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Abstract7

As GPU-using tasks become more common in embedded, safety-critical systems, efficiency demands8

necessitate sharing a single GPU among multiple tasks. Unfortunately, existing ways to schedule9

multiple tasks onto a GPU often either result in a loss of ability to meet deadlines, or a loss of10

efficiency. In this work, we develop a system-level spatial compute partitioning mechanism for11

NVIDIA GPUs and demonstrate that it can be used to execute tasks efficiently without compromising12

timing predictability. Our tool, called nvtaskset, supports composable systems by not requiring13

task, driver, or hardware modifications. In our evaluation, we demonstrate sub-1-µs overheads,14

stronger partition enforcement, and finer-granularity partitioning when using our mechanism instead15

of NVIDIA’s Multi-Process Service (MPS) or Multi-instance GPU (MiG) features.16
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1 Introduction25

Rapid developments in artificial intelligence (AI)—especially deep neural networks (DNNs)26

running on GPUs [18]—have led to new cyber-physical systems, from intelligent assistants27

to self-driving cars. Real-world safety or usability concerns impose practical response-time28

deadlines on these systems, which may also need to run multiple AI tasks—such as one29

DNN for a conversational interface alongside others for object detection or planning in a30

self-driving car. However, this raises a problem–how to schedule GPU-using tasks onto a31

GPU efficiently while reliably meeting deadlines? When scheduling a GPU, generally either32

competitive sharing [42, 27, 46]—tasks run concurrently and fight for resources—or mutual33

exclusion [12, 11, 3]—one task runs at a time—are recommended.34

Unfortunately, competitive sharing increases efficiency at the cost of timing predictability35

[11, 35, 2, 41, 7, 40], whereas mutual exclusion gives up efficiency for predictability. Without36

timing predictability, one cannot guarantee met deadlines. This tension puts embedded37

system designers in a difficult position. The easy option—trading off predictability for38

efficiency—is dangerous for safety-critical systems like self-driving cars.39

This problem is exacerbated by the issue of composability. Each GPU-using task may40

be developed by different groups, may not be modifiable by the scheduler, and may change41

out-of-step with other tasks during a device’s lifetime. This puts further burden on the42

scheduling system, as it must guarantee efficient and predictable execution for each task,43

even as tasks change opaquely.44
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Table 1 Comparison of spatial GPU compute partitioning mechanisms.
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Software [13, 39, 15, 37, 43] ✓ ✕ ✕ ✕ ✕ ✓ ✓

libsmctrl [4] ✓ ✕ ✕ ✓ ✓ ✓ ✓

NVIDIA MiG [29] ✕ ✓ ✓ ✓ ✓ ✕ ✕

NVIDIA MPS [27] ✓ ∼ ∼ ✓ ∼ ✕ ✓

nvtaskset (ours) ✓ ∼ ✓ ✓ ✓ ✓ ✓

In this work, we demonstrate that spatial partitioning of GPU compute cores is an45

effective path to resolving this problem. To show this, we uncover and repurpose hardware46

capabilities in all NVIDIA GPUs to build a new system-level spatial partitioning mechanism.47

Spatial partitioning—a way to run tasks concurrently on mutually exclusive sets of cores—48

allows concurrent task execution for efficiency, while minimizing shared-resource interference49

between tasks to protect timing predictability. Our work builds on two key insights: GPUs are50

architecturally well-suited to spatial partitioning, and all NVIDIA GPUs contain hardware51

capabilities that can be leveraged to implement spatial partitioning.52

While our work is motivated by the computational needs of DNNs, it is not constrained53

to DNNs—we consider arbitrary unmodified CUDA-using GPU tasks. We focus on NVIDIA54

GPUs for their market-leading technology and adoption, and on CUDA-using tasks because55

of an intermediate-software limitation—we believe that the hardware capabilities we unveil56

and leverage could be applied to spatially partition any NVIDIA GPU workload in the future.57

Prior work. Prior work on the spatial partitioning of NVIDIA GPU cores is limited. Table 158

(returned to with rigorous definitions in Sec. 2.5 and Sec. 3) classifies key works. Most prior59

work (“Software” in Table 1) modifies tasks to cooperatively yield unallocated compute60

cores [39, 15, 37, 43, 13, 47]—these approaches suffer the inability to enforce partitions on61

misbehaving tasks. Our prior work, libsmctrl [4] addresses this enforcement problem, but62

requires task modification and a shared address space among all tasks. Multi-instance GPU63

(MiG) from NVIDIA [29] can hardware-enforce partitions without these compromises, but64

its partitions are static, less fine-grained, and only available on data-center GPUs. The only65

NVIDIA-provided option for all their GPUs, the Execution Resource Provisioning feature of66

the Multi-Process Service (MPS), does not enforce robust partition boundaries. We revisit67

these mechanisms at length in Sec. 3.68

Contributions. In this work, we:69

1. Reveal how NVIDIA MPS (current state-of-the-art) is implemented, unveiling previously-70

unknown hardware capabilities and quantifying its real-time safety.71

2. Discover and mitigate efficiency and predictability pitfalls of NVIDIA MPS, including72

how it may assign two partitions of 50% to the same 50% of the GPU.73

3. Develop a new system-level spatial-partitioning tool for NVIDIA GPUs—nvtaskset—74

built on principles from libsmctrl and NVIDIA MPS.75

4. Show that nvtaskset supports unmodified tasks without measurable overheads or port-76

ability limitations.77
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5. Demonstrate that nvtaskset has more efficient and granular partition enforcement than78

NVIDIA MiG and MPS, and equivalent or better timing predictability.79

6. Uncover that NVIDIA MiG underperforms due to inherent overheads of 6–15%.80

Organization. We introduce our system model, overview GPU architecture, and discuss81

spatial partitioning in Sec. 2. We review prior work in Sec. 3. In Sec. 4, we elucidate82

the implementation and pitfalls of NVIDIA MPS, and then in Sec. 5 apply the hardware83

capabilities used by MPS to develop nvtaskset. We evaluate the overheads, partition84

enforcement, and granularity of nvtaskset in Sec. 6, and conclude in Sec. 7.85

2 Background86

In this section, we summarize necessary background on the GPU (from our prior works [4, 5]),87

and discuss why spatial partitioning enables efficiency and timing predictability.88

2.1 System Model89

We assume an x86_64 or aarch64 platform containing at least one embedded or discrete90

NVIDIA GPU of the Volta (2018) generation or newer.91

Tasks are assumed to be closed-source, unmodifiable, CUDA-using Linux processes.92

Non-CUDA GPU-using tasks may coexist, but may not use spatial partitioning.93

We focus on embedded, real-time systems, where resources are limited but execution-time94

deadlines must be met.95

2.2 GPU Usage Model96

Each task executing on a GPU has an associated GPU context. This context includes97

per-GPU-task state, such as an on-GPU virtual address space. Unless explicitly stated98

otherwise, we assume a one-to-one mapping of GPU-context to CPU-task.99

Work is dispatched into a context via one or more compute kernels. A kernel is launched100

by passing a GPU-executable binary, and a number of GPU threads, to a GPU-usage library101

such as CUDA or OpenCL. The library will then compose and pass a Task Metadata102

