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Abstract—Fourier transforms are vital for a broad range of
signal-processing applications. Accelerating FFTs with GPUs
offers an orders-of-magnitude improvement vs. CPU-only FFT
computation. However, two problems arise when executing FFT
tasks with other GPU work. First, concurrent GPU use introduces
unpredictability in the form of lengthy response times. Second, it
is unclear how to best parameterize and schedule FFT tasks to
meet the throughput and timeliness constraints of real-time signal
processing. This work investigates how FFT and other GPU-using
tasks can concurrently access a GPU while maintaining bounded
response-time guarantees without sacrificing throughput. In our
experiments, the techniques proposed by this work result in an
up to 17% improvement in worst-case FFT response times.

Index Terms—GPU, FFT, signal processing, real-time systems

I. INTRODUCTION

Fourier analysis, often performed using Fast Fourier Trans-
form (FFT) algorithms, are indispensable in signal processing
applications. For instance, methods for spectrum sensing, the
detection of transmitters across the wireless spectrum, may
utilize FFTs to identify occupied frequencies or trends in
the signals therein. However, executing FFTs on large, high-
frequency inputs is a computationally arduous task.

GPUs are well suited to address this challenge, as they
can perform the matrix-like operations of FFT algorithms in
parallel, greatly improving data throughput. NVIDIA GPUs
are standard in industry where cuFFT [1], NVIDIA’s FFT
library, is used to achieve orders-of-magnitude speedup in
signal-processing algorithms (compared to CPU-only execu-
tion) [2]–[9]. Furthermore, GPUs can be shared among tasks,
whether they be signal-processing tasks or a combination of
distinct workloads.

Unfortunately, concurrently executing multiple tasks on the
same GPU in a naı̈ve manner can cause highly unpredictable
response times [10]–[13]. Conversely, while task-exclusive
GPU access can mitigate such unpredictability, GPU through-
put is severely reduced for systems with tasks that cannot fully
utilize the GPU’s computational capacity [14]. Furthermore,
some signal-processing systems adhere to precise, real-world
timing constraints. Such constraints may be inherent to the
design and operation of their algorithms [15]–[17] or imposed
by components relying on their output for real-time correct-
ness [18], [19]. Without predictable response times for GPU
work, signal-processing tasks cannot be guaranteed to meet
such deadlines, thus weakening the system’s reliability.
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In this work, we derive predictable response times for
cuFFT in a system with many GPU-using tasks. We build
upon existing hardware partitioning techniques for NVIDIA
GPUs and explore how such techniques may be best imple-
mented and analyzed for FFT tasks. Our approach successfully
mitigates interference between concurrent GPU tasks and
provides provable response-time guarantees, thus facilitating
verifiable real-time operation. We also show how methodical
selection of GPU partitioning and scheduling parameters can
improve worst-case response times. The proposed approach is
generalizable to any GPU work, including other GPU-based
FFT implementations, of which many exist [20]–[24]. Our
investigation of cuFFT serves as a representative example for
how GPU-driven systems can provide real-time correctness
without compromising throughput.

Related work. There has been extensive work on improving
FFT performance on GPUs, where performance gains are
typically achieved by optimizations to FFT algorithms that
best leverage the parallel architecture and computational cores
found in GPUs [9], [20]–[25]. We instead aim to improve
predictability irrespective of the underlying design and imple-
mentation of FFT algorithms. Crucially, existing work does
not, to our knowledge, consider the existence of other GPU-
using workloads in the system. Thus, existing approaches
cannot guarantee the timely completion of FFT tasks when
shared GPUs incur unpredictable delays in computation.

Prior work has provided insight into GPU hardware provi-
sioning and scheduling [10]–[13], [26] and developed mecha-
nisms to predictably partition and share NVIDIA GPUs [14],
[26]–[28]. These works focus primarily on predictability, leav-
ing implementation details on average-case performance or
potential pitfalls under-explored. Thus, it is unclear how best to
apply such techniques to GPU tasks such as cuFFT. Our work
addresses these shortcomings through an implementation-
based approach examining the concurrent scheduling of cuFFT
tasks. Leveraging recent advancements in spatial partition-
ing [26] and real-time locking protocols for GPUs [14], we
demonstrate how predictable, concurrent execution can be
achieved for FFT tasks with minimal overheads.

