
Simultaneous Multithreading in Mixed-Criticality
Real-Time Systems

Joshua Bakita, Shareef Ahmed, Sims Hill Osborne, Stephen Tang, Jingyuan Chen,
F. Donelson Smith, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill
Email: {jbakita, shareef, shosborn, sytang, leochanj, smithfd, anderson}@cs.unc.edu

Abstract—Simultaneous multithreading (SMT) enables en-
hanced computing capacity by allowing multiple tasks to execute
concurrently on the same computing core. Despite its benefits, its
use has been largely eschewed in work on real-time systems due
to concerns that tasks running on the same core may adversely
interfere with each other. In this paper, the safety of using SMT
in a mixed-criticality multicore context is considered in detail.
To this end, a prior open-source framework called MC2 (mixed-
criticality on multicore), which provides features for mitigating
cache and memory interference, was re-implemented to support
SMT on an SMT-capable multicore platform. The creation of
this new, configurable MC2 variant entailed producing the first
operating-system implementations of several recently proposed
real-time SMT schedulers and tying them together within a
mixed-criticality context. These schedulers introduce new spatial-
isolation challenges, which required introducing isolation at both
the L2 and L3 cache levels. The efficacy of the resulting MC2

variant is demonstrated via three experimental efforts. The
first involved obtaining execution data using a wide range of
benchmark suites, including TACLeBench, DIS, SD-VBS, and
synthetic microbenchmarks. The second involved conducting a
large-scale overhead-aware schedulability study, parameterized
by the collected benchmark data, to elucidate schedulabiity
tradeoffs. The third involved experiments involving case-study
task systems. In the schedulability study, the use of SMT proved
capable of increasing platform capacity by an average factor of
1.22. In the case-study experiments, deadline misses of highly
critical tasks were never observed.

I. INTRODUCTION

In many safety-critical application domains, a trend is
underway to shift from unicore platforms to multicore ones.
An attractive attribute of multicore platforms in these domains
is the ability to support computationally intensive workloads
within a restricted size, weight, and power (SWaP) envelope.
However, this attribute may come at the price of added
monetary cost. Thus, when multicore platforms are employed,
any waste of processing capacity should be avoided: excessive
waste can necessitate added hardware, increasing cost.

When examining multicore platform choices today, we find
many offerings that provide multiple hardware threads per
core that can execute tasks concurrently. This simultaneous
multithreading (SMT) can enhance computing capacity, but
has been largely eschewed in work on real-time systems
due to concerns that tasks running on the same core may

Work was supported by NSF grants CNS 1563845, CNS 1717589, and
CPS 1837337, ARO grant W911NF-17-1-0294, ONR grant N00014-20-1-
2698, and funding from General Motors.

adversely interfere with each other in contending for CPU
resources. Our recent work has called this point of view into
question by noting that multicore platforms are rife with other
interference sources, like caches, buses, and memory banks,
that are not seen as fundamental impediments [1]–[3]. Indeed,
as discussed below, extensive recent work has shown that these
other interference sources can be safely mitigated.

We examine herein whether the potential ill effects of SMT
can also be safely mitigated, enabling its benefits to be reaped
in safety-critical embedded real-time systems. In such systems,
tasks are often partitioned among different criticality levels
and we assume that here. While it may seem self-evident that
SMT can be safely used for tasks that are not very critical
(and thus more interference-tolerant), the range of criticality
levels across which SMT can be safely applied is not clear.

In this paper, we present the results of a research study
undertaken to clarify this issue. This study points to the
conclusion that SMT is safe to apply to increase platform
capacity, even for tasks of high criticality. We elaborate on
this conclusion below, after first providing an overview of
prior related work to provide context.

Related work. When moving from unicore to multicore plat-
forms in supporting safety-critical applications, the main new
complication that arises is dealing with hardware components
such as caches, memory, buses, etc., that can be sources of
interference when tasks on different cores contend for them.
For a given interference source, two basic options arise: inter-
ference due to that source can be eliminated altogether (e.g.,
by using cache-partitioning techniques for shared caches), or
its ill effects can be carefully accounted for when determining
task execution-time bounds. Many nuances arise in applying
these basic options, and the literature exploring these nuances
is now quite extensive [4]–[46].

Historically, the real-time community has paid relatively
little attention to the potential of SMT. However, users in
industry are eager to make more use of SMT; in particular,
multiple developers have expressed interest to the U.S. Federal
Aviation Administration (FAA) in using SMT in safety-critical
systems [47]. Motivated by this industrial interest, we have
considered the application of SMT to real-time systems in
three recent papers. In the first of these papers [2], the
effects of SMT on worst-case execution times (WCETs) is
investigated, and it is demonstrated that in a soft real-time

1



context, SMT can improve schedulability by 30% or more.
In the second paper [1], a static (i.e., table-based) scheduling
approach is presented that enables SMT to be used in hard real-
time systems. Devising this approach entailed developing a
new form of measurement-based probabilistic timing analysis
(MBPTA) to obtain safe upper bounds on execution times
when SMT is in use.1 In the third paper [3], a priority-based
scheduling method is given for hard real-time systems using
SMT that can be more flexibly applied.

One limitation of these papers is that SMT is the only
potential interference source that is considered. As noted
above, many other interference sources exist on a multicore
platform. Determining how to properly mitigate all such
sources holistically requires sifting through many tradeoffs.