Descriptor (TMD) to the GPU for execution. Each GPU thread concurrently executes the103

same instructions, but operates at a different data offset. For example, a kernel for an104

element-wise array addition could replace a for loop over every index value with a GPU105

thread per value. The threads would then execute the loop body over all index values in106

parallel, rather than having to iterate.107

Threads are organized into groups known as blocks, and all threads within a single block108

execute on the same SM (Streaming Multiprocessor; a group of compute cores). A series of109

kernel executions may be serialized via first-in-first-out command queues known as streams in110

CUDA. Only kernel executions in the same stream are serialized; kernels in separate streams111

are permitted to execute concurrently.112

2.3 GPU Architecture113

In Fig. 1 we illustrate the typical architecture of an NVIDIA GPU chip, using the Ada-114

generation AD102 as an exemplar (used in the RTX 4090 and RTX 6000 Ada GPU models).115

NVIDIA GPUs are subdivided into several independent engines, with the most significant116

being the Compute/Graphics Engine. Smaller engines handle special functions such as bulk117

ECRTS 2025
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Figure 1 NVIDIA Ada Lovelace discrete GPU (AD102).
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Figure 2 Number of CUDA cores in NVIDIA’s top-end GPUs; 2011 to 2023. (Select points
annotated with chip IDs.)

data movement (the Copy Engines) and video processing. Each engine may have a different118

context active on it at a time [5].119

The Compute/Graphics Engine is subdivided into General Processing Clusters (GPCs).120

Each GPC is independently connected to each DRAM controller and the co-located last-level,121

level-two (L2) cache slices. The GPCs subdivide into Thread Processing Clusters (TPCs) of122

two Streaming Multiprocessors (SMs) each. Each SM contains dozens of compute cores (128123

each on the AD102) and a level-one (L1) cache. The AD102 contains 18,432 compute cores124

total; Fig. 2 illustrates how core counts have increased in recent years.125

We next discuss how GPU contexts are scheduled onto hardware engines.126

2.4 GPU Scheduling127

We present the scheduling pipeline from CPU task to GPU compute cores in Fig. 3. CPU128

tasks insert kernel launch commands (represented as TMDs) into CUDA streams, and those129

CUDA streams are mapped onto a smaller or equivalent number of GPU channels.1 Which130

GPU channel(s) may access the Compute/Graphics Engine at a time is dictated by the131

runlist, making the runlist the central arbitrator.132

GPU runlists (typically one for each GPU engine [5]) are composed of time-slice groups133

1 Strictly, channels contain a queue called a pushbuffer. The channel count is important—using more
streams than channels causes blocking [5].
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GPU-Using
Task 1

Streams Channels Runlist

GPU-Using
Task 2

Compute Engine

On-CPU On-GPU

Cores

Figure 3 The scheduling pipeline for two tasks using the GPU Compute/Graphics Engine—the
runlist arbitrates which task uses the engine at a time. (Dashed boxes at right represent intra-engine
scheduling stages we skip—see [4].)
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Figure 4 Example Compute/Graphics Engine runlist of three tasks.

(TSGs) of channels. TSGs are executed in a work-conserving, preemptive round-robin order134

by default. While a TSG is active, commands from all its contained channels are pulled135

and executed on the runlist-associated engine. Each TSG has an associated time-slice; upon136

expiration of this timeslice the runlist scheduler preempts any in-progress commands and137

switches to the next TSG. Such a switch is also triggered by the exhaustion of commands138

from all the TSG’s channels. Note that all a TSG’s channels must be from the same context.2139

We show a runlist for three tasks in Fig. 4, following the in-memory layout. In this140

example, TSG 0 would be executed for 2 ms, and during that time, commands from channels141

0 and 1 would be received and executed by the Compute/Graphics Engine. After 2 ms, any142

active commands from channels 0 and 1 would be preempted, and the GPU would move on143

to commands from the channels of TSG 1 for 2 ms. This process repeats for TSG 2, then144

loops back to TSG 0. The time-slice can be set differently for each TSG.145

Figure 5 GPU utilization over one inference of the YoloV2 DNN in Darknet on the 4,352-core
NVIDIA RTX 2080 Ti.

This GPU scheduling algorithm ensures that the Compute/Graphics Engine has only one146

context active at a time. This can lead to significant under-utilization, as many GPU-using147

tasks are unable to saturate all GPU compute cores on their own [42, 27, 46]. We demonstrate148

this for one inference of the YOLOv2 image-detection network in Fig. 5. At no point is the149

network able to utilize the entire GPU—it utilizes only 40% of the GPU’s SMs on average.150

2 See line 293 in manuals/ampere/ga100/dev_ram.ref.txt [30].

ECRTS 2025
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Increasing GPU core counts (Fig. 2) have only worsened this problem.151

To efficiently use the GPU, idle compute capacity must be reclaimed for other tasks.152

Unfortunately, concurrently running multiple tasks on the GPU (e.g., by sharing a single153

context) leads to a new set of problems.154

2.5 Interference and Spatial Partitioning155

When multiple tasks execute concurrently on a GPU, shared-resource interference can occur.156

This is where contention for shared hardware resources such as caches or compute cores157

creates slowdowns between tasks. Such interference creates unpredictability, as knowing158

when and how tasks will interfere on what shared resource is an unresolved area of study.159

Thus, to ensure timing predictability, few hardware resources should be shared.160

Prior work has avoided such interference on the GPU by only allowing one task to access161

the GPU at a time [12, 11, 3]. This can lead to underutilization—concurrently running162

multiple tasks would allow for more efficient use of GPU hardware.163

Spatial partitioning allows for concurrency without interference. It prevents hardware164

resources from being shared between tasks by partitioning them into mutually exclusive165

subsets, and assigning each subset to a concurrently running task. Without shared resources,166

interference is prevented, and execution times remain predictable.167

In designing a spatial partitioning mechanism, it should satisfy the following properties:168

Portable: The mechanism should work on a wide set of GPU models.169

Logically Isolated: The mechanism should preserve logical isolation between tasks, e.g.,170

virtual address space isolation and independent exception handling.171

Transparent: The mechanism should not require changes to tasks, e.g., recompilation.172

Low-overhead: The mechanism should add negligible overhead to critical-path operations,173

e.g., a kernel launch.174

Hardware-enforced: Partitions should be enforced by hardware to protect from malicious or175

misbehaving tasks.176

Dynamic: Partitions should be reconfigurable without restarting a task.177

Granular: Partitions should be defined in granular units, e.g., a TPC for compute partitioning.178

The first four properties are desirable for any software system, but the last three are179

partitioning-specific. We now discuss prior work in light of these requirements.180

3 Related Work181

Efficiently using a GPU in a real-time system requires concurrently running tasks on the182