Contributions. Our contribution is threefold:

(i) We demonstrate the scheduling of FFTs on an NVIDIA
GPU to enable provable response-time bounds.

(ii) We propose a general GPU-partitioning approach backed
by measurements on cuFFT kernels.

(iii) We evaluate our approach via experiments and demon-
strate reduced response times and improved throughput.
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Organization. After covering the necessary background infor-
mation in Sec. II, we outline in Sec. III how FFT tasks on the
GPU can be modified and analyzed to allow for predictable,
concurrent GPU access. In Sec. IV we apply our method
to FFT tasks with representative inputs and experimentally
evaluate our approach. Sec. V concludes.

II. PRELIMINARIES

In this section, we provide the background necessary for
our GPU-partitioning approach for FFT tasks. We state our
analysis objectives, summarize key prior work, and specify
our system model.

A. Analysis Objectives

Spectrum-sensing motivations. This work is motivated by
the timeliness requirements of spectrum-sensing systems. Such
systems can require signal samples to be collected and pro-
cessed at strict time intervals to support dynamic signal de-
tection and spectrum-access decisions [15]–[17]. For instance,
Shi et al. [15] proposed the use of a precise schedule for
when and how long to access each frequency channel in
order to maximize detection likelihood. However, the work
acknowledges that its implementation adheres to its schedule
on a “best-effort” basis and is unable to guarantee sensing
deadlines are reliably met. By enabling predictable execution
times for FFTs on GPUs, we seek to alleviate the challenge
of designing and analyzing a spectrum-sensing system to meet
stringent real-time requirements.

Real-time correctness. A system is said to be real-time
correct if each task in the system can meet their timing
requirements, usually specified in the form of deadlines by
which task invocations must finish. Even for applications
without hard deadlines, it is often desirable for the system
to be soft real-time correct, i.e., ensured bounded latency or
only subject to a limited pattern of deadline misses [29], [30].
An application amenable to real-time correctness guarantees
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Fig. 1. High-level process of determining real-time correctness of a system.
This paper’s focus is shown in the dotted box.

may also be allowed to share a hardware platform with other,
more safety-critical applications [31].

We illustrate the process of designing and analyzing a
system for real-time correctness in Fig. 1. Typically, a sys-
tem’s real-time correctness is determined by employing a
schedulability test, which determines whether all tasks of the
system under analysis are guaranteed to meet all of their
deadlines under a given scheduling algorithm. Schedulability
tests require task properties such as their worst-case execution
times (WCETs) to be known and upper-bounded. In order to
derive reliable WCET values of a GPU-using task, one must
not only ensure bounded execution time on the GPU, but
also bounded blocking time, time spent waiting for access to
hardware accelerators such as GPUs. Hence, our paper focuses
on enabling bounded execution and blocking times for FFT
tasks on the GPU, thereby enabling verification of real-time
correctness in a signal-processing system.

B. Partitioning and Sharing of NVIDIA GPUs

Our proposed method leverages prior work on predictable
hardware partitioning and sharing of NVIDIA GPUs. Re-
cent work by Bakita and Anderson on libsmctrl [26]
enables NVIDIA GPUs to be spatially partitioned through the
allocation of individual streaming multiprocessors (SMs), a
basic unit of computing hardware in NVIDIA GPUs, shown
in Fig. 2. To obtain provable upper bounds for blocking
and execution times for GPU accesses, we employ a real-
time locking protocol, as relying on the default OS scheduler
typically provides no response-time guarantees. In particular,
our method adapts the recently introduced Streaming Mul-
tiprocessor Locking Protocol (SMLP) [14], which arbitrates
exclusive access to SMs, thereby reducing the interference
incurred by work co-scheduled on GPUs. The SMLP improves
upon coarser-grained locking methods to arbitrate GPU access,
providing lower analytical and observed response-time bounds
while significantly improving GPU utilization and throughput.
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Fig. 2. Simplified NVIDIA GP106 die illustrating how the GPU’s computa-
tional units are organized into streaming multiprocessors (SMs).

C. System Model

We now present our system model, focusing on the GPU
and work executing on it. We do not focus on the CPU, but
discuss interactions with the CPU in Sec III-A.
GPU-task model. We consider a set of N GPU kernels, i.e.,
GPU programs, executing on a single discrete GPU. We denote
the ith GPU kernel by τi. An invocation of the ith GPU kernel
by the CPU is referred to as a job of τi.