Contributions. In this paper, we extend prior work on the
usage of SMT in real-time systems by considering systems
with multiple criticality levels and interference sources. We do
this by incorporating support for SMT into a prior open-source
framework called MC2 (mixed-criticality on multicore) [8],
[9], [18], [19], [24], [27]–[29] that provides criticality-aware
isolation mechanisms for mitigating cache and DRAM inter-
ference. We give the results of a four-part investigation we
conducted into the effectiveness of SMT in mixed-criticality
systems.

First, we extended the existing MC2 framework by port-
ing it from the relatively simple quad-core ARM platform
assumed in prior work to a significantly more capable 16-core
AMD platform. While the prior ARM platform provides no
SMT support and only two cache levels, the AMD platform
allows SMT and has three levels of cache, allowing for more
nuanced scheduling decisions. Using this new platform, we
implemented a novel multi-level cache isolation mechanism
for both the L2 and L3 caches based on Linux’s Non-Uniform
Memory Access (NUMA) system that subsumes and improves
prior isolation techniques. To our knowledge, this is the first
work to consider multi-level cache management.

Second, we modified MC2 to enable the usage of SMT
across all criticality levels by leveraging previously proposed
real-time SMT schedulers [1]–[3]. While prior work on these
schedulers focuses on their theoretical properties, we imple-
mented an MC2 scheduler that subsumes these preexisting
SMT scheduling approaches. To our knowledge, we are the
first to implement a scheduler that supports SMT in a mixed-
criticality system with hardware-isolation features.

Third, to assess how SMT affects task execution times under
various cache allocations, we undertook extensive benchmark-
ing efforts, the results of which are discussed herein.

Fourth, to understand how SMT impacts schedulability, we
conducted both a large-scale overhead-aware schedulability
study and case-study experiments. In the former, parameter
choices were informed by our benchmark data; in the latter,
such choices were further constrained to align with systems
deemed “hard to schedule” in the schedulability study. In

1MBPTA is a family of timing-analysis methods that give probabilistic
upper bounds on WCETs based on sample observed execution times.

the schedulability study, we found that, compared to using
cache-management techniques alone, allowing SMT increased
schedulable utilization by a factor of 1.22 on average
and up to 1.5 in some cases. In the case-study experiments,
no deadline misses of highly critical tasks were ever observed.

Organization. The rest of this paper is organized as follows.
After providing necessary background information in Sec. II,
we describe our new MC2 implementation in Sec. III.
In Sec. IV, we discuss the modifications we made to
MC2’s scheduling policies to enable SMT. We then present
the results of our benchmark experiments, our overhead-
aware schedulability study, and our case-study experiments
in Secs. V–VII, respectively. Finally, we conclude in Sec. VIII.

II. BACKGROUND

In this section, we describe our task model, hardware
platform, SMT, and mixed-criticality scheduling in MC2.

A. Task Model

We consider the implicit-deadline sporadic/periodic task
model and assume familiarity with this model, though it
will be extended in later subsections to consider mixed
criticality and SMT. We consider a task system of n tasks
τ = {τ1, τ2, . . . , τn}. The ath job of task τi is denoted τi,a.
The period and execution cost of τi are denoted Ti and Ci,
respectively. The tardiness of a job τi,a is τi,a’s completion
time subtracted by its deadline, or 0 if τi,a completes prior to
its deadline. The tardiness of task τi is then the supremum of
the tardiness of its jobs. A task is hard real-time (HRT) if it
requires zero tardiness. Alternatively, a task is soft real-time
(SRT) if it only requires bounded tardiness.

B. Hardware Platform

In this work, we ported MC2 from the previously considered
quad-core ARM machine to a more sophisticated x86-based
platform, the AMD Ryzen 3950X, depicted in Fig. 1. This
new platform choice enables features to be examined such as
higher core counts, SMT, and larger caches shared at multiple
levels. All of these features have been announced in ARM’s
next generation of embedded processors [48].

The 3950X features 16 cores with two hardware threads
each. The cores are equally divided among four core com-
plexes (CCXs). Each CCX has a 16MB L3 cache that is
shared among all cores in the complex. Hardware support for
partitioning L3 caches and memory buses is included. Each
core has a 512KB L2 cache and separate 32KB L1 caches for
instructions and data. L2 and L1 caches are shared between
threads. Caches are coherent across CCXs, but one CCX
cannot initiate cache fills to another CCX. While the previous
MC2 provides DRAM bank isolation, we do not consider that
feature in this paper,2 so we refrain from commenting on
DRAM-related details concerning the 3950X here.

2In prior work on MC2, cache management was seen to have a much greater
impact than providing DRAM bank isolation. Moreover, when introducing
SMT, cache-related issues are much more of a concern.

2



Core Complex (CCX)

16 MB L3

512 KB 
L2

512 KB 
L2

512 KB 
L2

512 KB 
L2

>12 cycles

~39 cycles
C

or
e 

0

C
or

e 
1

C
or

e 
3

C
or

e 
4

32 KB L1 Instruction Cache
32 KB L1 Data Cache

~6 cycles

L3 is 16-way
L2 is 8-way
L1 is 8-way
64B line size
32B inter-level link 
width

Up to 64 L2 Colors;
16 L3 Ways

Throughput: (approx.)
Core to L1I: Load 32B/cycle
Core to L1D: Load 2x 
32B/cycle, store 1x 32B/cycle
L1 to L2: 32B/cycle
L2 to L3: 32B/cycle

The displayed size of each 
cache block is directly 
proportional to its actual 
memory size

The displayed distance 
between the cores and each 
cache block is directly 
proportional to their access 
latency

Fig. 1. Diagram of a single core complex on the AMD Ryzen 3950X. Note
that the spacing of caches in this figure is proportional to their documented
latencies and their displayed sizes are proportional to their data capacity.

