Sr) 16 threads worst -—--e-- |
X\
8 25 w |
Y
0
& 27 |
=

Figure 7.3: Throughput of Hashing

ferent threads access the same flow descriptor. The best-case and worst-case

throughput are, therefore, similar for large values of k.

2. The best-case throughput increases almost linearly with increase in number of
threads. The worst-case throughput, however, may decrease with increase in

number of threads, due to lock synchronization overheads.

Note, however, that multiple threads hash onto the same flow descriptor si-
multaneously only when multiple packets of the same flow arrive back-to-back.
For high-speed links, this may not occur frequently; the average case lookup

may, therefore, not suffer from as large overheads due to lock synchronization.

We observe that chain-hashing can support a throughput comparable to that of
Priority Bins—for each of the stage combinations of (2,4), (3,3), and (4, 2)—if the
maximum value of k is around 8.

Packet Routing

The processing complexity of a trie-based routing scheme depends on the number

of trie levels traversed for each lookup. The worst-case lookup for a 4-stride trie

121

Throughput (Mpps)

Component (2,4) (3,3) (4,2)
Best | Worst | Best | Worst | Best | Worst
Packet Ordering 1.40 | 0.97 1.27 | 0.84 1.07 | 0.69
Packet Classification | 1.20 | 1.16 1.35 | 1.17 141 | 1.19

Routing 3.74 | 2.09 5.45 | 3.13 6.43 | 4.18

Table 7.1: Throughput of Different Components

on a 32-bit address space involves traversing 8 levels [63]. In the best-case, the
lookup traverses only 2 levels. Figure 7.2(b) plots the best-case and worst-case trie
throughput for different number of receive threads (not micro-engines) performing
lookups. Note that route lookup requires no locking; the throughput, therefore,
increases linearly with increase in number of threads.

Our experiments in this section indicate that the packet ordering and packet
classification components are capable of sustaining similar throughput. The routing
component, however, can sustain throughput multiple times that sustained by either

of these components. Table 7.1 summarizes the results of this section.

7.4 Evaluation Along the Space Dimension

Our objective, in this section, is to compute the amount of memory space required
by each of the building blocks in a typical core router. For the purpose of this
computation, we do not restrict our attention to the IXP1200 platform available
to us. Instead, we consider an example network based on state-of-the-art router

configurations available [2].

Example Network Configuration We consider a network in which core routers
operate on OC-192 links (9.6Gbps), the end-to-end propagation latencies are 10ms,
the maximum hop length is 10, and the minimum and maximum packet size are

648 and 1500B respectively. We assume that the minimum rate reserved by the

122

network for any flow is 100K bps, which is close to the bandwidth requirements for
high-fidelity audio. Therefore, the maximum number of flows, maxzF', that could
simultaneously traverse a core router link is around 100,000. Using the analysis
presented in Section 7.2.3. the maximum number of packets, maz P, that could be
simultaneously present at a router queue—assuming that the sum of peak source
rates does not exceed the link capacity—can be computed to be around 1, 000, 000.
The maximum range of deadlines carried by packets present simultaneously at a

router queue is given by maxRange = 1210ms.

Sorting

For each packet in the SDRAM, a priority queue implementation maintains a de-
scriptor in the SRAM. The Priority Bins algorithm, in addition to such maz P packet
descriptors, allocates space for the bins—2 words per bin for the head and tail point-
ers of the FIFO queue, and 1 bit per bin for the bit-vector. The total number of
bins to be provisioned is given by:

. maxRange
nBins = ————
binSize

where binSize is the length of the time interval represented by each bin. On the
IXP platform, the size of the array representing the bins has to be a power of 2,
given by: /1082 (nBins)]

As mentioned earlier, using Priority Bins increases the delay bound of a
packet by binSize, that is, the value of the constant 3y ; increases by binSize. The
end-to-end network delay guarantee of a packet, therefore, increases by H * binSize,
where H is the number of hops traversed by the packet. A larger value of binSize
however, reduces nBins, and therefore, the amount of memory space number of bins
to be provisioned. The parameter binSize, therefore, provides a knob that controls

the tradeoff between memory space requirement at a router and the tightness of the

end-to-end guarantee. Figure 7.4 plots the space requirement against the bin-size,

123

0.3

0.25]

0.2 r 1

0.1 |]

0.05 | 1

Memory Space Requirement (MB)
o
o

0.01 0.1 1
Bin Size (ms)

Figure 7.4: Priority Bins: Space vs. Accuracy tradeoff

for the network example described above. The bin-size, or the increase in per-node
delay bound, is varied from 1% to 100% of the average link propagation latency of
1ms. When binSize is set to 0.1ms, for instance, the memory space required for

the Priority Bins data structure is around 32K B.

Classification

When hashing is used to perform packet classification, in addition to the nPorts *
maxF flow descriptors, where nPorts is the number of router input ports, a hash
table needs to be maintained in memory. Let N denote the number of slots in the
hash table. Then the hash table occupies 4N bytes of memory. Recall that packet
classification can sustain throughput rates similar to packet ordering when k, the
maximum number of collisions per hash table slot are within 8. A new flow may,
therefore, be rejected by a router, if the slot to which it gets hashed already has k
flow descriptors in its chain. Observe that the larger the value of N, the smaller
the probability of a new flow finding k entries already present in a slot. In fact, it

can be shown that Breject, the probability of a flow being rejected by the packet

124

classification stage, is given by [29]:
Breject = Er(p/N,k) (7.1)

where p is the average number of simultaneously-active flows at the router, and

C

Er denotes the Erlang-B formula given by: Er(v,c) = T v’/e__ To ensure that

¢ (vi/ih)
=0

the blocking probability is below a desired value, (7.1) can be used to compute the
size of the hash table that should be provisioned. For instance, with & = 4 and
p = nPorts x maxF, and Byeject = 0.1%, the hash table occupies around 3.5M B of

memory.