155



We assume that the same GPU kernel does not execute
multiple jobs simultaneously. The GPU is composed of H total
SMs, across which jobs execute. In order for GPU access to
be arbitrated by the SMLP, we require each job to request
exclusive access to a subset of the GPU’s SMs before it is
allowed to execute.

The SMLP can allocate each job a variable number of SMs,
provided that no two concurrent jobs’ allocations overlap. The
set of SM-allocation sizes permitted for each τi, denoted by
Si, is specified prior to execution. We require ∀i, 1 ∈ Si such
that a job can begin execution as soon as any number of SMs
become available. We define Li,k as the WCET of kernel τi
when allocated exactly k SMs. We use Lmax

i to denote the
largest WCET of τi among all permitted values of k such that

Lmax
i = max

k∈Si

Li,k.

We describe later in Sec. III how GPU kernels’ Li,k values
may be measured, the SMLP configured correspondingly with
ideal Si, and, based on analysis from [14], how to upper bound
the time each τi spends from request to completion.

cuFFT. In this paper, we use cuFFT [1], a closed-source FFT
library provided by NVIDIA, for all FFT computation. An FFT
task can be specified using cuFFT, which is then executed
by SMs as a GPU kernel. We have chosen cuFFT as our
exemplar FFT implementation for two reasons. First, cuFFT
is widely accessible. It does not require developers to be
intimately familiar with GPU programming APIs and comes
bundled with NVIDIA’s developer toolkit. Second, there exists
extensive work on GPU-accelerated signal processing relying
on cuFFT [2]–[9]. Thus, our work has immediate applicability
to existing work on GPU-accelerated signal processing.

III. REAL-TIME FFT TASKS

In this section, we show how cuFFT and other GPU-using
tasks can be modified to use the SMLP for predictable GPU
access. We adapt and summarize analysis for the SMLP from
[14] to provide blocking-time and response-time guarantees.
Then, based on extensive profiling of cuFFT kernel response
times, we describe performance trends across different SM-
allocation sizes. Finally, informed by our measurements and
observations, we show how to select permitted SM-allocation
sizes for GPU kernels using the SMLP such that blocking and
response times are optimized.

A. Modifications for GPU Partitioning

The modifications to GPU-using tasks needed to support
concurrency and to be compatible with the SMLP are straight-
forward, requiring no changes to the GPU kernel itself.

Launching GPU kernels. On NVIDIA GPUs, GPU work
is enqueued on CUDA streams, where work in one stream
can run in parallel with work enqueued on other streams.
As such, we require each job to launch its GPU ker-
nels, whether they be cuFFT or user-defined kernels, with
a CUDA stream unique to that job. Only asynchronous
CUDA functions should be used to allow multiple streams

Algorithm 1 cuFFT kernel launch procedure

1 void cudakernel(stream, h_in, h_out) {
2 cudaMemcpyAsync(d_in, h_in, ..., stream);
3 cufftPlan(plan, ...);
4 cufftSetStream(plan, stream);
5 cudaStreamSynchronize(stream);
6
7 mask = smlp_lock(allowed_sizes);
8 libsmctrl_set_stream_mask(stream, mask);
9 cufftExec(plan, d_in, d_out);

10 cudaStreamSynchronize(stream);
11 smlp_unlock(mask);
12
13 cudaMemcpyAsync(h_out, d_out, ..., stream);
14 cudaStreamSynchronize(stream);
15 }

to be launched in parallel. For instance, one should use
cudaMemcpyAsync instead of cudaMemcpy, as the former
may be specified with a CUDA stream and is performed
asynchronously with any other asynchronous operations. Ad-
ditionally, cudaStreamSynchronize should be used to
ensure all prerequisite asynchronous operations are complete
before using the GPU’s compute capacity.

Applying SM partitioning. Lines 7–11 of Alg. 1, highlighted
in red, demonstrate how one would invoke the SMLP and
libsmctrl for a cuFFT kernel. Note that all GPU kernels
in the system must request GPU access through the SMLP
by performing these steps. While Alg. 1 uses cuFFT, the
procedure can be generalized to any GPU kernel by replacing
cufftExec (line 9) with the desired kernel to be executed.
GPU requests are necessary as interference is mitigated by
arbitrating access to SMs.

