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How can we do 
more, with less?
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➔ Concurrency, with 
hardware partitioning

➔ Concurrency, with 
hardware partitioning

How can we do more, with less, on the CPU?
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➔ Concurrency, with 
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Common thread: Concurrency, with 
interference managed via hardware 

partitioning
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How can we do more, with less, on the GPU?

➔ Concurrency, with 
hardware partitioning 
[15, 45]

Memory Caches and 
Interconnects

Compute Units

➔ Concurrency, with 
hardware partitioning?



Why concurrency on-GPU? Some assumptions worth revisiting…
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Assumption: One task can saturate a GPU

Utilization on RTX 2080 Ti (4352 CUDA cores) running YOLOv2 via Aleksei Bochkovskii’s Darknet.

Reality: A single task rarely 
needs all the GPU cores

40% avg. 
utilization
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Assumption: Interference worse than on-CPU

Why concurrency on-GPU? Some assumptions worth revisiting…
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Reality:
GPUs are highly 

capable of 
interference-free 

concurrency

Assumption: Interference worse than on-CPU

Why concurrency on-GPU? Some assumptions worth revisiting…



Prior Work
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Task 1 Task 2

Prior Work GPU Terms & Our Timeline Figures 9

Each compute unit

Kernel launch times

A kernel is broken into 
blocks, and then the 

blocks are scheduled 
concurrently on the 

GPU

A timeline of what 
kernels (K_), execute 
which blocks (: __) 

on which GPU 
compute unit (SM)



Prior Work
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Co-Run Co-Run with Partitioning

    

    

    

    

    

    

    

    

    

    

     

     

     

     

     

     

     

     

     

     

    

    

    

    

    

    

    

    

                                     

                          

                           

              

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

     

     

     

     

     

     

     

     

     

     

    

    

    

    

    

    

    

    

                          

                          

                     

              

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

     

     

     

     

     

     

     

     

     

     

    

    

    

    

    

    

    

    

                       

                          

                     

              

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

     

     

     

     

     

     

     

     

     

     

    

    

    

    

    

    

    

    

                                     

                          

                           

              

    

    

    

    

    

    

    

    

    

Task 1 Task 2

Run Serially

Utilization: 52% Utilization: 78% Utilization: 78%

Our tool, libsmctrl, 
enables co-running  

with hardware-
enforced partitions

Best Response 
Times

Key Insight:
Hardware-enforced 
partitioning enables 
predictable capacity 

reclaimation

But this has problems…



Outstanding 
Problems with All

These issues apply to 

all prior academic work 

on GPU partitioning
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Prior Work

Does not work for unmodified tasks

Compromises address-space isolation 

This leaves few 

solutions for 

componentized 

systems

NVIDIA’s solutions, the 
Multi-Process Service 

(MPS) and Multi-
instance GPU (MiG), do 

little better



Key Goals

Spatial partitioning for GPU compute units in composable systems that is:

Efficient
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Easily ApplicablePredictable

By combining libsmctrl with hardware capabilities we reveal, we achieve all 
three for any NVIDIA GPU from the past 7 years.



Predictable GPU Compute 
Partitioning
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Goal 1 of 3



If not libsmctrl, then what?
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Predictable Partitioning

NVIDIA MPS 
Can co-run unmodified tasks 

with “Execution Resource 
Provisioning.” Any GPU. 

Implementation 
undocumented.

NVIDIA MiG
Can co-run unmodified tasks 

in partitions. Datacenter-only.
Requires hardware 

augmentations.



Partitioning in MPS

● Called “Execution 

Resource 

Provisioning”

● Supports a per-task 

limit on proportion of 

resources.

● Does not guarantee 

mutual exclusion. 
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Predictable Partitioning

      

 
 
 
  
 
 
 
 
  
 

Two tasks, each with a 50% 
partition, co-run on the 
same 50% of the GPU, 

leaving half idle

Three tasks run, each allowed up to 50% of the GPU.



Our Solution
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Predictable Partitioning

1. Disable MPS’s partitioning system.

2. Verify that MPS does not modify the kernel-dispatch critical path.

3. Use the same mechanism from libsmctrl to intercept kernels during 

dispatch and configure partitions of TPCs.

4. This works solely via interactions with the CUDA library, and can be done 

without task modification and while allowing MPS to co-run tasks.