Packet Routing

The amount of memory space used by the trie routing structure depends on (1)
the number of prefixes stored in the trie, and (2) the length of the prefixes. Cur-
rent measurements estimate the number of prefixes in core routers to be around
100,000 [45]. The average height of the path to a route entry in a 4-stride trie is
around 2.76 [563]. Using these parameters, the memory space occupied by the trie on
an average can be estimated as: 2% 100,000 * 2.76 words, which is around 17.6M B.
In the worst-case, however, the height of the paths to all route entries could be 8,

which would make the memory usage to be around 51.2M B.

7.5 Evaluation of Different Network Architectures

We now build upon the evaluation of router building blocks in Sections 7.3 and 7.4
to evaluate, along the time and space dimensions, the performance of core routers

in different network architectures.

125

7.5.1 Processing Time Considerations

We implement routers for each of the network architectures described in Section 7.2.
We conduct experiments with two sets of inputs: one for the best-case performance
of each of the individual components (as described in the experiments in Section 7.3),
and one for the worst-case performance of each. Input traffic arrives on all 4 input
ports at the maximum rate supported by the receive stage, and is distributed equally
across the 4 output ports. Figures 7.5-7.7 plot the cumulative throughput of the
router, observed over all the output ports. We find that:

1. The router throughput is consistently higher with both the (3,3) and (4,2)
stage combinations, than with the (2,4) combination. This is due to the fact
that the receive stage is more expensive than the transmit stage in all the
architectures we consider. For similar reasons, the best-case throughput ob-
served with a (4,2) combination is slightly better than what is observed with
a (3,3) combination. However, the worst-case throughput with a (4,2) com-
bination may be significantly worse than the worst-case throughput observed
with a (3,3) combination. This is due to the lock synchronization overheads
paid when a large number of receive threads attempt to perform simultane-
ous dequeue operations on the Priority Bins. We conclude that the (3,3)

combination is best for routers in the architectures we have considered.

2. Core routers in a core-stateless architecture, that employs conventional per-
node IP routing, can operate within 12% and 26%, in the best-case and worst-
case respectively, of the link speeds at which core routers in conventional FIFO
networks can operate. The difference in throughput can be attributed mainly

to the packet ordering component.

Similar figures are observed when core-stateless architectures that employ

source routing are compared to FIFO networks that employ source rout-

126

=
<?

Best
I Worst

Megapackets per second
()
O

g
=}

CFIFO/stc FIFO/IP CSlstc CS/IP MPLS IntServ

Figure 7.5: Router Throughput in Different Network Architectures: (2,4)

=
<?

Megapackets per second
()
O

g
=}

CFIFO/stc FIFO/IP CSlstc CS/IP - MPLS IntServ

Figure 7.6: Router Throughput in Different Network Architectures: (3,3)

=
<?

Megapackets per second
(=)
O

g
=}

CFIFO/stc FIFO/IP CSlstc CS/IP MPLS IntServ

Figure 7.7: Router Throughput in Different Network Architectures: (4,2)

127

ing. Routers in the former architecture can operate within 10% and 31%,
in the best-case and worst-case respectively, of those in the latter architec-
ture. Again, the difference can be attributed mainly to the packet ordering

operation.

In comparison to conventional FIFO IP routers, core routers in core-stateless
networks that employ source routing operate within 1% and 26%, in the best-

case and worst-case respectively.

3. Routers in the IntServ architecture can operate within 21% and 58%, in the
best-case and worst-case respectively, of those in conventional FIFO IP net-
works. The greater difference in throughput, as compared to core-stateless
networks, can be attributed mainly to per-flow classification and state main-

tenance.

4. The performance of routers in MPLS-based core-stateful networks lies within
21% and 39%, in the best-case and worst-case respectively, of conventional
IP routers. The worst-case performance is better than in an IntServ network
due to the use of simple tag-based classification mechanisms. Note, however,
that routers still need to manipulate per-flow state and pay the associated
locking overheads; the throughput of these routers is, therefore, lower than in

core-stateless networks.

Our experiments indicate that core-stateless architectures that employ source rout-
ing come closest to meeting the throughput performance of conventional IP routers.
Table 7.2 lists the throughput for the different architectures, normalized with re-
spect to the highest throughput—that of routers in FIFO networks that employ

source routing.

128

7.5.2 Space Requirements

For the discussion in this section, we reconsider the example network described
in Section 7.4, where mazP = 1,000,000, mazF = 100,000, and mazRange =
1210ms. We configure binSize = 0.1ms, which is 10% of the single-link propagation
latency, which implies that Priority Bins add a total of just 1ms overhead to the end-
to-end propagation latency of around 10ms. Using this, the total number of bins to
be provisioned is calculated as nBins = 16K (with binSize = 1ms, nBins = 2K).
Table 7.2 summarizes the following discussion on the space requirements of routers

in different architectures.