When a job of τi is ready to execute on the GPU, it
issues a lock request to the SMLP by calling smlp_lock
(line 7). If no SMs are idle at that moment, the SMLP
suspends the requesting job until other GPU work finishes
and at least one SM becomes available. For accessibility to the
reader, we lightly modify the SMLP to enqueue and satisfy
requests in FIFO order instead of taking per-job priorities into
consideration. We describe how the blocking-time bound for
our adapted SMLP is derived and incorporated into the WCET
of each GPU-using task in Sec. III-D.

As soon as any SMs become idle, the SMLP allocates
some or all of the available SMs to a requesting job and
smlp_lock returns a corresponding SM mask. The mask is
then applied to the requesting job’s stream using libsmctrl
(line 8), ensuring spatially partitioned GPU access. The exact
number of SMs allocated to each request is dependent on the
number of SMs available at the moment the request is satisfied,
as well the allowed SM-allocation sizes specified for each task
in Si (allowed_sizes on line 7). A satisfied request is
assigned the largest SM-allocation size permitted by Si that
does not exceed the number of available SMs.

Additionally, partitioning of SMs only benefits the compu-
tation portion of a GPU kernel. As such, acquisition of the
SMLP lock and application of the corresponding SM mask
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should be performed immediately before actual execution
begins. For instance, lines 2–5 of Alg. 1 perform functions
such as copying memory to the GPU and configuring the
kernel to be launched. Because these operations can have
significant latency but do not perform computation on the
GPU, calling smlp_lock too early would result in idle SMs.
Similarly, smlp_unlock should be performed immediately
once kernel computation finishes to allow other kernels to
access the now-freed SMs as soon as possible.

B. Response-Time Analysis

Before stating our proposed method for selecting permitted
SM-allocation sizes, we briefly adapt and summarize blocking-
time and response-time analysis of the SMLP from [14].

We first introduce additional notation. Let Ai,k = k · Li,k,
i.e., Ai,k denotes the worst-case cumulative time the GPU
kernel τi may consume across k SMs. Similar to Lmax

i , we
use Amax

i to denote the largest value Ai,k among all permitted
SM-allocation sizes k, such that

Amax
i = max

k∈Si

Ai,k. (1)

The following two lemmas provide blocking-time and
response-time bounds for the SMLP.1 We illustrate the worst-
case scenarios accounted for by Lem. 1 and 2 in Fig. 3.

Lemma 1. (Adapted from [14]) The duration a job of τi will
be suspended by the SMLP waiting for SMs to be allocated
to it is no longer than ∑

j ̸=i

Amax
j

H
. (2)

Proof. Let Ji denote an arbitrary job of τi. Recall that we
require each GPU kernel to execute at most one job at once.
Thus, in the worst case, Ji’s lock request must be queued
behind exactly one request from each GPU kernel other than
τi. By definition of Amax

i given by (1), the cumulative work
completed by SMs for jobs ahead of τi’s job is at most∑

j ̸=i

Amax
j .

Since we require 1 ∈ Si, the job of τi can begin executing
as soon as any SMs become available and no longer need
to service jobs enqueued earlier. Since each occupied SM
completes one unit of work per unit of time, the longest period
all H SMs can be occupied with jobs ahead of Ji is∑

j ̸=i

Amax
j

H

as desired.

From Lem. 1, we also obtain a response-time bound for
jobs using the SMLP, expressed in the following lemma.

1Blocking-time analysis from [14] is less pessimistic and more appropriate
when used in conjunction with the unmodified SMLP and a priority-based
real-time scheduling algorithm.
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Fig. 3. Example schedule illustrating blocking and response times for a job
of GPU kernel τi. The job of τi is scheduled after being blocked for no longer
than the summation from Lem. 1. Once scheduled, it executes for no longer
than Lmax

i and its response time is bounded correspondingly by Lem. 2.

Lemma 2. The response time of a job of τi, i.e., the duration
from its SMLP lock request to completion, is no longer than

Lmax
i +

∑
j ̸=i

Amax
j

H
. (3)

Proof. Recall that Lmax
i denotes the greatest possible WCET

of τi for all permitted SM-allocation sizes. Thus, the response
time of a job of τi is at most the sum of its blocking time,
bounded by (2) from Lem. 1, and Lmax

i .