GPU Compute/Graphics Engine, with partitioning of shared hardware resources. Prior work183

has identified the GPU DRAMs (with co-located L2 cache slices) and SMs (with co-located184

L1 caches) as needing to be partitioned [40, 4, 15]. This section covers prior work on and185

towards such partitioning.186

3.1 DRAM Partitioning187

The history of DRAM partitioning is extensive ([19, 20, 44] are exemplars), and it has been188

extended onto the GPU by Fractional GPUs [15] and SGDRC [45]. These works use a189

memory-organization approach known as page-coloring [19] to force each task onto prescribed190

GPU DRAM and L2 units. Such memory reorganization requires difficult-to-obtain model-191

specific hashing functions, but the principle is generally applicable to any GPU. NVIDIA192
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has since developed a proprietary alternative, but this is not available on most GPUs and193

cannot be enabled independently of MiG [29, 9].194

The DRAM partitioning technique of Fractional GPUs and SGDRC satisfies all desired195

spatial isolation properties stated in Sec. 2.5, so we assume the application of such an196

approach and focus on the remaining problem: compute partitioning.197

3.2 Compute Partitioning198

Prior work on spatial partitioning for GPU compute cores can be divided into academic-199

provided and NVIDIA-provided solutions. We summarize these works in Table 1.200

Academic-provided solutions. Third-party solutions for spatial partitioning on NVIDIA201

GPUs have been limited to cooperation-based software mechanisms until recently. One202

system [39], which has been recently improved [15, 37], is commonly used in papers that203

claim to partition NVIDIA GPUs. This approach depends on kernels launching blocks on all204

SMs, and on each block aborting if it finds itself executing on an SM outside of its partition.205

This approach is vulnerable to a full loss of partitioning if any block misbehaves and does not206

cooperatively yield an unassigned SM. Another cooperation-based variant known as persistent207

threads [43, 13], still used in recent work [47], is similarly vulnerable to misbehaving tasks.208

Given the inability of these works to enforce partitioning, they are vulnerable to a loss of209

isolation. We group these works under the “Software” heading in Table 1, as they implement210

partitioning via task modification rather than via hardware features.211

Our prior work, libsmctrl [4], addresses the enforcement problem by leveraging undoc-212

umented hardware capabilities to enforce partitions of TPCs. Unfortunately, like earlier213

mechanisms, libsmctrl requires merging tasks into the same context to concurrently execute214

them, compromising logical isolation and transparency.215

NVIDIA-provided solutions. Partitioning solutions from NVIDIA are able to enforce216

partitioning at a hardware level, but were not designed with the needs of an embedded real-217

time system in mind. The two principal options provided by NVIDIA are the Multi-instance218

GPU (MiG) feature, and the Multi-Process Service (MPS).219

NVIDIA MiG [29] allows multiple contexts to concurrently run on the GPU by splitting220

the GPU into static, fixed-size partitions. Each partition may then concurrently run a221

different task. Partition options are highly limited, with at best four possible partition sizes,222

and the smallest partition size is 14 SMs. MiG is implemented by duplicating every part223

of the hardware scheduling pipeline for every GPC [9], and is only available on NVIDIA’s224

highest-end datacenter GPUs. This approach cannot provide fine-granularity partitioning,225

and requires hardware modifications that NVIDIA has shown no intent to make widely226

available. This leads us to classify MiG as non-granular and non-portable in Table 1.227

Conversely, NVIDIA MPS [27] is available on any recent discrete NVIDIA GPU. MPS228

(since the Volta architecture),3 enables the Compute/Graphics Engine to concurrently execute229

multiple tasks, but does not control which SMs each task is assigned to. This may result in230

two tasks sharing an SM [27], which can cause as much as a 100x performance degradation [40].231

Due to this limitation, we classify MPS in Table 1 as only partially providing granular,232

3 Pre-Volta-generation MPS works differently, providing little-to-no isolation between co-running tasks.
When we refer to MPS in this paper, we refer to the Volta-generation-and-newer version.
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hardware-enforced partitioning. Other properties of MPS are undocumented, and we derive233

those later in this work.234

3.3 Barriers to Better Compute Partitioning235

Unfortunately, devising better solutions for spatial partitioning of GPU compute has been236

stymied by the scarce details released about NVIDIA GPU architecture and capabilities—237

even instruction encodings are secret [14, 17, 16]. Many years of investigation have begun to238

contravene this limitation.239

Otterness et al. [34] and Amert et al. [2] elucidated the scheduling of CUDA kernels via240

black-box experiments and introduced the cuda_scheduling_examiner tool, which we use.241

Olmedo et al. [32] and our prior work [4] used these results and other sources to construct242

a model of how the underlying GPU kernel dispatch hardware works. Parallel work by243

Capodieci et al. [6], Spliet and Mullins [38], and us [5] clarified the preemption and high-level244

scheduling capabilities of NVIDIA GPUs. This last work [5] also introduced two tools we245

use: the nvdebug tool for directly extracting GPU state, and the gpu-microbench suite for246

examining scheduling behavior. Outside of the academic community, the Nouveau [24] and247

Mesa [23] reverse-engineered NVIDIA GPU driver projects have documented GPU hardware248

capabilities and CPU-to-GPU interfaces. We lean heavily on all these prior works throughout249

our paper.250

4 How Does MPS Work?251

In search for a better spatial partitioning mechanism for real-time embedded systems, we252

begin by investigating the only portable mechanism for co-running unmodified tasks on253

NVIDIA GPUs—MPS. What hardware capabilities does MPS leverage, and how MPS fall254

short of the properties we desire in a spatial partitioning mechanism? Given the absence of255

prior work, we investigate these questions experimentally. This is relevant both to our work,256

and to the safety of other works which propose using MPS in embedded systems.257

4.1 Methodology258

To determine how MPS interacts with the GPU scheduling pipeline, we applied the nvdebug259

tool [5], gpu-microbench suite [5], and cuda_scheduling_examiner toolkit [34] to test and260

observe GPU state and behavior with and without MPS. Adding MPS changed more aspects261

of GPU state than nvdebug was able to display, so we extended it on Ada (2022) and older262

GPUs, drawing layout information from open-source NVIDIA code [30, 26, 28] and the263

nouveau driver [24]. Our improved version of nvdebug is available.4264

To understand the semantic meaning of this newly accessible GPU state, we leveraged265

context and definitions from NVIDIA patents touching on the runlist scheduler [10], kernel266

scheduling pipeline [36, 1], MPS [8] and MiG [9]. Unfortunately, patents may describe267

infeasible or impossible devices, and so we only tenuously relied on them, verifying described268

behavior with experiments.269

4 Available at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git and within our artifact.

http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git
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Figure 6 Compute/Graphics Engine runlist of three tasks; reillustrated from Fig. 4 with detail.
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Figure 7 Compute/Graphics Engine runlist of three tasks, with Tasks 2 and 3 run as MPS clients.