FIFO Networks To compute the memory space needed for packet descriptors
maintained in the SRAM, observe that each descriptor maintains a pointer to the
actual packet in the DRAM, the size of the packet, and a pointer to maintain the
FIFO linked list. Since memory can be allocated only in powers of 2, the size of
a packet descriptor is 4 words. For mazP = 1,000,000 packets, this adds up to
around 16 M B of SRAM occupied by the FIFO packet queue per router output
port. In FIFO networks that employ conventional IP routing, a typical route table
would additionally occupy around 18 M B of SRAM (see Section 7.4).

IntServ Networks Flow descriptors in IntServ routers maintain a pointer to the
routing information, the 5-tuple used for flow identification, the rate reserved for
the flow, the deadline assigned to the last packet by the scheduling algorithm, and
the pointer used to maintain the linked list in the chain hash-table. Computed as a
power of 2, this adds up to 8 words per descriptor, which makes the total memory
occupied by the maxF flow descriptors to be around 3.1M B, per router input port.
In addition, the hash table occupies space of the order of 1M B.

Packet descriptors occupy 16 M B of memory as discussed above; the Pri-

ority Bins data-structure additionally occupies only around 32K B. In multi-class

129

Architecture Relative Throughput | Fast-path Memory Required (MB)
Best | Worst Single-class | Multi-class

FIFO /source-routing 1.000 1.000 nPorts * 16 nPorts * 16 4 18
FIFO/IP 0.930 0.904 nPorts * 16 + 18 | nPorts x 16 4 18
Core-stateless/source-routing | 0.900 0.692 nPorts * 16 nPorts * 16 4 18
Core-stateless/IP 0.817 0.668 nPorts x 16 + 18 | nPorts x 16 + 18
MPLS-based 0.735 0.549 nPorts * 19 nPorts x 19 + 18
IntServ 0.735 0.376 nPorts % 20 nPorts x 20 + 18

Table 7.2: Time and Space Complexities of Different Architectures

networks, the route table occupies around 18M B.

Core-stateless Networks Packet descriptors and Priority Bins occupy around
16 M B of memory. In multi-class networks, or in networks that use conventional IP

routing, the route table occupies around 18 M B.

MPLS-based Guaranteed Services Networks The total memory occupied by
the flow descriptors is around 6.1 M B, as in IntServ routers. The packet descriptors
and bins occupy around 16 M B. In multi-class networks, the route table occupies
around 18M B.

The above discussion indicates that the fast-path memory requirements im-
posed on core routers in core-stateless networks are similar to those in conventional
IP routers, whereas may be 18% to 25% larger in MPLS and IntServ networks,
respectively. Further, the fast-path memory requirement of routers in MPLS and
IntServ networks increases linearly with increase in the number of flows simulta-
neously traversing a router; since traffic demands are expected to increase with

time [33], memory requirements in these architectures are expected to be higher

than the above for future networks.

130

7.6 Summary

In this chapter, we evaluate the scalability limits of routers that implement our
core-stateless architecture in comparison to those in conventional FIFO networks
and IntServ networks. We use the approach of evaluating the core functions—
namely, routing and per-destination state maintenance, per-flow classification and
state maintenance, and packet ordering—needed by routers in these architectures.

Our results indicate that:

1. Core routers in core-stateless networks that employ source routing can support
best-case packet-processing speeds similar to those in conventional FIFO IP
networks; they halve the gap between the worst-case packet-processing speeds

of routers in FIFO and IntServ networks.

2. The memory space requirement of core routers in a core-stateless architecture

is similar to that of routers in conventional FIFO networks.

131

Chapter 8

Conclusions

The advent of network applications with stringent timeliness requirements presents
network architects with the opportunity of designing networks that provide per-flow
service guarantees. In contrast, the rapid increase in link speeds and traffic demands
presents the challenge of making such network architectures scalable and efficient.
In this dissertation, we design network architectures that simultaneously achieve
the above requirements of: (i) providing per-flow service guarantees, (ii) scaling to

high-speed links and large number of flows, and (iii) utilizing resources efficiently.

8.1 Summary of Contributions

Existing network designs are either scalable (FIFO networks) or provide per-flow
guarantees (Integrated Services, or IntServ, networks), but not both. To explore
both ends of this spectrum of network designs, we address two questions: (1) can
preventing bursty traffic from entering the network enable FIFO networks to pro-
vide per-flow service guarantees; and (2) is it possible to provide end-to-end service
guarantees, similar to those provided by IntServ networks, while removing per-flow

computation from core routers?

132

We address the first question in two steps: (1) we develop an analytical
model that yields a closed-form characterization of the end-to-end performance of
constant bit-rate (CBR) flows in FIFO networks under asymptotic conditions of
network utilization and path length; and (2) we conduct simulations to verify the
set of non-asymptotic and realistic conditions under which the results of the model
continue to o hold. Our results indicate that CBR flows become heavy-tailed at
moderate-to-large levels of utilization in large-scale networks. We conclude that
FIFO scheduling is inadequate to design scalable networks that devote a significant
fraction of available resources to support customers that require per-flow service
guarantees.

To address the second question, we explore the design of core-stateless net-
works that provide per-flow service guarantees without maintaining per-flow state in
the core routers. Our approach blends theory and practice. We address the theoret-
ical aspects of designing core-stateless networks in two steps: (1) we understand the
end-to-end service guarantees that can be provided in core-stateful networks; and (2)
we design core-stateless networks that provide end-to-end service guarantees similar
to core-stateful networks. On the practice front, we design and implement a router
prototype to evaluate the feasibility of deploying our core-stateless architecture, and
investigate the scalability of routers.

