
Hardware Compute
Partitioning on NVIDIA GPUs
for Composable Systems
Joshua Bakita and James H. Anderson

Department of Computer Science
University of North Carolina, Chapel Hill

1

How can we do
more, with less?

2

3

➔ Concurrency, with
hardware partitioning

➔ Concurrency, with
hardware partitioning

How can we do more, with less, on the CPU?

Processor Cores
Memory Caches and

Interconnects
Main Memory (DRAM)

L2

L2

L2

L2

L3

L1D CacheL1I Cache

➔ Concurrency, with
hardware partitioning

Core 3

DRAM 0

DRAM 1

CPU

Core 2

Core 1

Core 0

GPU

Common thread: Concurrency, with
interference managed via hardware

partitioning

4

SM #0

SM #9

SM #8

SM #1 SM #2 SM #3

SM #7 SM #6 SM #5

SM #4Crossbar Bus

GPU

T
o

 G
P

U
 D

R
A

M
s

T
o

 G
P

U
 D

R
A

M
s

L2 Slices

L2 Slices

How can we do more, with less, on the GPU?

➔ Concurrency, with
hardware partitioning
[15, 45]

Memory Caches and
Interconnects

Compute Units

➔ Concurrency, with
hardware partitioning?

Why concurrency on-GPU? Some assumptions worth revisiting…

5

Assumption: One task can saturate a GPU

Utilization on RTX 2080 Ti (4352 CUDA cores) running YOLOv2 via Aleksei Bochkovskii’s Darknet.

Reality: A single task rarely
needs all the GPU cores

40% avg.
utilization

6

SM #0

SM #9

SM #8

SM #1 SM #2 SM #3

SM #7 SM #6 SM #5

SM #4Crossbar Bus

GPU

T
o

 G
P

U
 D

R
A

M
s

T
o

 G
P

U
 D

R
A

M
s

L2 Slices

L2 Slices

Assumption: Interference worse than on-CPU

Why concurrency on-GPU? Some assumptions worth revisiting…

7

SM #0

SM #9

SM #8

SM #1 SM #2 SM #3

SM #7 SM #6 SM #5

SM #4Crossbar Bus

GPU

T
o

 G
P

U
 D

R
A

M
s

T
o

 G
P

U
 D

R
A

M
s

L2 Slices

L2 Slices

Reality:
GPUs are highly

capable of
interference-free

concurrency

Assumption: Interference worse than on-CPU

Why concurrency on-GPU? Some assumptions worth revisiting…

Prior Work

8

Task 1 Task 2

Prior Work GPU Terms & Our Timeline Figures 9

Each compute unit

Kernel launch times

A kernel is broken into
blocks, and then the

blocks are scheduled
concurrently on the

GPU

A timeline of what
kernels (K_), execute
which blocks (: __)

on which GPU
compute unit (SM)

Prior Work

10

Co-Run Co-Run with Partitioning

Task 1 Task 2

Run Serially

Utilization: 52% Utilization: 78% Utilization: 78%

Our tool, libsmctrl,
enables co-running

with hardware-
enforced partitions

Best Response
Times

Key Insight:
Hardware-enforced
partitioning enables
predictable capacity

reclaimation

But this has problems…

Outstanding
Problems with All

These issues apply to

all prior academic work

on GPU partitioning

11

Prior Work

Does not work for unmodified tasks

Compromises address-space isolation

This leaves few

solutions for

componentized

systems

NVIDIA’s solutions, the
Multi-Process Service

(MPS) and Multi-
instance GPU (MiG), do

little better

Key Goals

Spatial partitioning for GPU compute units in composable systems that is:

Efficient

12

Easily ApplicablePredictable

By combining libsmctrl with hardware capabilities we reveal, we achieve all
three for any NVIDIA GPU from the past 7 years.

Predictable GPU Compute
Partitioning

13

Goal 1 of 3

If not libsmctrl, then what?

14

Predictable Partitioning

NVIDIA MPS
Can co-run unmodified tasks

with “Execution Resource
Provisioning.” Any GPU.

Implementation
undocumented.

NVIDIA MiG
Can co-run unmodified tasks

in partitions. Datacenter-only.
Requires hardware

augmentations.

Partitioning in MPS

● Called “Execution

Resource

Provisioning”

● Supports a per-task

limit on proportion of

resources.

● Does not guarantee

mutual exclusion.

15

Predictable Partitioning

Two tasks, each with a 50%
partition, co-run on the
same 50% of the GPU,

leaving half idle

Three tasks run, each allowed up to 50% of the GPU.

Our Solution

16

Predictable Partitioning

1. Disable MPS’s partitioning system.

2. Verify that MPS does not modify the kernel-dispatch critical path.

3. Use the same mechanism from libsmctrl to intercept kernels during

dispatch and configure partitions of TPCs.

4. This works solely via interactions with the CUDA library, and can be done

without task modification and while allowing MPS to co-run tasks.