In analysis of real-time systems, response-time bounds such
as those derived using Lem. 2 are directly incorporated into the
WCET of CPU tasks which launch GPU kernels. This requires
additional hardware capacity to be provisioned for such tasks.
In addition to affecting the responsiveness of individual tasks,
increased GPU response-time bounds make it more difficult
for real-time tasks to meet their deadlines, further reducing
the system’s effective capacity. Thus, in the remainder of this
section, we outline a process for measuring values of Li,k and
choosing Si correspondingly such that response-time bounds
are not unnecessarily inflated.

C. WCET Measurement for GPU Kernels

A prerequisite to determining the ideal Si for a GPU kernel
τi is to estimate Li,k, the WCET of τi when allocated k SMs,
for each possible value of k. These estimates may be obtained
by executing GPU kernels for each SM-allocation size and
recording the worst-observed execution times. When measur-
ing the execution time of a GPU kernel, any SMs not allocated
to the GPU kernel under analysis should execute memory-
intensive and compute-intensive dummy kernels to simulate
maximal interference from concurrent tasks. Execution time
measurements should not include steps before lock or unlock
requests (lines 7 and 11 in Alg. 1, respectively).

Addressing non-uniformity in SMs. Similar to CPU cores,
each SM is not necessarily identical in performance. The
specific SMs allocated may impact response times, even for
identical allocation sizes. Moreover, other factors such as the
physical distance between SMs in the same GPU may also
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affect response times. Thus, if one is to account for true worst-
case performance, all possible SM allocations should be tested.

Unfortunately, it is often not feasible to test every possible
combination of SMs for each GPU kernel. Therefore, to
obtain safer, albeit somewhat pessimistic WCETs, we suggest
estimating a worst-case slowdown factor to be incorporated
into all measured response times. This effect was negligible in
our experiments using cuFFT kernels. However, the necessity
and magnitude of such a slowdown factor depends on which
hardware and GPU kernels are used.
Performance trends in cuFFT. To better understand the
impact that Li,k values and the selection of Si can have on
response times and throughput, we have collected extensive
response-time measurements for cuFFT kernels. We estimated
the WCET of cuFFT kernels for each input sample size from
{210, 211, . . . , 224}, where one sample is a 32-bit floating point
value. Our measurements were performed using the random
input generation method and hardware platforms detailed
in Sec. IV. Each configuration was executed 1,000 times,
recording the worst-observed execution times. To simulate
maximal GPU saturation, each SM not allocated to the kernel
under analysis were configured to execute a cuFFT kernel with
212 randomly generated input samples in a loop. From our
results, we observe a few key trends.
Observation III-1. The benefit of an increased SM-allocation
size diminishes at higher SM counts. Fig. 4 illustrates this (the
x-axis represents the SM-allocation size, and the y-axis the
measured WCET). For cuFFT kernels of input size 224, mea-
sured WCETs decrease roughly proportional to the number of
SMs up to about four, but allocating 10 SMs, for instance, is
only approximately 6.15 times faster than a single SM. This
trend was originally noted in [14], which recommends avoid-
ing SM-allocation sizes that offer little incremental execution
time reduction. Response times of cuFFT kernels with small
input sample sizes (around 210 to 218) scaled poorly with SM-
allocation sizes greater than one, implying that they could not
fully utilize more than one SM. Fig. 4 only shows results for
the RTX 3060 Ti, but these patterns persisted on other GPUs.

cuFFT kernels likely scale poorly to large numbers of
SMs due to some combination of 1) intrinsic algorithmic
limitations on the amount of parallelism, 2) the high overhead
of synchronizing work across the GPU, and 3) a loss of
cache locality (each SM contains its own data, instruction,
and constant caches).
Observation III-2. Our execution-time graphs deviate some-
what from those attained by [14]. Ali et al. describe their
results in [14] as imitating a “step-graph,” where, as SM-
allocation sizes increased, measured WCETs did not decrease
in a smooth, curve-like manner as shown in Fig. 4.
Observation III-3. Single-SM allocations consistently pro-
duced the lowest worst-case cumulative computation time
across SMs. That is, for a cuFFT kernel τi and k > 1,
Ai,1 � Ai,k. This implies that, with respect to per-SM
throughput, Ai,1 can serve as reference for the maximum
efficiency by which τi can be completed. SM-allocation sizes
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Fig. 4. Largest-observed execution times of cuFFT kernels by number of
SMs allocated, measured on an NVIDIA RTX 3060 Ti. Bars highlighted in
yellow correspond to permitted SM-allocation sizes we use with the SMLP.

k with noticeably greater Ai,k values can be inferred to be
less efficient and should be avoided.