In understanding the end-to-end service guarantees provided by core-stateful
networks, we conduct the first tight end-to-end fairness analysis of a network of
fair queuing servers. We first argue that it is difficult to extend existing single-
node fairness analysis to an end-to-end analysis of a network where each node may
employ a different fair scheduling algorithm. We then present a two-step approach
for end-to-end fairness analysis of heterogeneous networks. First, we define a class
of scheduling algorithms, referred to as the Fair Throughput (FT) class, and prove

that most known fair scheduling algorithms belong to this class. Second, we develop

133

an analysis methodology for deriving the end-to-end fairness bounds for a network
of FT servers. Our analysis is general and can be applied to heterogeneous networks
where different nodes employ different scheduling algorithms from the FT class. We
leverage past work to understand the end-to-end delay and throughput guarantees
provided by core-stateful networks.

To derive core-stateless networks that provide delay guarantees, we design
a methodology to transform any core-stateful network of Guaranteed Rate (GR)
servers to a core-stateless version (CSGR) that provides the same end-to-end delay
guarantee. Since the GR class is fairly general, this methodology provides a tool to
design a wide range of core-stateless networks that provide delay guarantees. For
instance, it is possible to design a core-stateless Delay-EDD network, that decouples
the delay and rate guarantee.

Next, we propose the Core-stateless Guaranteed Throughput (CSGT) net-
work architecture—the first work-conserving network architecture that provides
throughput guarantees to individual flows over finite time-scales, but without main-
taining per-flow state in core routers. We develop the architecture in two steps.
First, we show that for a network to provide end-to-end throughput guarantees, it
must also provide end-to-end delay guarantees. Second, we demonstrate that two
mechanisms —tag re-use and source rate control— when integrated with a work-
conserving, core-stateless network that provides end-to-end delay guarantees, lead to
the design of CSGT network that provides end-to-end throughput bounds within an
additive constant of what is attained by a core-stateful network of fair rate servers.
We demonstrate that the constant is small for current network topologies.

As a final step in designing core-stateless networks, we propose the Core-
stateless Guaranteed Fair (CSGF) network architecture—the first work-conserving
core-stateless architecture that provides deterministic fairness guarantees. We de-

velop the architecture in two steps. First, we show that for a network to provide

134

fairness guarantees, it must also provide throughput guarantees. Second, we demon-
strate that a set of two mechanisms—{fair access at the edge and aggregation of flows
in the core—when integrated with a CSGT network that provides throughput guar-
antees, lead to the design of CSGF networks that provide fairness guarantees. The
fairness guarantees provided by a CSGF network on application throughput are
comparable to those provided by core-stateful networks.

Our core-stateless architectures come close to their core-stateful counterparts
in providing per-flow guarantees. We next evaluate the scalability of routers in our
architectures—and compare them to routers in FIFO and IntServ networks—by im-
plementing them on a programmable router platform. Our results indicate that core
routers in a core-stateless architecture, coupled with a source-routing mechanism,

can match closely the performance of routers in conventional IP networks.

135

Appendix A

Applying Approach of [59] to
Virtual Clock

We apply the approach adopted in [59] for Jitter Virtual Clock to its work-conserving
version, Virtual Clock, in this section and demonstrate that the delay guarantees of
Virtual Clock are not preserved in its core-stateless version.

Let H be the total number of nodes that packets of flow f traverse. Let K be
the total number of flow f packets transmitted. If we introduce a per-packet slack

variable, 6%, such that,
8 > VOt —dy, j=2.,Hk=2.K (A.1)

and we compute the new core virtual clock values as:

lk
VCore’},j = a’},j + 6’; + %, ji=2,...,.H;k=1,.. K (A.2)
where 5} = 0, then we can calculate VC’ore’}’ ; purely on the o basis of variables that

can be encoded in the packet by nodes j > 1.
Note that, from Equations (4.6), (A.1), and A.2, we get:

VCorek, > VCf,, Vi k, f (A.3)

136

Using A.3, we can show that a server scheduling packets in increasing order

of their core virtual clock values would transmit a packet by (VCore’}’j +0¢,;), where

5f.1 -

upper bound on ak f.i exists:

maz

(the proof is similar to the one for Theorem 4). Hence, the following

a’},j < VCOTel},j_l + B j-1+ i1 (A.4)

For computing 5?, note that 5} =0.
Further, in order to ensure Inequality (A.1), we need to make sure that 6’}’
is no smaller than the largest value that its RHS can take. This is given by upper

and lower bounds on VC’f] and a’}, ; respectively as follows:

lk—l
vekt = Lvek?) + L
75 max (af;, VO ;%) + rr
l’;*l
k—1 k—1
S apy TO A (from(A.3))
lk—l
< VCore’};ll +mi—1+ Brj1+ 5’;_1 + J;—f (from(A.4))
k—1
< ! +2(5’“*1+lf—)+(7r- + Brj-1)
- fa]_]- f /rf]_1 f:]_l
k-1 j-1
< Al G- DO+)+ 2 (mt Br)
=2
ll}fl j—1
S VORTH G = D@+)+ X (mit Br)
i=1
k i
0fj = efjtmiat c;
lk
= a‘f] 2+ Z mi +
i=j—2