Key Insight:
NVIDIA MPS, combined

with libsmctrl-like
partitioning, can

predictably co-run tasks

Efficient GPU Compute
Partitioning

17

Goal 2 of 3

Hardware-Aware
Partitioning

18

Efficient Partitioning

➔ Each set of five SMs
is grouped into a
GPC, and shares a
cache with other
SMs in its GPC

SM SM SM SM SM

SM SM SM SM SM

Last-Level Cache

Image from NVIDIA

We want to partition on
GPC boundaries to avoid

slowdowns due to
interference

GPC

GPC

Aligning on GPC
Boundaries

19

Efficient Partitioning

➔ SM IDs are
programmed by the
driver, and effectively
random

➔ We build a tool,
nvdebug, to extract
them

SM SM SM SM SM

SM SM SM SM SM

Last-Level Cache

GPC

GPC

1 2 3 4 5

6 7 8 9 10

2 4 5 7 8

1 3 6 9

XOurs in the first academic
work that takes this into

account

➔ Only two prior works can
enforce partitions in hardware,
both from NVIDIA

20

Efficient Partitioning

Comparison to Prior Work

Lower is
better

Key Insight:
Awareness to hardware

topology allows for
greater efficiency

Easily Applicable GPU Compute
Partitioning

21

Goal 3 of 3

Works in Many
Situations

22

Easily Applicable Part.

Works for unmodified tasks

Overhead of <0.5 μs

Supports any CUDA, Linux, or NVIDIA driver
on x86_64 or aarch64

Works for any NVIDIA GPU since 2018
(sm_70+)

23

Easy to Use, taskset-like Tool

On Linux:

1. Download libsmctrl, and install CUDA + nvdebug.ko*

2. make install

3. ./nvtaskset --gpc-list 0-2 ./my-cuda-task

4. ./nvtaskset --gpc-list 3-5 ./my-other-cuda-task

5. Done! Both tasks will run concurrently on mutually-exclusive sets of GPCs.

6. Dynamic change for PID 1205: ./nvtaskset --gpc-list 0-1 1205

No kernel or driver configuration, or superuser permissions needed to use.

Easily Applicable Partitioning

Key insight:
GPU scheduling

hardware
changes little
generation-to-

generation

*nvdebug.ko is currently required for --gpu-list, but not for --tpc-list

Conclusions
We build spatial partitioning for GPU compute units in composable systems

that is:

Efficient

24

Predictable Easily Applicable

Can we co-run tasks with
predictability?

Can we make it easy to
use?

Does leveraging hardware
topology help?

Yes, allowing us to
beat even NVIDIA’s

solutions

Yes, by co-running
via MPS and

partitioning via
libsmctrl

Yes, on almost any
NVIDIA GPU, without

task modification

What you have to read the paper for…

25

NVIDIA MPS:
● How NVIDIA MPS works.
● Details on hardware implementation of

MPS’s Execution Resource Provisioning
feature.

● Eight detailed pitfalls of MPS and suggested
mitigations.

● Easy hardware-improvement opportunities
for NVIDIA.

Evaluation:
● Full details on our system setup and

configuration.
● Task startup overheads.
● Kernel launch overheads.
● Partitioning granularity comparison.
● Efficiency problems of NVIDIA MiG.

Regarding nvtaskset:
● How it applies to all tasks without

modification.
● Support for partitioning tasks not originally

started via nvtaskset.
● Full list of limitations.
● Usage examples.

+ More details and background on everything
covered in this presentation

Thank you!
Questions?

Future work:

➔ Support multi-GPU
systems

➔ Provide partitioning
strategies and
response-time analysis

➔ Better Hopper support

Contact:

Email: jbakita@cs.unc.edu

X: @JJBakita

Web: https://jbakita.me

Old Well, University of North Carolina at Chapel Hill, Winter 2017 26

Backup Slides

27

28

Context

Perceive Plan Control

Autonomous Driving

Personal Computing

Game + LLM

Cloud

Inference for Multiple Users

Processor Company Sales

29

$39
Billion

NVIDIA

(Revenue numbers are GAAP figures from latest fiscal quarter as of Mar 2025, and include all segments.)

$22
Billion
AMD + Intel
Combined

$31
Billion

ARM + NXP + Broadcom
+ Qualcomm Combined

Why NVIDIA GPUs?
Example:

Every self-driving car
licensed in California is
based on NVIDIA GPUs

	Slide 1: Hardware Compute Partitioning on NVIDIA GPUs for Composable Systems
	Slide 2: How can we do more, with less?
	Slide 3: How can we do more, with less, on the CPU?
	Slide 4: How can we do more, with less, on the GPU?
	Slide 5: Why concurrency on-GPU? Some assumptions worth revisiting…
	Slide 6: Why concurrency on-GPU? Some assumptions worth revisiting…
	Slide 7: Why concurrency on-GPU? Some assumptions worth revisiting…
	Slide 8: Prior Work
	Slide 9: Prior Work GPU Terms & Our Timeline Figures
	Slide 10: Prior Work
	Slide 11: Outstanding Problems with All
	Slide 12: Key Goals
	Slide 13: Predictable GPU Compute Partitioning
	Slide 14: If not libsmctrl, then what?
	Slide 15: Partitioning in MPS
	Slide 16: Our Solution
	Slide 17: Efficient GPU Compute Partitioning
	Slide 18: Hardware-Aware Partitioning
	Slide 19: Aligning on GPC Boundaries
	Slide 20: Comparison to Prior Work
	Slide 21: Easily Applicable GPU Compute Partitioning
	Slide 22: Works in Many Situations
	Slide 23: Easy to Use, taskset-like Tool
	Slide 24: Conclusions
	Slide 25: What you have to read the paper for…
	Slide 26: Thank you! Questions?
	Slide 27: Backup Slides
	Slide 28: Context
	Slide 29: Processor Company Sales