Based on these observations, we have developed a simple
heuristic technique for cuFFT kernels to select ideal SM-
allocation sizes. While the trends observed in cuFFT may not
be universal to all workloads, we believe our technique to
be applicable to most FFT tasks and other GPU kernels that
exhibit similar trends.

D. Finding Ideal SM-Allocation Sizes

While it is possible to use a one-size-fits-all set of permitted
SM-allocation sizes or apply no restrictions at all, inefficient
SM allocations may negatively impact the throughput and
responsiveness of GPU tasks. In this subsection, we outline
how one may derive Si for each GPU kernel for optimized
performance and analytical guarantees.

Recall that values of Amax
i contribute directly to the summa-

tion in (2) and (3). Intuitively, a greater Amax
i value means that

computation of τi occupies more of the GPU’s computational
capacity in the worst case, thus leading to increased blocking-
time and response-time bounds.

Additionally, our WCET measurements for cuFFT kernels,
described in Sec. III-C, showed response times decreasing
roughly proportional to SM-allocation size, to a point. I.e.,
for cuFFT kernel τi and small k, l ∈ N, we have

k · Li,k ≈ l · Li,l ⇔ Ai,k ≈ Ai,l.

Fig. 5 illustrates the finding that for larger SM-allocation sizes,
response times do not always see a commensurate decrease.
Thus, large SM allocations may be inefficient.

Based on these intuitions, we propose the following heuris-
tic for selecting allowable SM-allocation sizes for kernel τi:
SM-allocation size selection method. For each τi, set

Si = {k ∈ [1,H] | Ai,k ≤ Ai,1 · ρi} (4)

where ρi ≥ 1 is a real-valued parameter.
As noted in Observation III-3, our method assumes Ai,1

corresponds to a maximally efficient SM-allocation size of
one. From Observation III-1, we see that, for some kernels,
efficiency is maintained for increased SM-allocation sizes, up
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TABLE I
RECOMMENDED SM PARTITION SIZES FOR CUFFT BY INPUT SIZE

GPU model 210 ∼ 213 214 ∼ 217 218 219 220 221 222 223 224

NVIDIA GTX 1070 {1} {1, 2} {1, 2} {1, 2} {1, 2} {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
NVIDIA RTX 2080 Ti {1} {1} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5, 6} {1, . . . , 7} {1, . . . , 8}
NVIDIA RTX 3060 Ti {1} {1} {1, 2} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3, 4}

to a point. As such, our heuristic allows k SMs to be a
permitted allocation size if Ai,k is within a tolerated degree
of inefficiency specified by ρi. Such tolerance is necessary,
as overly restrictive Si may cause difficulty in the SMLP’s
allocation of SMs, causing some to be idle. Our proposed
strategy selects Si such that Amax

i is not too large relative
to Ai,1 while not overly restricting GPU kernels’ access to
SMs. The exact value of ρi may be customized for each
GPU kernel. A higher ρi allows for more inefficiency in the
system, increasing the blocking-time bound given by (2), but
can occasionally improve τi’s responsiveness, especially when
SMs would be idle otherwise.

E. Application to cuFFT

We illustrate our SM-allocation size selection and response-
time analysis process by example. We also provide recommen-
dations for Si by target hardware and cuFFT input size.

Example 1. Let τi be a cuFFT kernel whose jobs each
process input samples of size 224. Suppose that τi’s WCETs at
different SM-allocation sizes, i.e., values of Li,k, are estimated
equal to the measurements plotted in Fig. 4.

Using the heuristic proposed in (4) to select SM-allocation
sizes for τi disqualifies allocation sizes k such that

Ai,k > Ai,1 · ρi = 9101 · ρi.