Key Insight:
NVIDIA MPS, combined 

with libsmctrl-like 
partitioning, can 

predictably co-run tasks



Efficient GPU Compute 
Partitioning
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Goal 2 of 3



Hardware-Aware 
Partitioning
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Efficient Partitioning

➔ Each set of five SMs 
is grouped into a 
GPC, and shares a 
cache with other 
SMs in its GPC

SM SM SM SM SM

SM SM SM SM SM

Last-Level Cache

Image from NVIDIA

We want to partition on 
GPC boundaries to avoid 

slowdowns due to 
interference

GPC

GPC



Aligning on GPC 
Boundaries
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Efficient Partitioning

➔ SM IDs are 
programmed by the 
driver, and effectively 
random

➔ We build a tool, 
nvdebug, to extract 
them

SM SM SM SM SM

SM SM SM SM SM

Last-Level Cache

GPC

GPC

1 2 3 4 5

6 7 8 9 10

2 4 5 7 8

1 3 6 9

XOurs in the first academic 
work that takes this into 

account



➔ Only two prior works can 
enforce partitions in hardware, 
both from NVIDIA
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Efficient Partitioning

Comparison to Prior Work

Lower is 
better

Key Insight:
Awareness to hardware 

topology allows for 
greater efficiency



Easily Applicable GPU Compute 
Partitioning
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Goal 3 of 3



Works in Many 
Situations
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Easily Applicable Part.

Works for unmodified tasks

Overhead of <0.5 μs

Supports any CUDA, Linux, or NVIDIA driver
on x86_64 or aarch64

Works for any NVIDIA GPU since 2018
(sm_70+)
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Easy to Use, taskset-like Tool

On Linux:

1. Download libsmctrl, and install CUDA + nvdebug.ko*

2. make install

3. ./nvtaskset --gpc-list 0-2 ./my-cuda-task

4. ./nvtaskset --gpc-list 3-5 ./my-other-cuda-task

5. Done! Both tasks will run concurrently on mutually-exclusive sets of GPCs.

6. Dynamic change for PID 1205: ./nvtaskset --gpc-list 0-1 1205

No kernel or driver configuration, or superuser permissions needed to use.

Easily Applicable Partitioning

Key insight:
GPU scheduling 

hardware 
changes little 
generation-to-

generation

*nvdebug.ko is currently required for --gpu-list, but not for --tpc-list



Conclusions
We build spatial partitioning for GPU compute units in composable systems 

that is:

Efficient
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Predictable Easily Applicable

Can we co-run tasks with 
predictability?

Can we make it easy to 
use? 

Does leveraging hardware 
topology help?

Yes, allowing us to 
beat even NVIDIA’s 

solutions

Yes, by co-running 
via MPS and 

partitioning via 
libsmctrl

Yes, on almost any 
NVIDIA GPU, without 

task modification



What you have to read the paper for…

25

NVIDIA MPS:
● How NVIDIA MPS works.
● Details on hardware implementation of 

MPS’s Execution Resource Provisioning 
feature.

● Eight detailed pitfalls of MPS and suggested 
mitigations.

● Easy hardware-improvement opportunities 
for NVIDIA.

Evaluation:
● Full details on our system setup and 

configuration.
● Task startup overheads.
● Kernel launch overheads.
● Partitioning granularity comparison.
● Efficiency problems of NVIDIA MiG.

Regarding nvtaskset:
● How it applies to all tasks without 

modification.
● Support for partitioning tasks not originally 

started via nvtaskset.
● Full list of limitations.
● Usage examples.

+ More details and background on everything 
covered in this presentation



Thank you! 
Questions?

Future work:

➔ Support multi-GPU 
systems

➔ Provide partitioning 
strategies and 
response-time analysis

➔ Better Hopper support

Contact:

Email: jbakita@cs.unc.edu

X: @JJBakita

Web: https://jbakita.me

Old Well, University of North Carolina at Chapel Hill, Winter 2017 26



Backup Slides

27
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Context

Perceive Plan Control

Autonomous Driving

Personal Computing

Game + LLM

Cloud

Inference for Multiple Users



Processor Company Sales
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$39
Billion

NVIDIA

(Revenue numbers are GAAP figures from latest fiscal quarter as of Mar 2025, and include all segments.)

$22
Billion
AMD + Intel
Combined

$31
Billion

ARM + NXP + Broadcom
+ Qualcomm Combined

Why NVIDIA GPUs?
Example:

Every self-driving car 
licensed in California is 
based on NVIDIA GPUs
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