4.2 MPS Terminology270

MPS uses a client-server paradigm, where each CUDA-using task is a client of at most one271

MPS server task. The MPS server acts as an intermediary to the GPU for its clients, and272

allows clients to run concurrently with one another. Relative to the GPU, a system of two273

MPS clients and one MPS server would appear as a single task, since clients only access the274

GPU through the MPS server. Multiple MPS servers may exist, each with different clients.5275

In this case, each MPS server would appear to be a separate task to the GPU.276

4.3 How MPS Modifies Runlist Scheduling277

We now investigate how adding MPS modifies arbitration between GPU-using tasks, i.e.,278

how it modifies the runlist and associated data structures. To enable our subsequent analysis279

of MPS’s pitfalls, this section is particularly detailed.280

We begin by reillustrating Fig. 4, with detail from our extensions to nvdebug, in Fig. 6.281

This figure retains the same runlist as Fig. 4, but expands on the configuration of each channel.282

The channel-configuration data structure is known as the channel’s instance block, and—283

besides describing the command queue (not shown for space)—specifies the virtual address284

space to be used for commands from the channel. Virtual address spaces are configured in a285

peculiar way; each channel includes an indexed list of page tables, and the page table to use is286

selected by specifying an index into that list. The list of page tables is called the “Subcontext287

5 Support for multiple MPS servers is only implicitly documented. The environment variable
CUDA_MPS_PIPE_DIRECTORY can be set to control where an MPS server advertises itself, and where
CUDA searches for the MPS server. Two MPS servers cannot advertise to the same path, and so this
variable must be set uniquely for each to allow multiple servers to exist.
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Table,” and the channel’s index into it is called the channel’s “Subcontext ID.”6 Adding to288

the confusion, this mechanism only selects the page table for the Compute/Graphics Engine;289

the instance block includes a separate page table configuration field for other engines, such290

as Copy.7 In our experiments, we always observed the same page table configuration for291

all engines; we mirror that in Fig. 6. Note that all channels in a TSG have an identical292

subcontext table—this is a requirement for channels sharing a context.8 All of these details293

are important in order to discuss how MPS effects address-space isolation.294

In Fig. 7, we illustrate how runlist and channel configurations change when MPS is295

enabled. This is still a system of the same three GPU-using tasks, but an MPS server has296

been started with Tasks 2 and 3 as clients (Task 1 remains independent of MPS). Both297

the runlist location and virtual address space configuration have changed for the tasks now298

running as MPS clients. We discuss each change in turn.299

With MPS enabled, the two tasks now running as MPS clients no longer have independent300

TSGs in the runlist. The runlist only contains two TSGs: one for Task 1 (TSG 0), and one301

for the MPS server (TSG 1). While Tasks 2 and 3 do not retain independent TSGs, they do302

retain independent channels within the MPS server’s TSG (Channels 3–4 for Task 2 and 5–6303

for Task 3). (Note that the MPS server has taken Channel 2 for its own use, and so Tasks 2304

and 3 are forced to use channels with higher IDs.) When this runlist is scheduled, Task 1305

will, as before, execute for 2 ms before its budget expires and it is preempted. The GPU will306

then switch to the next TSG in the runlist, the one for the MPS server. This will likewise be307

run for 2 ms before the GPU loops back to Task 1. While the MPS server’s TSG is active,308

commands from all its channels are sent to the Compute/Graphics Engine concurrently.309

The effect is such that all the MPS client tasks’s CUDA streams concurrently execute as310

though they were in the same program. Note that the two MPS clients share a single 2 ms311

time-slice with a 4 ms period, whereas before they each got a single 2 ms time-slice at a 6 ms312

period. This is a reduction in GPU time available jointly to the two tasks, from two-thirds313

to one-half. This is a side-effect of enabling MPS to be aware of: if any other tasks in the314

system continue to run without MPS, the total GPU time available to all MPS clients will315

be less than the total time those tasks would have collectively received if run apart.9316

We now consider how virtual address space configurations change—or stay the same—with317

the addition of MPS. Visible in Fig. 7, at the bottom of the Channel 2–6 Instance Blocks,318

the Subcontext Table for every channel of the MPS server TSG is triple the size of the tables319

in Fig. 6. This allows the table to include separate page tables for MPS, Task 2, and Task 3;320

the appropriate one is selected by the Subcontext ID on each channel. Each channel also has321

a non-compute page table identical to the one selected by its Subcontext ID. In this manner,322

Tasks 2 and 3 retain distinct virtual address spaces, just as without MPS.10
323

4.4 Evaluating Spatial Partitioning in MPS324

What does this mean for MPS’s suitability to real-time embedded systems? We answer by325

considering MPS under each of our desired properties (Sec. 2.5). Without loss of generality,326

6 Subcontext ID is also “Virtual Engine ID” (VEID) in some sources.
7 See line 297 in manuals/ampere/ga100/dev_ram.ref.txt [30].
8 See line 293 in manuals/ampere/ga100/dev_ram.ref.txt [30].
9 The time-slice length of the MPS server could be extended to ensure tasks retain access to an equivalent

fraction of GPU time, but this is unsupported by NVIDIA’s software.
10Why the convoluted TSG-wide Subcontext Table, rather than a per-channel page table? This may

speed up context switches by allowing a TSG’s page tables to be read all at once, rather than requiring
a scan of all a TSG’s channels.
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we assume that all MPS clients are associated with a single server in this subsection.327

4.4.1 Portability328

The version of MPS we study is supported on all of NVIDIA’s GPUs since Volta (2018),329

including their embedded “Tegra” GPUs (as of CUDA 12.5).330

4.4.2 Logical Isolation331

Without MPS, contexts are isolated from one another in their GPU addresses spaces, hardware332

scheduling decisions, and exception handling. MPS preserves isolation in only the first area.333

The MPS documentation states that MPS clients have fully isolated virtual address334

spaces [27, Sec. 1.1.2]. Our findings support this—each MPS client exclusively uses its335

own page table. This follows from the per-subcontext page tables discussed in Sec. 4.3.336

Specifically, the unique-per-MPS-client subcontext ID is passed along with commands to the337

Compute/Graphics Engine,11 and this ID is used to access and maintain per-subcontext page338

table state throughout the scheduling and execution pipeline [8]. This isolation also covers339

non-compute engines, as their page table6 is always configured to match the per-subcontext340

page table. Only the kernel-level driver can change a channel’s page table or subcontext341

ID,12 ensuring that no client may reconfigure itself to access another client’s pages.342

Other areas lack isolation, bringing us to our first pitfall:343

▶ Pitfall 1. MPS clients share a per-server limit on the number of concurrently executing344

kernels.345

The use of subcontexts does not isolate MPS clients from one another in the GPU’s346

hardware scheduling pipeline. Our prior work on this pipeline [4] found that two tasks co-347

running in a single context may conflict due to a hardware limit on the number of concurrent348

kernels.13 While an NVIDIA patent [8] suggests this limit is maintained per subcontext,349

we did not observe this, even on the most-recent Hopper- and Ada-generation GPUs. We350

tested by launching several hundred kernels, and found that the number of kernels a task can351

concurrently execute is reduced by the number of kernels concurrently executing in other352