We use a value of ρi = 1.1, allowing SM-allocation sizes that
are at most 10% more inefficient compared to executing τi on
a single SM. Applying (4) to k = 4 SMs gives us

Ai,4 = 4 · 2501 = 10004 ≤ 10011.1

= 9101 · 1.1 = Ai,5 · ρi,

k = 1

Ai,1 = 657 µs
Li,1 = 657 µs

k = 2

Ai,2 = 658 µs
Li,2 = 329 µs

k = 3

Ai,3 = 663 µs
Li,3 = 221 µs

k = 4

Ai,4 = 728 µs
Li,4 = 182 µs

Fig. 5. Boxes representing cuFFT kernel execution at SM-allocation sizes
k ∈ {1, 2, 3, 4}. The width, height, and area correspond to k, Li,k , and Ai,k

respectively. While an increase from three SMs to four reduces execution time
somewhat, the area, i.e., the total computation time across used SMs increases
excessively such that we set 4 /∈ Si.

whereas k = 5 SMs gives us

Ai,5 = 5 · 2032 = 10160 > 10011.1 = Ai,5 · ρi.

Applying the heuristic to all possible SM-allocation sizes gives
us Si = {1, 2, 3, 4}.

As seen in Ex. 1, our proposed method, alongside a rea-
sonable value of ρi, can easily winnow out inefficient SM-
allocation sizes for cuFFT kernels. We have applied this pro-
cess to our comprehensive measurements of cuFFT described
in Sec. III-C using ρi = 1.1. The recommended permitted
SM-allocation sizes we obtain are summarized by target GPU
and by cuFFT input sample size in Tab. I.

Note that our heuristic can be improved upon by testing for
specific GPU task sets and by solving for specific optimization
goals. However, we show in Sec. IV that the SMLP with SM-
allocation sizes configured by our method fares well compared
to default scheduling of cuFFT kernels.

IV. EXPERIMENTS

In this section, we evaluate our approach with experiments
on a comprehensive FFT task set. We compare the response
times and throughput with and without the SMLP. We use BE-
cuFFT and SMLP-cuFFT to refer to results from best-effort
scheduling and from using the SMLP, respectively.

A. Experimental Design

Hardware platform. We performed our tests using three
different NVIDIA GPUs across three product generations: the
GTX 1070, RTX 2080 Ti, and RTX 3060 Ti. Each GPU
contains 15, 34, and 19 SM partitions, respectively.
Input configurations. Our FFT input size (i.e., number of
32-bit floating point samples) for each trial was configured
as one of z ∈ {210, 211, . . . , 224}, with the number of
concurrent cuFFT-using tasks as one of N ∈ {1, 2, . . . , 21}.
We performed 1,000 trials for each combination of input size
z and task count N .
Input generation. To obtain representative samples for FFT
input, each trial, we generated k signals, with k sampled
uniformly from [5, 50]. Each generated signal “transmitted”
random data using phase-shift keying (PSK), carrier amplitude
and phase (QAM), or amplitude keying (ASK). Specifically,
each signal used one of the following modulations (bits per
symbol) chosen uniformly at random: 4-PSK, 8-PSK, 16-
QAM, 256-QAM, 2-ASK, or 4-ASK. Lastly, the input was
mixed with additive white Gaussian noise (AWGN) using a
signal-to-noise (SNR) ratio selected uniformly at random from
the interval [10, 30].
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Fig. 6. Largest observed and average response times of cuFFT kernels
executed concurrently on an NVIDIA RTX 3060 Ti, each with 222 input
samples. Analytical SMLP response-time bounds are shown in green.

Fig. 7. Total FFT throughput across all concurrently executing cuFFT kernels
on a NVIDIA RTX 3060 Ti, each with 222 32-bit floating point input samples.

Methodology. In our experiments, we recorded the response
times of cuFFT kernels under BE-cuFFT and SMLP-cuFFT.
Each trial synchronously launched N threads, with each thread
executing 100 consecutive cuFFT jobs. The response time
of each job was recorded, noting the average and worst-
observed times across all trials. We additionally computed an-
alytical response-time bounds under the SMLP as described in
Sec. III-B and using measurements from Sec. III-C. To config-
ure permitted SM-allocation sizes and calculate response-time
bounds, we used the measurements and Si recommendations
determined in Sec. III-E (using ρi = 1.1). We also recorded
the throughput of cuFFT kernels, calculated per-trial as the
total number of signal samples processed by the trial divided
by its aggregate response time.