X
X

X X X
X

X

X

X

X

Task 1 ଵ Task 2 ଶ

Cycles 2 4 6 8 10 12

X
X

With SMT

Sequential

Idle X
Fig. 2. Execution of tasks τ1 and τ2 sequentially and with SMT.

C. SMT Overview

Modern computing cores use instruction-level parallelism
within jobs to execute multiple instructions per cycle. Enabling
SMT takes this behavior further by allowing multiple jobs
to execute instructions within a single cycle. An overview
is given in Fig. 2 and Ex. 1 below, both of which closely
follow explanations in [1], [3]. Further information on the
fundamentals of SMT can be found in the work of Eggers
et al. [49]. For a detailed discussion of factors that can affect
SMT execution in practice, see [50], [51].

Example 1. At the top of Fig. 2, jobs of tasks τ1 (darker) and
τ2 (lighter) execute sequentially without SMT on a core that
can accept two instructions per cycle. When fewer than two
instructions are ready, as in cycles 3 through 5, cycles are
wasted. τ1 finishes at the end of 6 cycles and τ2 at the end of
12. In the bottom half of the figure, the same jobs employ SMT
to execute in parallel. This reduces the number of lost cycles.
τ1 finishes after 8 cycles and τ2 after 10. SMT thus delays the
completion of τ1, but speeds up the completion of τ2 since it
must not wait for τ1 before beginning its own execution. J

SMT’s potential is obvious: more work can be done in less
time. For real-time systems, the downside is two-fold. First,
the presence of an additional job on the same core introduces
new sources of interference that, if not carefully accounted
for, could lead to inaccurate task execution costs, and hence,

Fig. 3. Scheduling under preexisting MC2.

unsafe systems. Second, individual job execution costs will
generally increase, requiring careful balancing of the tradeoffs
between increased throughput and higher individual costs.

We manage the first problem through a novel cache parti-
tioning techniques to isolate SMT-using jobs from one another,
described in Sec. III. We address the second problem via new
scheduling policies described in Sec. IV. It is true that we
cannot perfectly isolate SMT-enabled jobs, but, as already
mentioned in Sec. I, any lack of isolation can be mitigated by
accounting for it, and this is the case with or without SMT.

D. Preexisting MC² Framework

The MC2 scheduler is implemented as a plugin to the
LITMUSRT kernel [52], a patch to Linux that eases the
process of implementing real-time schedulers for research
purposes. MC2 employs a mixed-criticality task model
following Vestal [53], with three criticality levels, A, B, and
C. (There is an additional Level D for best-effort workloads,
but we omit it here as it provides no real-time guarantees.)
Level A consists of tasks where the consequences of failure
would be catastrophic, Level B consists of tasks where any
failure is hazardous, and Level C consists of tasks where
failure is less severe. As such, Level-A and -B tasks are
HRT while Level-C tasks are SRT. We use nL to denote the
number of tasks at Level L (A, B, or C).

Scheduling in MC2. Fig. 3 depicts the preexisting hierarchical
MC2 scheduler on its original four-core platform. This
scheduler statically prioritizes higher-criticality levels over
lower ones. Each level employs its own internal scheduler
depending on the real-time requirements at that level. Level-A
and -B tasks, which are HRT, are respectively scheduled via a
table-driven cyclic executive (CE) and rate monotonic (RM)
scheduler. Such tasks are partitioned onto cores. Level-C tasks,
which are SRT, are scheduled via a global earliest-deadline-
first (GEDF) scheduler. Interrupts are redirected to Core 0
and are serviced at a higher priority than all tasks on this core.

Period restrictions. To simplify schedulability analysis, it is
assumed in prior MC2 works that Level-A and -B tasks are
released synchronously and periodically and that all periods
of such tasks on each core are harmonic. Also, it is assumed
that the hyperperiod of all Level-A tasks on any core evenly
divides the period of any Level-B task on that core. These
assumptions simplify the schedulability analysis of Level-B
tasks, which are scheduled by RM. Such assumptions are
unneeded for Level-C tasks, which are statically prioritized

3



Fig. 4. Example LLC cache partitioning from prior MC2 work.

below Level-B tasks. As such, Level-C tasks may be sporadic
and need not be harmonic with respect to other tasks.

Mixed-criticality analysis. In line with the seminal work
by Vestal [53], each task is assigned a distinct provisioned
execution time (PET) at each of Levels A, B, and C. A PET
represents an upper bound on the execution cost of a task
under a level of pessimism that increases with higher criticality
levels. This reflects that the consequences of failure depend on
the criticality of the failing task. In prior MC2 work, Level-
A, -B, and -C PETs are, respectively, inflated worst-case,
worst-case, and average-case execution times. We use PETL

i

to denote the Level-L PET of task τi, and PETi to denote τi’s
PET at its own criticality level. For each PET, a task has a
corresponding utilization, uLi =

PETL
i

Ti
. References to different

per-level PETs below also imply different utilizations.
Schedulability is determined for each criticality level. At

Level A, it is sufficient that Level-A tasks meet their required
real-time guarantees so long as no job of a Level-A task
exceeds its Level-A PET. At Level B, it is sufficient that
Level-A and -B tasks meet their guarantees when no Level-A
or -B jobs violate their Level-B PETs. Finally, at Level C,
all tasks must meet their guarantees under Level-C PETs. If
the system is schedulable for each criticality level, then the
system as a whole is schedulable.