MPS clients.353

▶ Pitfall 2. A crash in any MPS client may crash all MPS clients.354

The MPS documentation warns that MPS clients are not isolated from “fatal GPU faults”355

in other MPS clients [27, Sec. 2.2.3]. Such faults include errors such as out-of-bounds memory356

accesses in kernels. We tested and found that this lack of isolation persists on NVIDIA’s357

latest Hopper- and Ada-generation GPUs (at least for out-of-bounds memory accesses).358

NVIDIA’s drivers report exceptions on a per-subcontext basis,14 and other documentation359

hints that exceptions do not necessarily halt the entire TSG.15 We urge NVIDIA to leverage360

these capabilities to enhance MPS’s fault isolation.361

In summary, MPS preserves address space isolation, but does not fully isolate the362

scheduling pipeline nor prevent on-GPU exceptions from crashing other MPS clients. This363

partial isolation is better than libsmctrl and software partitioning, but worse than MiG.364

11 See line 2525 in manuals/ampere/ga100/dev_pbdma.ref.txt [30].
12 See line 2545 in manuals/ampere/ga100/dev_pbdma.ref.txt and line 525 in dev_ram.ref.txt [30].
13 Specifically, “task slot exhaustion” in our prior work [4].
14 See line 1115 in src/nvidia/src/kernel/gpu/mmu/arch/volta/ kern_gmmu_gv100.c [26].
15 See line 666 in manuals/ampere/ga100/dev_runlist.ref.txt
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Figure 8 Four streams, each with two one-block kernels launched in them on an otherwise-idle
NVIDIA Titan V GPU. Left is without MPS, right is with MPS defaults.

4.4.3 Transparency365

We define a transparent partitioning mechanism as one that does not require any changes366

to tasks (Sec. 2.5). This property encompasses more than no binary modification; tasks367

should not need to be modified to account for a different set of available features. While368

MPS does not require modifying task binaries, it changes the set of supported features and369

the scheduling behavior in a semi-transparency-compromising way.370

▶ Pitfall 3. MPS clients cannot launch kernels from on the GPU.371

CUDA Dynamic Parallelism (CDP) [25, Sec. 9]16 allows for one CUDA kernel to launch372

another without involving the CPU. MPS omits support for this feature [27, Sec. 2.3.2]. We373

verified that this restriction persists even on NVIDIA’s latest Ada-generation GPUs; any374

MPS client attempting to use this feature will get an error during initialization. We could375

not identify a conclusive reason why this feature is unsupported with MPS.376

▶ Pitfall 4. MPS clients support fewer concurrent CUDA streams.377

The MPS server also changes at least one scheduling-related property for its clients: the378

number of channels available to a task. Each MPS client only has access to two channels by379

default, whereas each non-MPS task has access to eight by default. An insufficient number380

of channels can result in implicit synchronization [5], so this changed default can significantly381

impact scheduling behavior, as shown in Fig. 8. Each subfigure shows how eight single-block382

kernels in four streams execute over time (x-axis) on the GPU’s SMs (y-axis). Kernel launch383

times are indicated with arrows at bottom, and the stream of each kernel is color-and-pattern384

coded. On the left, we show the system running without MPS; on the right, we show it385

running with MPS. No other work is running in this system. With MPS (right), we see that386

kernel launches are blocked due to channel exhaustion (as in [5]).387

▶ Pitfall 5. MPS clients receive fake SM IDs.388

16 CDP is also called CUDA Native Parallelism (CNP) or “GWC” [22, 26].
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In GPU kernels, the special register %smid “returns the SM identifier on which a particular389

thread is executing” [31, Sec. 10.8]. Unfortunately, we found this register returns inconsistent390

values across MPS clients. For example, each MPS client’s kernel’s blocks start on %smid391

zero, and subsequent blocks start on sequentially-increasing SM IDs—even if another client392

claimed to be executing on those SMs. This indicates that the %smid register is emulated for393

each MPS client, as suggested in an NVIDIA patent [8]. We tested and found this behavior394

on Volta-, Turing-, Ampere-, and Ada-generation GPUs. This pitfall primarily hinders GPU395

study by obfuscating the SM assignment algorithm.396

In summary, MPS affects available CUDA features, scheduling concurrency, and hardware397

behavior, making it only partially transparent.398

4.4.4 Overheads399

GPU commands, such as kernel launches, are sent to the GPU via the queue encapsulated400

within a channel. MPS clients have direct access to their channel queues, and so no overheads401

are added to the kernel-launch critical path. We verified this on Volta-, Turing-, and402

Ada-generation GPUs via the measure_launch_oh benchmark we add to gpu-microbench.403

Task startup overheads, such as the time for library loading, are affected by MPS. The404

MPS server is lazily initialized, meaning the first MPS client pays an extra startup overhead.405

As this can be avoided by using a dummy task to pull forward server initialization, we do406

not consider it a pitfall. We show other startup overheads to be negligible in Sec. 6.407

4.4.5 Partitioning Capability408

MPS only supports a static, per-task limit on what fraction of a GPU’s TPCs a task may use.409

This limit, set via an environment variable,17 is called “Execution Resource Provisioning.”410

▶ Pitfall 6. MPS partitions are not bound to specific SMs.411

No API is provided to specify a set of SMs, TPCs, or GPCs onto which an MPS client412

should be partitioned, and we find that MPS also does not select a set internally.413

The MPS documentation does not clarify how partitioning is enforced. However, we find414

that when MPS is running, a GPU register18 is set to enable “dynamic partitioning” in415

the Work Distribution Unit (WDU). The WDU is the GPU hardware unit responsible for416

dispatching blocks of pending kernels to TPCs [4]. A patent filed by NVIDIA when execution417

resource provisioning was added to MPS appears to describe this feature [8].418

In the patent, NVIDIA describes their dynamic execution resource partitioning system as419

associating each subcontext (MPS client) with a configurable number of credits. Every time420

a block of a kernel is dispatched to a TPC not previously occupied by its subcontext, the421

number of credits is decremented. Once a subcontext reaches zero credits, the WDU will422

only dispatch blocks from that subcontext to TPCs already in-use by that subcontext. When423

a TPC is vacated by all work from the subcontext, the number of credits is incremented. In424

effect, this caps the number of TPCs that any subcontext may concurrently have kernels425

executing on, but makes no guarantees about which TPCs are assigned to each subcontext.426

We find this behavior holds when partitioning with MPS. This is a problem, as GPU427

partitions mis-aligned with hardware can lead to cache, bus, TLB, and other interference [4,428

40]. We give an experimental example in the following pitfall.429

17 CUDA_MPS_ACTIVE_THREAD_PERCENTAGE
18 NV_PGRAPH_PRI_CWD_PARTITION_CTL [30]; CWD is a synonym for the WDU [4].
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Figure 9 Three tasks run with MPS’s Execution Resource Provisioning feature on an NVIDIA
Titan V GPU. Arrows indicate release times. MPS quirks leave half the TPCs idle after time t2,
despite both remaining tasks (Tasks 1 and 3) having outstanding work, and both being allowed up
to 50% of the GPU.