B. Results

Fig. 6 shows the average, worst-case, and analytical bounds
for response times and Fig. 7 shows throughput when using
an NVIDIA RTX 3060 Ti and z = 222. These figures are rep-
resentative of trends seen across all configurations. Additional
graphs may be found in the full version of this paper [32].
From our results, we make the following observations.
Observation IV-1. The benefit of the SMLP grows as the
number of concurrent tasks increases. This applies to worst-
and average-case times (Fig. 6), and throughput (Fig. 7). For
a low number of concurrent tasks, SMLP-cuFFT constrains
the number of SMs a kernel may access, leaving capacity for
other kernels. When few kernels run, extra SMs are left idle,
leaving GPU compute capacity unused—a problem that BE-
cuFFT does not suffer—explaining the under-performance of
SMLP-cuFFT for a small number of concurrent FFTs.

However, despite the significant under-utilization of GPU
compute cores, the slowdown is not proportionate. For exam-
ple, consider the worst-case response times when running only
two concurrent FFT tasks (the leftmost points in Fig. 6). Under
BE-cuFFT, the max response time is 305 µs. For SMLP-
cuFFT, the max is 647 µs—a 2.1× slowdown. However,
SMLP-cuFFT only uses a SM partition size of up to 3 per FFT
(see Si values in Tab. I); up to 6 for two FFTs. The RTX 3060

Ti hardware supports an SM partition size of up to 19, meaning
that SMLP-cuFFT uses only 32% of what it could. As BE-
cuFFT uses every SM, one would expect SMLP-cuFFT to
run 3× slower, rather than the observed 2.1×. This milder
slowdown is because cuFFT is not able to effectively utilize
the large number of SMs BE-cuFFT provides (see Obs. III-1).

The point at which SMLP-cuFFT can utilize as many SMs
as BE-cuFFT (≈ 6 concurrent FFT tasks) is where SMLP-
cuFFT matches the BE-cuFFT response times in Fig. 6.

Observation IV-2. The SMLP analytical bounds hold. In no
cases have we observed the response time of a SMLP-cuFFT
task exceed the analytically guaranteed response-time bound.
This is visible in Fig. 6, as the “Max” line approaches, but
does not exceed, the straight “Analytical Max” line.

Observation IV-3. Applying the SMLP can increase overall
system throughput. This is visible in Fig. 7, where SMLP-
cuFFT’s average throughput exceeds BE-cuFFT’s for five or
more concurrent FFT tasks. As in Obs. IV-1, this throughput
benefit occurs when all SMs are utilized and can be configured
with ρi. A small value of ρi constrains each kernel to a
small number of SMs (i.e., small Si), leaving room for more
concurrent FFT tasks. For systems containing few concurrent
FFT tasks, a higher value of ρi allows access to more SMs per
task. Thus, throughput improvements are obtained with few
concurrent FFT tasks and a large ρi at the cost of reducing
the total possible number of concurrently executing FFTs.
Why a throughput benefit? With the SMLP, different FFTs
are guaranteed to run on mutually exclusive sets of SMs. This
can yield a throughput benefit against the default scheduler
(which will run different tasks on the same SM) because
several caches exist on a per-SM level, and having more
homogeneous work on a single SM can allow for greater cache
locality and less time spent in memory stalls.

Across Obs. IV-1 through IV-3, we see that SMLP-cuFFT
beats BE-cuFFT on all metrics when SMLP-cuFFT is able
to access the entire GPU. The weak performance of SMLP-
cuFFT for low levels of concurrency could be addressed in
deployed systems by tuning ρi to suit the expected amount of
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concurrent work. In our experiments, we intentionally fixed
ρi, no matter the concurrent FFT task count, to target systems
with arbitrary numbers of concurrent FFT tasks.

In summary, we demonstrated that the SMLP provides
bounded response times for FFTs, while matching or exceed-
ing the throughput of the default scheduler under high levels of
concurrency. This means that the SMLP is not only real-time
correct, but suitable for systems where throughput is critical.

V. CONCLUSION

We have demonstrated how FFT execution on GPUs can be
improved with respect to predictability and real-time guaran-
tees by incorporating GPU hardware partitioning and real-time
locking techniques. We have shown how our approach may be
applied without sacrificing, and at times even improving, GPU
throughput. Our approach applies to any GPU-based applica-
tion and our analysis is accessible to existing spectrum sensing
systems. In future work, we intend to explore the relationship
between real-time scheduling and spectrum sensing accuracy.
We also plan to examine ways to improve real-time guarantees
and throughput for other signal-processing workloads on the
GPU, such as those based on AI/ML techniques.
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