Cache partitioning. In the preexisting MC2 framework, cross-
core interference caused by concurrently executing tasks is
reduced by providing spatial isolation to high-criticality tasks.
This often reduces to partitioning shared hardware resources,
with one of the most thoroughly considered resources being
shared caches. The LLC (last-level cache) in prior MC2 work,
and our work, is set-associative, meaning there is a many-
to-one mapping of physical addresses to each cache set of
16 cache lines. By managing the physical addresses used by
any task (“coloring”), we can control the cache sets it uses.
Additionally, we can control the specific cache lines (“ways”)
each core uses inside any set via a per-core mask.

The old MC2 platform allowed for 16 cache colors [54] and
16 cache ways. Fig. 4 depicts the default cache partitioning
considered in most prior work on MC2. As shown, Level-A/B
tasks on each core receive disjoint cache colors, and disjoint
ways relative to Level-C tasks and the operating system (OS).
This prevents Level-A/B tasks on one core from evicting any
cache lines of Level-A/B tasks on other cores. It also prevents
Level-C tasks or the OS from evicting Level-A/B cache lines.

As reducing the amount of cache available to a task will

increase its execution time, the partition sizes in Fig. 4 have a
significant impact on system schedulability. As such, a major
component of prior MC2 frameworks is a mixed-integer linear
program (MILP) that resizes these partitions (by adjusting
the dashed lines) to find a partitioning of the cache that
results in a schedulable system. Due to constraints detailed in
Sec. III-A, we only consider allocating LLC space by way,
rather than using a scheme like that in Fig. 4.

Adding SMT to MC2. Allowing SMT requires altering our
task model. For Levels A and B, we allow SMT only via the
simultaneous co-scheduling of all jobs of a given pair of tasks.
(Recall that the 3950X has two threads per core.)

Def. 1. [1] Two jobs are simultaneously co-scheduled if both
begin execution simultaneously on the same core, and after
one job completes, no other job executes simultaneously with
the remaining job. We let τi.a:j.b denote the simultaneously
co-scheduled jobs τi.a and τj.b. J

Simultaneously co-scheduled jobs require their own defini-
tions for PETs.

Def. 2. [1] The joint PET to simultaneously execute jobs of
τi and τj , denoted by PETi:j , is defined as the execution time
for both jobs assuming they begin simultaneously. In Fig. 2,
the joint PET of τ1 and τ2 is given by PET1:2 = 10. If i = j,
then PETi:j = PETi, indicating solo execution for τi. J

For Level-C tasks, where less precise PETs may be accept-
able, we simply give each task an additional PET to account
for SMT being in use, without considering what other task may
be sharing the same core. We denote the PET of a Level-C
task τi by PET∗

i when SMT is in use. Note that, when referring
to Level-C tasks, there is never a need to refer to Level-A or
-B PETs. Also, all PETs, regardless of the assumed criticality
level, will depend on how cache space is allocated.

E. Determining PETs

To determine per-criticality-level PETs, we follow the same
measurement-based approach used in prior work on MC2 [8],
[9], [18], [19], [24], [27]–[29]. Specifically, we determine
a task’s Level-B (resp., Level-C) PET by measuring its
worst-case (resp., average-case) execution cost. We determine
Level-A PETs by applying a 50% inflation factor to Level-B
PETs. Such inflation is consistent with industry practice as
reported by Vestal [53]. We derive joint PETs using methods
given in [1], which are discussed in Sec. V-B in detail.

III. IMPLEMENTING ISOLATION WITH THREADING

To use our new hardware platform, we ported the existing
open-source ARM-based MC2 framework to our x86 3950X
platform. This effort required addressing two challenges. First,
to adapt and extend the spatial isolation in the preexisting MC2

to match our platform’s capabalities, we had to modify MC2

to partition both our platform’s per-core L2 and per-CCX L3
caches by ways and sets. We did this using a novel NUMA-
based approach that subsumes and improves prior isolation

4



C
ore C

om
plex (C

C
X

)

16 M
iB

 L3

512 
K

iB
 L2

512 
K

iB
 L2

512 
K

iB
 L2

512 
K

iB
 L2

Thread 0

Core 1

Core 3

Core 4

Thread 2
Thread 3

Thread 1

Thread 6
Thread 7

Thread 4
Thread 5

Level-A and 
Level-B Ways

3 ways, 1 color 
for thread 0 on 

core 0

1 way, 1 color 
for thread 1 on 

core 0

Level-C and 
OS Ways

Color #0Color #1C
ol. #0

C
ol. #1

C
ol. #0

C
ol. #1

C
ol. #0

C
ol. #1

C
ol. #0

C
ol. #1

Level-C tasks 
are uncolored

Fig. 5. Example of an asymmetrical cache allocation on a CCX in our system.

techniques. Second, we needed to use our cache-partitioning
techniques to provide isolation between threads. Providing
this isolation simultaneously within multiple levels of cache
introduces complexities not considered in the preexisting MC2.
In total, our porting effort involved modifying or adding
3,000 lines of code in MC2, as well as reverse-engineering
efforts to deduce how caches are mapped on our platform.
In the following subsections, we describe how we partition
multiple levels of caches and enable isolation between threads.