▶ Pitfall 7. The hardware implementation of MPS’s partitioning feature is prone to assigning430

two tasks to the same set of SMs, leaving other SMs idle.431

As MPS makes no guarantees about which TPCs are assigned to which MPS client, two432

clients with partitions of 50% may each be assigned to the same set of TPCs. We demonstrate433

this with an experimental result in Fig. 9 for a system of three tasks running as MPS clients,434

each with a 50% limit on the amount of the GPU they may use. Our tasks’ executions435

briefly overlap, meaning that there will be a transient period where the sum of the allocated436

GPU capacity is 150%, forcing tasks to share portions of the GPU. However, such sharing437

unexpectedly persists, even after the sum of allocated GPU capacity returns to at most 100%.438

This is due to a flaw in the design of MPS’s execution resource provisioning feature.439

Since we are using MPS, Pitfall 5 applies, and we cannot generate a plot that shows440

which specific TPCs each task is applied to. Instead, we plot the total number of GPU cores441

in use in Fig. 9a, and illustrate the total number of TPCs with any cores in use in Fig. 9b.442

Both plots show the same time interval for the same experiment, and the release times for443

each task are indicated with arrows. For this example, it is important to know that the444

WDU tries to spread work out to as many TPCs as possible, and assigns blocks of large445

kernels to less-occupied TPCs first [32]. This means that all TPCs can be occupied, even if446

only a fraction of a GPU’s cores are busy.447

Task 1 starts first. Task 1 is a light workload and only requires about a quarter of the448

GPU’s cores, but the WDU spreads that work across as many TPCs as possible, causing449

Task 1 to partially occupy 50% of the TPCs. Task 2 is a heavy workload, and upon joining,450

it fully occupies the 50% of the TPCs unoccupied by Task 1. At this point, t0, all TPCs451

are occupied, but not all cores. When Task 3 joins at t1 it is placed on the least-occupied452

TPCs. Since Task 2 has fully utilized its TPCs, Task 3 is placed on the partially occupied453

TPCs of Task 1. This poses a problem when Task 2 terminates at t2: Task 3 is unable to454

migrate onto the newly freed TPCs. Because both Task 1 and Task 3 have already maxed455

out their active-on-50%-of-TPCs limit, both remain stuck on the same set of TPCs. This456

leaves 50% of the GPU unused, despite pending work from two running tasks each with a457

50% GPU allocation. Ideally, after Task 2 terminated, Task 3 should have been migrated to458

the newly-freed TPCs, keeping 100% of the TPCs occupied.459

The partition settings we use, where the sum of allocated compute exceeds 100%, is460

suggested by NVIDIA as a “more optimal strategy” [27, Sec. 2.3.5]. We suggest that NVIDIA461
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remove said recommendation.462

This pitfall could be worse. The WDU will normally use an alternate assignment algorithm463

for small kernels, packing kernels unto SMs before spreading them onto idle SMs [32]. If464

this behavior persisted between kernels of different MPS clients, a system of only two MPS465

clients could be bound to to the same set of TPCs. Fortunately, after repeating a variant466

of the experiments from prior work [32], we did not find a similar behavior between MPS467

clients.19 This unexpected behavior appears triggered by the aforementioned GPU register13
468

for dynamic partitioning—zeroing this register restores the normal algorithm.469

▶ Pitfall 8. The partition size for an MPS client is static.470

The partition size is specified at context creation, and NVIDIA provides no API to change471

the partition size for an already created context.472

In summary, MPS’s partition sizes cannot be changed dynamically, its partition boundaries473

are weak, and its partitions may unexpectedly overlap. This completes our classification of474

MPS in Table 1, bringing us to the conclusion that no prior work is adequate for spatial475

partitioning GPU compute cores in an embedded, real-time system.476

5 Compute Partitioning with nvtaskset477

We build a new tool called nvtaskset that allows for transparent GPU partitioning between478

unmodified CUDA-using tasks. We do this by combining the logical isolation and transparency479

of MPS with the partitioning capability of libsmctrl.480

5.1 nvtaskset481

nvtaskset works like Linux’s taskset tool. While taskset sets the CPU cores that any482

task may use, nvtaskset sets the GPU cores that a task may use. To co-run two unmodified483

DNN tasks on the GPU with nvtaskset, one would run the shell commands:484

485
# Launch and co -run dnn -one and dnn -two with 16 TPCs each486

$ nvtaskset -t 0-15 ./dnn -one487

$ nvtaskset -t 16 -31 ./dnn -two488489

The partitions could later be resized:490

491
# Assuming dnn -one is PID 100, change its allocation to 8 TPCs492

$ nvtaskset -p -t 0-7 100493494

And tasks started without nvtaskset could later be moved to a partition:495

496
# Start dnn -three (PID 102) unpartitioned , then move it to TPCs 8-15497

$ ./dnn -three &498

[1] 102499

$ nvtaskset -p -t 8-15 102500501

Partitions can also be specified in terms of GPCs instead of TPCs (if nvdebug is loaded):502

19 To workaround Pitfall 5, we observed the change in block distribution by limiting each task to one TPC,
and chaining a large kernel after the small one that would be assigned to the same TPC without MPS.
The large kernels do not limit the utilization of each other, indicating that the preceding small kernel of
each client ran on a different TPC.
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Figure 10 Same experiment as in Fig. 9, but with libsmctrl used to partition Task 1 onto
different TPCs than Tasks 2 and 3.

503
# Start dnn -one on GPC 0 and 2504

$ nvtaskset -g 0,2 ./dnn -one505506

nvtaskset is distributed as an extension to libsmctrl, has no dependencies beyond CUDA,507

and can be built and installed via a simple make install invocation.508

5.2 Implementation of nvtaskset509

nvtaskset uses MPS to allow tasks to co-run, uses parts of libsmctrl to enforce partitioning,510

uses shared-library interception to apply to every CUDA-using task, uses shared memory511

to communicate dynamic partition updates, and uses GPU topology registers to associate512

GPCs with TPCs.513

Co-running built on MPS. nvtaskset associates all tasks launch via it with an automat-514

ically started MPS server. This allows tasks to co-run. Note that subsequently launched515

CUDA tasks will automatically connect to this MPS server, allowing them to co-run and be516

partitioned, even if not launched via nvtaskset.20 In order to mitigate Pitfall 4 from MPS,517

nvtaskset configures the number of channels for each CUDA-using task to eight.21
518

Partitioning built on libsmctrl. MPS provides no rigorous or dynamic means for parti-519

tioning compute cores, but libsmctrl [4] is able to provide both of these properties.520

libsmctrl implements partitioning by modifying the TMD for each kernel immediately521

before it is uploaded to the GPU. The TMD contains a field that specifies which TPCs the522

hardware may run the kernel on, and libsmctrl modifies this field to affect partitioning.523

Tasks dispatch kernels the same with and without MPS—by inserting launch commands524

into their channel queues. This allows libsmctrl to be used with MPS. Fig. 10 shows how525

using libsmctrl for partitioning, instead of MPS’s Execution Resource Provisioning feature,526

addresses Pitfalls 6 and 7 of MPS. Specifically, we adjusted the experiment of Fig. 9 to use527

libsmctrl, assigned Task 1 the lower 50% of TPCs, and assigned Task 2 and Task 3 the528

20 To force a task to run independently of MPS, set the CUDA_MPS_PIPE_DIRECTORY environment variable
for that task to /dev/null.