137

S S
> af+ Y (mi+ A
1=1

Therefore, at node j, the maximum possible value that 5’} would be required
to exceed is given by:

lk 1 j—1
O 2 (VO —af) + (G -1+)+ ﬁf,

Since (Bf; > l’;/Ci), the RHS is maximized for j = H, and therefore, the
least sequence of 6’; that would satisfy Inequality (A.1) is given by:

5 =0
ll;—l H-1 lk
5? = max(0, (VC' - l},l) + (H — 1)(51;_1 + ?) + Z (B — 6))(A 5)
=1

Delay Guarantee of a Network of Core-Stateless Virtual Clock Servers

Consider a flow f traveling through a network of H Core-Stateless Virtual Clock
Servers. Let d’ﬁj be the time at which packet p’} gets transmitted at the j** node.

Then, the end-to-end delay guarantee of the k* packet is computed as:

di g —VCf, < VCorely+Bu—VC},
lk
S al},H—VC.If?,l‘l‘d'I;‘l_é_*'ﬁH

lk H-1
< ak - Vc}il + H(5 + é) + 3 (mi+Bi) + Bu
i=1

Hl
i=1

This delay guarantee for the k** packet of a flow depends on the value of its

slack variable, 5’}. To get a feel for the lower bound on 5’;, consider a well-behaved

138

source, that sends its packets at a constant bit-rate, r¢, i.e.:
k k—1
af71 = VCf,].

Substituting in Equation (A.5), we get:

5 =0
2 = I}
02 = (H-1)x-L+ L
f () ry izzl(ﬁf,z Ci)
53 (H —1)2 l}-l-(H 1) l%+H Hz_l(ﬂ ll})

= - * —— —1)%x = * P — =
f Ty T = L C;

G s G (S

4 - H-1P¥sx L+ (H-12sx L+ (H-1)sxL+(HHEH-1)+1 R
O = (-1 o (1) b (H = 1) o (H(H - 1) 4)*;(ﬁm o)

We see that, as k£ grows, such a computation of the slack variable 5’; to
eliminate per-flow state in core nodes fails to provide reasonable end-to-end delay

guarantees for even constant bit-rate flows, and hence the approach used in [59] does

not work for Virtual Clock.

139

Appendix B

Condition on W to Allow Large

Throughput to be Achieved in a
CSGT Network

Suppose r' > r¢ is the bottleneck bandwidth available to the flow f at time ¢y (and
thereafter). Without loss of generality, assume that the first server is the bottleneck
server!. We derive a condition on W such that if there is only a single packet at the
bottlenecked first server (and in the network) at a time tg, then there continues to
be at least one packet at the bottlenecked server at all future times (given that the
source has packets to transmit). If this is the case, then the bottleneck bandwidth

available to flow f is not wasted.

Suppose packet p} arrives at the server queue at time t3. Then it can be
shown that packet p’}, (where packets p}, e p’} are transmitted back-to-back) would
incur a maximum delay of (2;12—11 7rj+ZfI:1 Bt,;+(H+k—1)*ls/r'") before it departs
from the network. The acknowledgment for packet p’} would reach the ingress node

after an additional delay of at most D™%. The corresponding S; of this packet at

!Suppose this is not the case. Then even if the first server transmits packets once only every
l¢/r' time units, the bottleneck server will remain backlogged.

140

the ingress node would be Sy (p’}) =to + (k — 1)ly/rs. Therefore, the tag-vector of
packet p’} would definitely be available for re-use at the first server, if k& satisfies:
Z] 1 7r]+zj 1Bsj+(H+k—=1)xlg/r'+D™* < (k—1)xls/rs. This implies:

mazx l
E]lﬂ—.’_i—zj 1/Bf.7 +D _'—‘H')kr_'C

Ly _
Tf r!

ko> +1 (B.1)

Now observe that, if the bottlenecked first server remains backlogged till the time
the acknowledgment for p’; arrives, then the subsequent acknowledgments (spaced
lg/r" apart) clock the transmission of new packets, and the bottleneck server, that
transmits a packet every l¢/r' units, would remain backlogged subsequently.

Further, due to source flow control, the tags for packet p’} would become

available for re-use at most by the time W + my, packets arrive for transmission at

the first server after ¢, where my, is given by the term:

E: 1 ”J"‘Z] 1Bs + (H+k—1)’r—f,+Dmaw
e I (B.2)
£y

Therefore, if the time it takes for the first server to transmit W + m;, packets at the

rate 7', is at least as large as the maximum time it takes for the acknowledgment of
packet p’} to arrive after g, the first server always remains backlogged with packets
to transmit. That is, the following condition would ensure that the server remains
continuously backlogged: (W + my) * T, £ > Z It i+ Zf{:l B +D™* + (H +k—
1) * g— From (B.1) and (B.2), this yields:

H-1
W -1l > Zw,+ZﬂfJ+Dm“)+Hlf (B.3)
j=1 7j=1

If, on the other hand, W does not satisfy condition (B.3) for the available bottleneck
bandwidth 7', then it can be seen, using a similar argument as above, that the

throughput rate that the source can sustain, R™** (W, r'), is given by:

(1-2) (W —1)*l
~rp+ T
H-1_ H . Dmaz H l_f
e T+ > Byt + x5

141

Appendix C

Computing Maximum Deadline

Range and Queue Size

As representative of core-stateful and core-stateless networks that provide per-flow
service guarantees, we consider those that employ scheduling algorithms from the
GR [25] and CSGR [35] classes. Recall that in these frameworks, a deadline is com-
puted for each incoming packet at a router, and the scheduling algorithm provides
a deadline guarantee, that a packet would depart the router by its deadline (plus a
constant).