A. Partitioning the L3

As shown in Fig. 5, we can partition the L3 cache on our
platform via sets and ways, like the shared L2 cache in the
preexisting MC2. Way-based partitioning is straightforward,
as we can use AMD’s QoS extensions to allocate ways
analogously to the lockdown registers used previously [55].
Cache coloring is also aided by the fact that the 3950X linearly
maps addresses to cache sets. We confirmed that our platform
employs such a linear mapping via micro-benchmarks.

Our cache-coloring implementation provides colors by
modifying Linux’s NUMA system, which is typically used
when physical memory is divided among different nodes
with different access times. This differs from the prior MC2

and other works that consider cache coloring under Linux,
which typically implement colors by modifying Linux’s
buddy allocator. At a high level, both approaches implement
colors by dividing physical pages into groups such that the
cache sets mapped from pages in one group are disjoint from
sets mapped from other groups. Our coloring implementation
is simpler because the NUMA system contains preexisting
functionality for dividing memory using logical nodes.

NUMA-based cache coloring. Linux typically organizes
physical memory into a hierarchical structure of nodes and
zones. Nodes represent independent physical memory con-
trollers on NUMA machines. However, the Linux kernel is not
aware of subtleties like NUMA until it is well into initializa-
tion. To address this, the kernel uses the boot-time memblock
allocator until it has parsed the NUMA configuration into
memory nodes and zones. Linux retires this allocator by
freeing unused memblocks to the buddy allocator, setting up its
stack with pages from the buddy allocator, jumping to that new

stack, and then freeing all the remaining data in the memblock
allocator to the buddy allocator. Note that this process sends
every page in the system through the buddy allocator page
free function before it gets used permanently.

Linux also can “fake” a NUMA system of n nodes, even
when the system has one memory controller by splitting
physical memory into n blocks and assigning one block to
each fake NUMA node. From userspace and most of the
kernel, these nodes are indistinguishable from the real ones.

By creating fake NUMA nodes for each of our memory
colors and modifying the aforementioned page free function
to be color-aware (make it return pages not to the requested
node, but to the node that we know matches its color), we im-
plement a remarkably simple yet completely holistic coloring
implementation. This allows kernel, driver, and task data to all
be easily moved between or interleaved across colors simply
by using the existing NUMA management facilities.

Our new implementation has several benefits. First, we only
needed to modify 23 lines of code to implement coloring.
Second, a simpler implementation has also reduced the like-
lihood of bugs.3 Finally, as coloring is implemented via the
NUMA system, the interface to the NUMA system provides
a convenient and efficient method for configuring coloring.
This advantage is desirable for systems that require isolation
while interacting with memory dynamically, which we hope
to explore in future work. Works in [56], [57] have also used
logical NUMA nodes; however, not for cache coloring.

B. SMT and Hierarchical Caches

Per-core caches were not a concern in the old MC2, as a
core only permitted a single thread of execution. With SMT on
our platform, threads on the same core may evict each other’s
cache lines if not isolated from one another within the per-core
L2 caches. Thus, we must provide isolation within the per-core
L2 caches and the per-CCX L3 caches simultaneously.

We could partition L3 caches on our platform using similar
mechanisms to the LLC cache of the old MC2, however, this
would inhibit per-core L2 partitioning. Our L2 cache has no
facility for way-based partitioning, so it must be colored—an
operation that also maps into the L3 cache. Thus, any coloring
decision in the L2 cache will also apply to the L3 cache. This
reduces the number of potential cache partitions that can be
considered on our platform.

The number of potential partitions is further reduced when
Linux requests ranges of physically contiguous memory, such
as in drivers for DMA buffers. As the maximum size of
contiguous memory that can be allocated is inversely propor-
tional to the number of cache colors supported, we must limit
this number. Fortunately, we can provide isolation in the L2
caches to threads so long as we support at least two colors,
as shown in Fig. 5. We discuss how our L2 and L3 cache-
allocation approaches are integrated holistically in Sec. IV-C.
While we do not provide L1 isolation for a core’s two threads,

3We observed subtle bugs in the cache-coloring code of the prior MC2

implementation while porting to the 3950X.

5



we account for any L1 interference in our measurement
process for determining PETs, as discussed in Sec. V. In
general, we address SMT inter-thread interference sources
other than L2 caches by either applying temporal partitioning,
thus preventing threads from executing concurrently, or by
accounting for this interference in our measurement process.
We briefly consider other interference sources next.

C. Other Sources of Interference

Other sources of interference on our platform include
DRAM banks and buses, cache-coherence traffic, and periph-
eral interrupts.

We account for DRAM bank and bus interference by
measuring PETs in presence of contending tasks running on all
other CCXs in the system. The only sources of interference be-
tween different CCXs are cache-coherency traffic and DRAM
traffic. We prohibit tasks from sharing memory between CCXs
and account for OS cache-coherency traffic separately, as in
prior MC2 work. We redirect other OS activities to Core 0,
on which we do not schedule any real-time task. In a real
system, we can account for the delays caused by cache-
related OS interference via overhead-accounting techniques
by Brandenburg [58, pages 230–235]. While we deal with
DRAM- and bus-related interference effects by accounting
for them, an alternative is to introduce isolation mechanisms
for these interference sources as well. In this first work on
using SMT in a mixed-criticality context providing isolation,
we chose not to do this, though we may do so in future work.

We handle interrupts that are not required to schedule tasks
by redirecting all of them to Core 0, which is dedicated to
interrupt processing (Fig. 6).