21 MPS clients mirror the behavior of non-MPS-tasks once the number of channels per task is con-
figured to its non-MPS default (8 channels). We do this by setting the environment variable
CUDA_DEVICE_MAX_CONNECTIONS to 8 before launching an MPS client.
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upper 50%. The result is that Task 3 completes a quarter-second faster, since it does not get529

stuck on the same TPCs as Task 1.530

Unmodified task support. Unfortunately, libsmctrl requires minor task modification531

and recompilation to use, compromising its transparency. We address this limitation in532

nvtaskset. libsmctrl affects partitioning through interactions with the CUDA library;533

tasks only need a single API call to enable a partition. nvtaskset eliminates the need for534

modification by effectively making the loader perform this API call.535

Specifically, we make nvtaskset fully transparent to a task by tricking the loader into536

loading the libsmctrl library before loading CUDA. (We do this by naming the compiled537

form of our library libcuda.so.1, and then linking our library against the real libcuda.so.538

libcuda.so.1 is always dynamically loaded, even in staticly linked binaries, so our library is539

always loaded. Our library does not intercept CUDA library functions; we rely on the recursive540

search behavior of the loader to resolve all the CUDA symbols to the real libcuda.so.)541

Once leaded, our library uses a load-time constructor function to load CUDA, set up the542

task for partitioning changes via nvtaskset, and register the TMD interception callback543

with CUDA to enable partitioning. The loader than resumes as normal, and whenever the544

task executes a kernel launch, our pre-registered callback will be triggered inside CUDA and545

the TPC mask will be applied—no task modification required.546

Dynamically changeable partitions. nvtaskset supports dynamic partition changes by547

exposing a shared-memory region from each CUDA-using task that contains the current548

partition setting. Changes to this setting (e.g., via nvtaskset -p) are automatically detected549

and applied to subsequent kernel launches by our callback, avoiding Pitfall 8 of MPS.550

Specifying partitions by GPC. nvtaskset supports specifying partitions as a set of GPCs,551

and internally translates that into a set of TPCs by correcting and utilizing libsmctrl’s API552

for obtaining GPC-to-TPC mappings. libsmctrl assumed that SM IDs are assigned linearly553

to on-chip GPCs, such that the first n SM IDs would be in GPC 0, the next n in GPC 1,554

and so on. We uncover that SM ID to GPC mappings are arbitrary, and configured by the555

NVIDIA driver in a striping-like configuration by default. Knowing these mappings is critical556

to align partitions on GPC boundaries, and so we fixed the API for determining SM-to-GPC557

mappings in libsmctrl and used this in nvtaskset. We repeated the “Partitioning Strategy”558

experiments from the libsmctrl paper [4] on nvtaskset, but found no significant differences.559

We recommend partitioning on GPC boundaries when possible, as NVIDIA’s Thread560

Block Groups feature will only work for a task when it has access to at least one full GPC.561

5.3 Limitations of nvtaskset562

nvtaskset has several limitations inherited from MPS and libsmctrl. nvtaskset:563

Is only compatible with CUDA-using tasks.564

Does not support tasks that use multiple GPUs.565

Cannot affect partition changes on already-launched kernels.566

Is still subject to Pitfalls 1–3 of MPS.567

Only supports up to 15 co-running tasks.22
568

22 TSGs are limited to a maximum of 128 channels [30], so an MPS server can only service 15 clients of 8
channels each (after subtracting 8 MPS-server-internal channels). We verified this 15-client limit on
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Figure 11 Overheads of each partitioning mechanism.

nvtaskset is also subject to Pitfall 5 by default. While the %smid register can be restored569

to its consistent, non-MPS behavior by toggling off the WDU’s dynamic partitioning register,570

we chose not to do this. To better support tasks which ignore the CUDA programming model571

and attempt to execute work on self-selected SMs (such as persistent threads [43, 13]), we572

can “hide” the existence of unallocated SMs with the WDU’s dynamic partitioning capability.573

To do this, leave on fake SM IDs, and set MPS’s partition limit to match the number of574

SMs allocated by nvtaskset. This can ensure that tasks only see allocated SMs, with575

seemingly-contiguous SM IDs.576

However, nvtaskset is portable to any recent discrete NVIDIA GPU, does not require task577

modifications, preserves address space isolation, and is available as open-source software.23
578

6 Evaluation579

We evaluate nvtaskset against MiG, MPS, and (where applicable) against no partitioning.580

We compare overhead impact, strength of partition enforcement, and granularity of partition-581

ing. Our other target properties—portability, logical isolation, transparency, and dynamic582

reconfigurability—are largely binary properties, and have already been discussed.583

Experiments in this section were run on an NVIDIA A100 40GB GPU running CUDA584

12.4 on a 6-core, Linux 5.4 machine with the NVIDIA 550.78 GPU driver. At time of writing,585

the A100 is the only GPU that supports all of MiG, MPS, and nvtaskset. We use the586

SE-packed partitioning strategy [4, 33] to assign TPCs to nvtaskset partitions. As MiG587

cannot perform a 50/50 split of the A100, we use a 57/43 split for all mechanisms.24
588

6.1 Evaluating Partitioning Overheads589

We measure startup overhead and launch overheads for all mechanisms via benchmarks run590

in the 57% partition. Startup overhead is the time from exec() to first kernel running on the591

GPU of a minimal program, and launch overhead is the time from cuLaunchKernel() to the592

both Volta- and Ada-generation GPUs.
23 Available at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/libsmctrl.git and within our artifact.
24 MiG can only partition on GPC boundaries, and there are seven GPCs in the A100, meaning that a

57/43 split is as close as MiG can get to 50/50.

http://rtsrv.cs.unc.edu/cgit/cgit.cgi/libsmctrl.git
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kernel running on the GPU. We added these benchmarks to the gpu-microbench suite [5],25
593

and ran each experiment once to prime caches before gathering the data displayed in Fig. 11.594

▶ Observation 1. No partitioning mechanism adds startup or launch overheads.595

As shown in Fig. 11a and Fig. 11b, no partitioning mechanism worsens observed worst- or596

average-case startup or launch times.26
597

▶ Observation 2. Only MiG reduces launch overheads.598

Uniquely, MiG statically binds a hardware scheduling pipeline to each partition’s TPCs [9]599

such that only a subset of TPCs have to be set up, and considered as part of a kernel launch.600