Let Fh(p’}) denote the deadline assigned to p’}, the k" packet of flow f, at
the ht" node in its path. The following relation exists between F; and Fj, [25, 35]:

_ [
Fi(pf) = max(Fy(pt 1>,a’;,1>+é
. i h—1 h I
Fu(p}) < Fl(pf)+27rj+2ﬁj+(h—1)*; (C.1)

where [; is the packet size for flow f, and 8y ; is a constant that depends on the
traffic and server characteristics at node j. If the sum of the reserved rate over all

flows does not exceed the link capacity, algorithms in the GR and CSGR classes

142

guarantee that p’} would depart node j by F} (p’}) + B;. If ry,the reserved rate, is

also the peak source rate, we get: a’}’l >F (p’}_l). Therefore, Fy (p’}) = a’}’l + %’;—

Maximum range of deadlines Consider a router. Let h; denote the hop count
of this router for packets of flow f. The maximum number of packets of flow f
in the router queue can be computed by assuming that (1) every packet p’]‘é that
arrives into the network, zips through the first Ay —1 hops, experiencing no queuing
at these hops, and (2) every packet p’} experiences the maximum queuing delay at
hop hy, departing only at Fj, (p’;) + Bn;. Let 7; denote the minimum propagation
latency on the link connecting server j and j + 1. Then, packet p’; can arrive at
the h?h node as early as: a’]i,l + E;Z;l(?r] +1¢/C;). Tt follows that the largest
deadline carried by any packet of flow f at node hy at a given time ¢ is given by:
Fip(p) = t+ 35577 (5 = 75) + X520 (85 — 15/C) + By + (hy — 1) % (£ From the
deadline guarantee of node hy, the smallest deadline that a packet could carry at
time ¢ is (t — By f). Assuming maximum-sized packets, and using a representative
value of B¢ ; = 1™ /Cj, it follows that the maximum range of deadlines carried by

packets of a flow f simultaneously present at a router queue is given by:

hy—1
N l
mazRange ~ E (mj —75) + (hy — 1) % r_f + 2B,
j=1 f

Consider an example network where the end-to-end path length of any flow is at
most 10 hops, the end-to-end propagation latency is at most 10ms, minimum and
maximum packets sizes are 648 and 15008 respectively, and the minimum rate that
a flow can reserve is 100K bps. The value of maxzRange for such a network is of the

order of 100ms.

Maximum queue size Note that the maximum number of bytes of flow f that
can be present at a router queue simultaneously is no more than: ryxmazRange. Let

F' denote the set of all flows traversing through the router. The following is an upper

143

bound on the maximum number of bytes across all flows, present simultaneously at

a router queue:

hf—l
marBytes =~ Z T % (Z (mj —75) + (hf — 1) l_f)

feFr j=1 rf
hf—l
< Cnpx Y (mj =)+ Y (hy = 1) %1y
Jj=1 fer

144

[1]
[2]

[4]

[5]

[6]

[7]

Bibliography

CSIM18 - The Simulation Engine. http://www.mesquite.com.

Intel®IXP2800 Network Processor. http://www.intel.com/design/network/

products/npfamily /ixp2800.htm.

V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D.C. Burger. Clock Rate
Versus IPC: The End of the Road for Conventional Microarchitectures. In 27th

International Symposium on Computer Architecture (ISCA), June 2000.

J.C.R. Bennett, K. Benson, A. Charny, W.F. Courtney, and J.Y.LeBoudec. De-
lay Jitter Bounds and Packet Scale Rate Gaurantee for Expedited Forwarding.
In Proceedings of IEEE INFOCOM, volume 3, pages 1502-1509, 2001.

J.C.R. Bennett, K. Benson, A. Charny, W.F.Courtney, and J.Y. LeBoudec. De-
lay Jitter Bounds and Packet Scale Rate Guarantee for Expedited Forwarding.
to appear in IEEE/ACM Transactions on Networking.

J.C.R. Bennett and H. Zhang. W F2Q: Worst-case Fair Weighted Fair Queuing.
In Proceedings of INFOCOM’96, pages 120-127, March 1996.

J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms.
In IEEE/ACM Transactions on Networking, volume 5, pages 675-689, Oct
1997.

145

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Brown. Calendar Queues: A Fast O(1) Priority Queue Implementation for
the Simulation Event Set Problem. Communications of the ACM, 31(10):1220—
1227, October 1988.

Milind M. Buddhikot, Subhash Suri, and Marcel Waldvogel. Space Decom-
position Techniques for Fast Layer-4 Switching. In Protocols for High Speed
Networks IV (Proceedings of PfHSN ’99), pages 25—41, August 1999.

Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queueing: Fair Bandwidth
Sharing Without Per-Flow State. In Proceedings of IEEE INFOCOM, March
2000.

A. Charny, F. Baker, J. Bennett, K. Benson, J.-Y. LeBoudec, A. Chiu,
W. Courtney, B. Davie, S. Davari, V. Firou, C. Kalmanek, K.K. Ramakrishnan,
and D. Stiliadis. EF PHB Redefined. Nov 2000. Internet Draft.