IV. SCHEDULING AND PARTITIONING WITH SMT

In this section, we describe modifications we made to
MC2’s scheduler to enable SMT on our new hardware
platform. This entailed addressing three key challenges. First,
we needed to ensure predictable co-scheduling of Level-A
and -B jobs per Def. 1. Second, we wanted to enable tasks
that can benefit from SMT to use it, while still allowing other
tasks to execute without SMT. Third, our AMD platform
has many more cores than the prior ARM platform, which
motivated us to add support for clustered (rather than global)
scheduling at Level C.

Modified MC2 scheduler. Our modified hierarchical MC2

scheduler for two CCXs is depicted in Fig. 6(c). The remaining
CCXs are omitted due to redundancy. While the preexisting
MC2 schedules Level-C tasks by GEDF, we schedule them
by clustered EDF (CEDF). We discuss this in Sec. IV-B in
detail. Note from Fig. 6(c) that we have chosen not to schedule
real-time tasks on Core 0, which is responsible for process-
ing interrupts. This differs from the preexisting MC2. We
have chosen this because scheduling on this core introduces
overhead-accounting complexities that are orthogonal to the
issue of whether SMT improves schedulability under MC2.
Also, the loss of a single core’s capacity is less substantial on
our 16-core platform than the previous quad-core platform.

CE

RM

CEDF CEDF

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Cluster 0 Cluster 1 Cluster 2

In
te
rr
u
p
tsLevel A

Level B

Level C

tasks

τ8,1

CCX 0 CCX 1

Core 4
Thread 8
Thread 9

τ1,1

τ2,1
τ3,1 τ1,2

τ2,2
τ3,2τ1,3

τ2,3

Core 4
Thread 8
Thread 9

τ1,1

τ2,1

τ3,1 τ1,2

τ2,2

τ3,3τ1,3

τ2,3

τ4,1 τ5,1

τ6,1
τ5,1

Core 4
Thread 8

Thread 9

Core 5 Thread 10
Thread 11

tasks
Level-A/B Level-A/B

tasks

Level-A/B
tasks

Level-A/B
tasksτ7,1

τ9,1

τ8,1
τ10,1

Level-A
tasks

Level-A
tasks

Level-A
tasks

(a)

3 6 9 12 150

(b)
3 6 9 12 150

CE

RM

CE

RM

CE

RM

CE CE

RM

CE

RM

CE

RM

CEDFCEDF

(c)

3 6 9 12 150

(d)

Fig. 6. Schedule of (a) Level-A tasks, (b) Level-B tasks in Ex. 2, (c) MC2

scheduling on our new platform, and (d) schedule of Level-C tasks in Ex. 2.

Note that timer interrupts and inter-processor interrupts (IPIs)
needed to trigger the scheduler occur on each core, and these
are included in our overhead accounting.

Resource allocation under prior MC2 frameworks has in-
cluded a task-to-core partitioning step (see Levels A and B in
Fig. 3) followed by a cache-partitioning step (see Fig. 4). Our
modified framework follows this paradigm, though we made
changes due to SMT and the grouping of cores into CCXs.
We begin by describing our modified partitioning step.

A. Partitioning Level-A and -B Tasks

To make use of threading for Level-A tasks, we must
reconcile the potential interference effects caused by threading
with MC2’s goal of reducing interference for high-criticality
tasks. Following our previous work [3], we accomplish this by
requiring that any Level-A task is simultaneously co-scheduled
(Def. 1) with the jobs of at most one other Level-A task with
the same period.4 Thus, any threaded Level-A task is only ever
interfered with via SMT by its co-scheduled task, making it
much simpler to consider such tasks under Level-A pessimism.
Extending the terminology used for jobs in Defs. 1 and 2,
we refer to such co-scheduled tasks as “paired tasks” and to
any unpaired Level-A tasks as “solo tasks.” We denote two
paired tasks τi and τj by τi:j . Note that, as our co-scheduling
restrictions prevent an idle thread from executing any workload
while its corresponding other thread executes a Level-A task,

4In many safety-critical domains, only a few period choices are used.

6



from an analysis point of view, two paired tasks are similar to
a logical solo task with period equal to the pair’s shared period
and execution cost equal to the joint cost of the paired tasks.
Thus, we can partition the paired tasks identically to solo tasks.
We partition Level-A tasks by worst-fit and schedule them by
a CE scheduler, as in prior MC2 work.

This leaves the question of how to decide which tasks
are paired. We make this decision using an integer linear
program (ILP) that seeks to minimize total utilization while
not creating paired tasks with excessively high utilization. This
ILP is virtually identical to one we presented previously in
[3]. The primary difference is that, while we required in [3]
only that paired tasks have utilizations not exceeding 1.0, we
now consider this utilization cap as a tunable parameter in our
framework. In preliminary experiments, we compared using
1.0, 0.75, and 0.5 for this value and found that 0.5 generally
gave the best results. The experiments discussed in Sec. VI
all use 0.5. Following [1], we also do not consider pairing
tasks with PETs differing by 10× or more. When making
these initial task-pairing decisions, we use task utilizations
with respect to Level-A PETs under full cache allocations.
This is necessary because cache partition sizes are undecided
by this stage of the framework.