We suspect this is what lowers launch and startup overheads with MiG.601

▶ Observation 3. MPS and nvtaskset have the lowest startup overheads.602

With MPS, newly launched tasks (MPS clients) only initialize channels and subcontexts,603

with the MPS server providing the parent context and TSG. This appears to significantly604

reduce startup overheads for MPS and the MPS-based nvtaskset, more than compensating605

for the added client-server communication cost of MPS.606

6.2 Evaluating Partition Enforcement607

To evaluate how strongly partitions are enforced, we measured the execution time of a 6144 ×608

6144 matrix multiply (yielding 36×210 blocks of 1024 threads) (“MM6144”) in a 57% partition609

while interfering tasks executed on the remainder of the GPU. We used the mandelbrot and610

random_walk tasks from the cuda_scheduling_examiner toolkit as compute- and memory-611

heavy interfering tasks respectively. Interfering tasks executed continuously, out of sync with612

each other and the matrix multiply. We carefully configured this experiment to sidestep the613

pitfalls of MPS discussed in Sec. 4.4, focusing exclusively on how well a partition is enforced614

in an otherwise-ideal scenario. Good partition enforcement means that the execution time615

distribution of our MM6144 task does not shift in the presence of interfering tasks.616

The results against memory- and compute-heavy interference are shown in Fig. 12a and617

Fig. 12b respectively. Each plot includes a baseline “Scaled” time for comparison—this is not618

a measured value, but is a scaled-up value derived from the execution time of the benchmark619

without any partitioning or interference. For example, if MM6144 took 244 ms when run620

alone on the GPU, the “Scaled” value for a 57% partition would be 144/0.57 = 253 ms. This621

value is the minimum execution time possible for the MM6144 task in a 57% partition before622

accounting for sympathetic caching effects.623

We specifically choose this matrix multiply task as it was most sensitive to interference624

among several other synthetic tasks we tested, and it could be more-precisely timed than625

a full neural network. Since we use the same partitioning mechanism as libsmctrl, the626

enforcement results previously shown for real tasks [4] continue to apply.627

▶ Observation 4. MPS’s partitioning mechanism has strictly worse predictability and effi-628

ciency, even when used correctly.629

25 Available at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/gpu-microbench.git and within our artifact.
26 Fig. 11b omits 100th percentile (max) times, as use of Linux’s isolcpus, sched_yield() and nohz=full

options were insufficient to eliminate all noise, potentially due to SMIs [21] or interrupts.
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Figure 12 Partition enforcement vs. a memory-heavy or compute-heavy competitor. Specifically,
0, 25, 50, 75, and 100th percentile time to execute many large matrix multiplies in a 57% partition
for each partitioning mechanism while competing tasks run in the remaining 43% partition (1,000
samples each).

When competing work is memory-bound, as in Fig. 12a, MPS does nothing to prevent630

memory contention, only limiting the compute available for MM6144. This results in average631

(line in box) and worst-case (top of whisker) execution times for our MM6144 task only632

slightly better than with no partitioning at all.633

▶ Observation 5. nvtaskset can provide partition enforcement approaching MIG without634

requiring hardware modifications.635

For memory-bound competing work (Fig. 12a), MiG beats nvtaskset, likely because MiG636

also partitions DRAM. Interestingly, even though nvtaskset includes no explicit memory637

partitioning, its implicit partitioning of the L0, L1, and TLB caches by aligning partitions to638

GPCs appears to be enough to beat MPS and approach MiG’s performance.639

Surprisingly, for compute-bound competing work (Fig. 12b), nvtaskset beats MiG (and640

every other approach) on average- and worst-case execution times—without the hardware641

modifications of MiG. Upon further investigation, we found that MiG compromises compute642

speed to serve other design goals. This unexpected behavior is not documented, and causes643

MiG to fail in other ways, as we will explore under Obs. 7.644

In all, nvtaskset enforces partitioning much better than MPS, and even better than645

MiG in some cases—all without requiring task, driver, or hardware modification.646

6.3 Evaluating Partition Granularity647

To evaluate partitioning granularity, we recorded the total execution time of a 8192 × 8192648

matrix multiply (yielding 64 × 210 blocks of 1024 threads) (“MM8192”) at every possible649

partition size for each partitioning method and plot the results as points in Fig. 13. The lines650

in Fig. 13 represent the closest available configuration which allocates at most the specified651

number of TPCs. For example, there is no MiG configuration for 10 TPCs, so we plot time652

for the closest available allocation of no more than 10 TPCs—7 TPCs.653

▶ Observation 6. nvtaskset is the most granular partitioning mechanism.654
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Figure 13 Partitioning granularity comparison. Specifically, mean time to execute a matrix
multiply at each partition size, for each partitioning mechanism (10 samples).

Both MPS and nvtaskset can specify partition sizes down to the per-TPC level, visible655

as the different MM8196 execution times for each setting in Fig. 13. However, nvtaskset656

can assign specific TPCs to a partition, in contrast to MPS’s generic percentage value. For657

this 54-TPC GPU, that means nvtaskset supports a total of 254 different partition settings658

per-task, MPS supports 54 per-task, and MiG only supports 5 per-task.659

▶ Observation 7. MiG cannot access 9% of the A100 GPU cores (5 TPCs).660

Visible in Fig. 13, the largest-available MiG partition contains only 49 TPCs, whereas MPS661

or nvtaskset are able to access up to 54 TPCs. Upon further investigation, we find that no662

configuration of MiG partitions on the A100 can access more than 49 TPCs total. Every663

partition size is an even multiple of 7 TPCs, and 7 does not divide 54 evenly, wasting the664

remainder—5 TPCs. This surprising issue is not documented, and means that enabling MiG665

immediately and inherently disables 9% of the A100 GPU. Concerningly, we found that666

this issue is even worse on NVIDIA’s newer GPUs. On the H100 GPU (SXM-80GB version667

tested), we found a loss of 6–15% (depending on the MiG partition size chosen).27
668

7 Conclusion669

In this work, we developed a system-level spatial partitioning mechanism for NVIDIA GPU670

compute cores, nvtaskset. Our mechanism allows for GPU-using tasks to run both efficiently671

and time-predictably by running concurrently on disjoint sets of GPU cores.672

We demonstrated that our mechanism is portable, transparent, and low-overhead, and has673

the ability to provide granular, dynamic, logically-isolated, and hardware-enforced partitions.674

As part of this work, we exposed critical pitfalls of NVIDIA’s MPS-based partitioning675

mechanism, and revealed previously-undocumented capacity loss issues inherent to NVIDIA676

MiG. In future work, we aim to extend nvtaskset to support multiple GPUs and non-CUDA677

workloads, and to build GPU schedulers on nvtaskset that efficiently and predictably678

schedule tasks across both time and space.679

27 We suspect the capacity loss stems from a decision to make unit-size MiG slices appear identical, despite
differences in the underlying GPCs. Due to floorsweeping, some GPCs will have more working TPCs
than others—those TPCs must be disabled to emulate identical GPCs when using MiG.
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