I. Chlamtac, A. Farago, H. Zhang, and A. Fumagalli. A Deterministic Approach
to the End-to-end Analysis of Packet Flows in Connection-oriented Networks.

In IEEE/ACM Transactions on Networking, volume 6, August 1998.

D. Clark and W. Fang. Explicit Allocation of Best Effort Packet Delivery
Service. IEEE/ACM Transactions on Networking, 1(6):362-373, August 1998.

A. Clerget and W. Dabbous. TUF: Tag-based Unified Fairness. In Proceedings
of IEEE INFOCOM, April 2001.

K. Coffman and A. Odlyzko. The Size and Growth Rate of the Internet. March
2001. http://www firstmoday.dk/issues/issue3-10/coffman/.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
McGraw Hill, 1996.

146

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. L. Cruz. SCED+: Efficient Management of Quality of Service Guarantees.
In Proceedings of INFOCOM’98, March 1998.

A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. In Proceedings of ACM SIGCOMM, pages 1-12, Septem-
ber 1989.

A. DeSimone. Generating Burstiness in Networks: A Simulation Study of
Correlation Effects in Networks of Queues. ACM Computer Communication

Review, pages 24-31, 1991.

D. Ferrari and D. C. Verma. A Scheme for Real-Time Channel Establishment
in Wide-Area Networks. IEEE Journal on Selected Areas in Communications,

8(3):368-379, April 1990.

L. Georgiadis, R. Guerin, V. Peris, and K.N. Sivarajan. Efficient Network
QoS Provisioning Based on per Node Traffic Shaping. In Proceedings of INFO-
COM’96, pages 102-110, March 1996.

S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed Applica-
tions. In Proceedings of INFOCOM’9/, 1994.

P. Goyal. Packet Scheduling Algorithms for Integrated Services Networks. PhD
thesis, University of Texas at Austin, Austin, TX, August 1997.

P. Goyal, S.S. Lam, and H.M. Vin. Determining End-to-End Delay Bounds In
Heterogeneous Networks. In ACM/Springer-Verlag Multimedia Systems Jour-
nal, 1996. Also appeared in the Proceedings of the Workshop on Network and
Operating System Support for Digital Audio and Video, April 1995.

P. Goyal and H.M. Vin. Generalized Guaranteed Rate Scheduling Algorithms:
A Framework. In IEEE/ACM Transactions on Networking, volume 5, pages

147

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

561-571, August 1997. Also available as technical report TR95-30, Department

of Computer Sciences, The University of Texas at Austin.

P. Goyal, HM. Vin, and H. Cheng. Start-time Fair Queuing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks. In Proceedings
of ACM SIGCOMM’96, pages 157-168, August 1996.

M. Grossglauser and S. Keshav. On CBR Service. In Proceedings of INFO-
COM’96, pages 129-137, March 1996.

R. Gruenenfelder. A Correlation Based End-to-End Cell Queueing Delay Char-
acterization in an ATM Network. In Proc. Thirteenth International Teletraffic

Congress (ITC-13), volume 15, pages 59-64, June 1991.

B. Hardekopf, T. Riche, J. Kaur, J. Mudigonda, M. Dahlin, and H. Vin. Scala-
bility Analysis of Software-based Service-differentiating Routers Using Network
Processors. Technical Report, Department of Computer Sciences, University of

Tezas at Austin, May 2001.

J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. June 1999. Internet RFC 2597.

V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding PHB. June
1999. Internet RFC 2598.

E. Johnson and A. Kunze. IXP1200 Programming. Intel Press, 2002.

P. Kaiser. A (R)evolutionary Technology Roadmap Beyond Today’s OE Indus-
try. NSF Workshop on The Future Revolution in Optical Communications &
Networking, December 2000.

D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-Time Communication in

148

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Multihop Networks. IEEE Transactions on Parallel and Distributed Systems,
5(10):1044-1056, October 1994.

J. Kaur and H.M. Vin. Core-stateless Guaranteed Rate Scheduling Algorithms.
In Proceedings of IEEE INFOCOM, volume 3, pages 1484-1492, April 2001.

J. Kaur and H.M. Vin. End-to-end Fairness Analysis of Fair Queuing Networks.
In Proceedings of the 23rd IEEE International Real-time Systems Symposium
(RTSS), Dec 2002.

L. Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley & Sons, New
York, NY, 1975.

J. Kurose. Open Issues and Challenges in Providing Quality of Service Guaran-
tees in High-Speed Networks. ACM Computer Communication Review, 23:6-15,
January 1993.

J.Y. LeBoudec and G. Hebuterne. Comments on ”A deterministic ap-

proach to end-to-end analysis of packet flows in connection-oriented networks”.

IEEE/ACM Transaction on Networking, 6(24):422-431, 1998.

C. Li and E. Knightly. Coordinated Network Scheduling: A Frameworkfor
End-to-end Services. In IEEE ICNP 2000), Nov 2000.

J. Liebeherr and D.E. Wrege. Priority Queueing Schedulers with Approximate
Sorting in Output Buffered Switches. In IEEE Journal on Selected Areas in

Communications, volume 17, pages 1127-1145, June 1999.

W. Matragi, C. Bisdikian, and K. Sohraby. Jitter Calculus in ATM Networks:
Multiple Node Case. IEEE INFOCOM ’94, June 1994.