Example 2. Consider three Level-A tasks τ1, τ2, and τ3 with
periods 6, 6, and 12, respectively. Assume that τ1:2 and τ3
become a paired task and a solo task, respectively, and are
assigned to Core 4. Fig. 6(a) depicts a possible CE schedule of
τ1:2 and τ3 on Core 4 up to time 15. Thread 9 is idle during the
intervals [1, 2) and [2, 3) due to the co-scheduling restriction
of paired tasks and τ3 being a solo task, respectively. J

Similar to Level-A tasks, we require each Level-B task to
be simultaneously co-scheduled with at most one other Level-
B task with the same period. We decide the Level-B tasks
pairings using the same ILP as for Level A. We partition
Level-B tasks after partitioning Level-A tasks using the same
methodology used for partitioning Level-A tasks with two
differences. First, we consider task utilizations with respect
to Level-B PETs. Second, we reduce the initial capacity of
each core by the total utilization of the Level-A tasks already
partitioned on that core.

Example 2 (cont’d). Suppose Level-B tasks τ4 and τ5:6 with
periods 12 and 24, respectively, are assigned to Core 4.
Fig. 6(b) shows an RM schedule for these tasks. J

B. Scheduling Level-C Tasks

As Level C is of lower criticality than Levels A and B,
we do not impose co-scheduling restrictions on Level-C tasks
that execute as threads. Such tasks are scheduled via EDF and
allowed to migrate, as in prior MC2 work. Level-C tasks in
prior MC2 work were scheduled globally across all cores, and
thus, did not require any partitioning. This is undesirable under
our new platform for two reasons. First, we wish to restrict
migrations of Level-C tasks such that they remain within a
CCX, thereby allowing them to maintain L3 cache locality.

Second, we would like to support Level-C tasks that execute
both alone (i.e., solo tasks) and as threads (i.e., threaded
tasks). If we required all Level-C tasks to be threaded, per-
task utilizations may increase to the point that the system
is unschedulable. As schedulability analysis does not exist
for situations where both threaded and solo tasks contend
for the same cores, the set of solo Level-C tasks must be
partitioned away from the set of threaded Level-C tasks. A
similar approach was used in our prior work [2].

We designate a Level-C task as threaded if doing so is ex-
pected to reduce total system utilization, so long as its threaded
task utilization does not exceed a tunable cap. Otherwise, we
designate the task as a solo task.

After deciding which Level-C tasks are threaded, we parti-
tion the set of cores into clusters (see Fig. 6(c)) and schedule
Level-C tasks on these clusters via CEDF. We require that each
such cluster contains either only solo tasks or only threaded
tasks (thereby separating these two task types) and that clusters
do not cross CCX boundaries (thereby preventing Level-C
tasks from migrating outside of a CCX). We refer to clusters
that contain only solo (resp., threaded) tasks as solo (resp.,
threaded) clusters. We partition the cores into clusters by first
designating each core as either solo or threaded in proportion
to the total utilization of tasks per category, and then grouping
cores into clusters so that at most one CCX contains both
a solo and a threaded cluster. We assign tasks to clusters
using a heuristic loosely based on the worst-fit decreasing
heuristic, in which we consider the solo (resp., threaded) tasks
in decreasing order of utilization and assign each task to
the solo (resp., threaded) cluster with the maximum possible
remaining capacity while maintaining Level-C schedulability.

Example 2 (cont’d). Suppose Level-C tasks τ7, τ8, τ9, and
τ10 are designated as threaded tasks and are assigned to (the
threaded) Cluster 1 in Fig. 6(c). A CEDF schedule of these
tasks is shown in Fig. 6(d). Job τ8,1 is preempted by the higher-
priority job τ9,1 on Core 5 and later resumes on Core 4. Note
that there is no co-scheduling restriction here: both τ8,1 and
τ9,1 execute on Thread 11 while τ7,1 executes on Thread 10.
Note that if Cluster 2 is designated as a solo cluster, then
scheduling within it would be similar, except that only one
Level-C task would execute on a given core at a time.

C. Cache Allocation and Overheads

After making all threading-, core-, and cluster-assignment
decisions, we allocate ways of each CCX’s L3 cache on a
per-core basis for Level-A/B tasks and a per-CCX basis for
Level-C tasks. Each of these ways allocated to a core running
Level-A/B tasks is further subdivided between the two threads
on that core by cache coloring. As discussed in Sec. III-B, this
partitions both threads from each other in the core-local L2
cache. An example cache partitioning is depicted in Fig. 5.

We determine cache partition sizes using a prior MC2

MILP by Chisholm et al. [9]. The decision variables of this
MILP are the number of cache ways to allocate to each core,
and the Level-C partition. The objective of this MILP is to

7



minimize the total Level-C utilization of the task system while
satisfying the schedulability conditions of all criticality levels;
these conditions are covered in Sec. IV-D. In applying these
conditions, we account for the following overhead sources:
cache-related delays due to preemptions and migrations, job
release costs and latencies, IPIs, scheduling costs, and context-
switch costs. We account for cache-related delays and over-
heads due to interactions between different criticality levels as
done in [19], and use techniques from Brandenburg [58]5 for
all other overheads. In addition to the overheads mentioned
above, paired Level-A and -B tasks incur an additional IPI as
they dispatch two, rather than one, tasks at a time. We include
this IPI in our overhead accounting.