K. Nichols, V. Jacobson, and L. Zhang. An Approach to Service Allocation in
the Internet. November 1997. Internet Draft.

149

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differen-
tiated Services Architecture for the Internet. November 1997.

ftp://ftp.ee.lbl.gov/papers/dsarch.pdf.

University of Oregon Route Views Project. BGP Core Routing Table Size.

2002. http://www.antc.uoregon.edu/route-views/dynamics/.

R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A Stateless Active Queue
Management Scheme for Approximating Fair Bandwidth Allocation. In Pro-

ceedings of IEEE INFOCOM, March 2000.

A K. Parekh. A Generalized Processor Sharing Approach to Flow Control in
Integrated Services Networks. PhD thesis, Department of Electrical Engineering
and Computer Science, MIT, 1992.

A. Privalov and K. Sohraby. Per-stream Jitter Analysis in CBR, ATM Multi-
plexors. IEEE/ACM Transaction on Networking, 6(2), 1998.

J. Rexford, A. Greenberg, and F. Bonomi. Hardware-efficient Fair Queueing
Architectures for High-speed Networks. In Proceedings of IEEE INFOCOM,
March 1996.

J.W. Roberts and J.T. Virtamo. The Superposition of Periodic Cell Arrival
Streams in an ATM Multiplexer. IEEE Transactions on Communications,

39(2):298-303, February 1991.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching
Architecture. January 2001. Internet RFC 3031.

J. Sahni, P. Goyal, and H.M. Vin. Scheduling CBR Flows: FIFO or Per-
Flow Queueing? In Proceedings of International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV’99), pages
13-27, June 1999.

150

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M.AR. Sanchez, E.-W. Biersack, and W. Dabbous. Survey and Taxonomy of
IP Address Lookup Algorithms. IEEE Network, 15(2):8-23, March 2001.

S. Shenker and C. Partridge. Specification of Guaranteed Quality of Ser-
vice. Available via anonymous ftp from ftp://ftp.ietf.cnri.reston.va.us/internet-

drafts/draft-ietf-intserv-guaranteed-svc-03.txt, November 1995.

K. Sohraby and A. Privalov. End-to-End Jitter Analysis in Networks of Periodic
Flows. In Proceedings of IEEE INFOCOM, volume 2, pages 575-583, 1999.

V. Srinivasan, George Varghese, Subhash Suri, and Marcel Waldvogel. Fast
and Scalable Layer Four Switching. In Proceedings of ACM SIGCOMM, pages
191-202, September 1998.

I. Stoica. Stateless Core: A Scalable Approach for Quality of Service in the
Internet. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, December
2000.

I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: Achiev-
ing Approximately Fair Bandwidth Allocations in High Speed Networks. In
Proceedings of ACM SIGCOMM’98, Sept 1998.

I. Stoica and H. Zhang. Providing Guaranteed Services Without Per Flow
Management. In Proceedings of ACM SIGCOMM’99, Sept 1999.

M. Venkatachalam, J. Kaur, and H.M. Vin. End-to-end Model for a Flow in
the Internet. Technical Report TR-01-32, Department of Computer Sciences,
Uniwversity of Texas at Austin, August 2001.

G.G. Xie and S.S. Lam. Delay Guarantee of Virtual Clock Server. IEEE/ACM
Transactions on Networking, 3(6):683-689, December 1995.

151

[62]

[63]

[64]

[65]

[66]

[67]

D. Yates, J.F. Kurose, D. Towsley, and M.G. Hluchyj. On per-session end-to-
end delay distributions and the call admission problem for real-time applications
with QOS requirements. In Proceedings of ACM SIGCOMM, pages 160-166,
October 1993.

H. Zhang. Service Disciplines For Guaranteed Performance Service in Packet-

Switching Networks. Proceedings of the IEEE, 83(10), October 1995.

H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines. In
Proceedings of ACM SIGCOMM, pages 113-121, August 1991.

L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet Switching
Networks. In Proceedings of ACM SIGCOMM’90, pages 19-29, August 1990.

Z.L. Zhang, Z. Duan, and Y.T. Hou. Virtual Time Reference System: A Unify-
ing Scheduling Framework for Scalable Support of Guarantees Services. IEEE

Journal on Selected Areas in Communication, Special Issue on Internet QoS,

Dec 2000.

Q. Zheng and K. Shin. On the Ability of Establishing Real-Time Channels in
Point-to-Point Packet-switching Networks. IEEE Transactions on Communi-

cations, 42(3):1096-1105, March 1994.

152

Vita

Jasleen Kaur Sahni was born on July 1, 1974 in Dehradun, India, the daughter
of Adarsh Kaur Sahni and Devinder Singh Sahni. She received the Bachelor of
Technology degree in Computer Science and Engineering from the Indian Institute
of Technology at Kanpur in May 1997. She was awarded the Motorola Student of
the Year Gold Medal in May 1997. Thereafter, she received the Master of Sciences
degree in Computer Sciences from the University of Texas at Austin in May 1999.
She was awarded the MCD and J.C.Browne graduate fellowships in August 1997

and December 2001, respectively.

Permanent Address: c/o Narinder Singh Sehgal
2622 Phase 7, SAS Nagar
Sector 61, Chandigarh, India

This dissertation was typeset with IATEX 2:! by the author.

'IATREX 2¢ is an extension of WIEX. I#TEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay and James A. Bednar.

153