The L3 cache-isolation techniques described in Sec. III
could potentially be used to allocate an asymmetric number of
ways to two threads on the same core without compromising
any isolation guarantees. This is the case in Fig. 5, where
Thread 0 is allocated three ways while Thread 1 is allocated
one, even though both threads are located on the same core.
The cache partitions possible with asymmetric cache allocation
subsume the partition options considered by the MILP in
the prior paragraph; however, asymmetric allocations break
fundamental assumptions of our optimization framework, re-
sulting in potentially safe cache allocations being deemed
unschedulable. As such, we do not consider asymmetric cache
allocations and defer exploration of this issue to future work.

D. Schedulability under MC² with SMT

Schedulability analysis under MC2 at Levels A and B is
largely unchanged from that of [9] by introducing SMT; due
to the nature of simultaneous co-scheduling, any paired task
is identical to a solo task from a scheduling perspective.

Schedulability analysis at Level C is altered. In order to
apply preexisting MC2 schedulability analysis to a threaded
Level-C cluster, each thread must be viewed as its own “core”
from the perspective of the analysis. Consider a cluster of
m cores. Let UC

A,p (resp., UC
B,p) denote the total Level-C

utilization of all paired and solo tasks on core p at Level-A
(resp., -B). Let h, Hk, and UC

C denote the largest, the sum of
the min(k, nC) largest, and the sum of all utilizations of Level-
C tasks. From [59], without Level-C threading, the Level-C
schedulability condition for tasks in this cluster is

UC
C +

m∑
p=1

(
UC
A,p + UC

B,p

)
≤ m

(m− 1)h+Hm−1 +

m∑
p=1

(
UC
A,p + UC

B,p

)
< m.

With Level-C threading, we effectively double the core
count from the perspective of the analysis, so this becomes

UC
C + 2

m∑
p=1

(
UC
A,p + UC

B,p

)
≤ 2m

5For overhead-accounting details, see [58, pages 219–259]; for a summary,
see [58, pages 261–263].

(2m− 1)h+H2m−1 + 2

m∑
p=1

(
UC
A,p + UC

B,p

)
< 2m.

V. BENCHMARK EXPERIMENTS

In this section, we report on the results of benchmark exper-
iments that show how tasks running with SMT are influenced
by cache effects and how PETs differ across criticality levels.
Results from these experiments are used to inform the choices
of variables used in our schedulability study.

A. Benchmark Selection

In performing our benchmark experiments, we utilized the
TACLeBench sequential benchmarks [60] (“TACLe”), the DIS
Stressmark suite [61] (“DIS“), and the San Diego Vision
Benchmark suite [62] (“SD-VBS“). The TACLe benchmarks
emulate tasks common to embedded systems. Their runtimes
and working-set sizes (WSSs) are small. The DIS benchmarks
perform data-intensive functions such as matrix multiplication
or image processing with configurable runtimes and WSSs.
The SD-VBS benchmarks consist of both computational and
data-intensive programs that emulate computer-vision appli-
cations. Their runtimes and WSSs vary depending on input
size. We explored the behavior of SMT in MC2 across a wide
variety of cache allocations and memory usages, generating
over 200GB of timing data.6

All results use sample sizes of at least 1,000 and, where
configurable, use a WSS of 2MB unless otherwise noted. All
experiments were run concurrently with contending synthetic
tasks using preexisting techniques [19] to continually generate
read and write requests to DRAM. Tasks were also executed
in an environment designed to minimize scheduling noise.7

B. SMT and Multi-Level Cache Isolation

As described earlier, the L2 cache on our test platform is
shared by two threads on the same core. This introduces a
source of interference that can have a significant impact on the
execution times of both threads. Further, the threads executing
on all four cores of a CCX share the same L3 cache, another
source of interference. In this subsection, we examine how
cache isolation affects the benefits of SMT.

We previously gave a metric, Mi:j , to quantify the benefit
of SMT [1]. Here, we apply Mi:j to Levels A and B. Under a
given cache allocation scheme, Mi:j satisfies PETi:j = PETi+

Mi:j ·PETj , or Mi:j =
PETi:j−PETi

PETj
. If Mi:j < 1, then pairing τi

and τj under that cache allocation scheme may be beneficial
as their joint cost is less than the sum of their solo costs.
If Mi:j ≥ 1, then pairing them is not beneficial. Note that,
smaller Mi:j values indicate larger SMT benefits.

Recall from Sec. II that Level-C tasks do not employ simul-
taneous co-scheduling. Thus, to quantify SMT at Level C, we
use a simpler Mi value that represents the maximum slowdown

6See our online appendix for full benchmark information and tables of
supplemental results: https://www.cs.unc.edu/∼anderson/papers.html

7Specifically, we use sched_yield() and wbinvd between samples
and Linux’s nohz_full, isolcpus, and irqaffinity cmdline params.

8

https://www.cs.unc.edu/~anderson/papers.html


TABLE I
SMT EFFECTIVENESS AT LEVELS A AND B

Suite Config Mean Mi:j

∈ (0, 1]
Mi:j < 1 Coeff.

Var.
TACLe No Cache Iso. 0.41 85% 0.59

L3 Isolation 0.40 83% 0.59
L2 + L3 Iso. 0.40 85% 0.53

DIS No Cache Iso. 0.31 100% 0.57
L3 Isolation 0.30 100% 0.66
L2 + L3 Iso. 0.34 100% 0.59

SD-VBS No Cache Iso. 0.52 95% 0.37
L3 Isolation 0.56 97% 0.25
L2 + L3 Iso. 0.52 95% 0.33

to τi when using SMT. Specifically, we define Mi =
PET∗

i

PETi
,

where PET∗
i is as defined immediately after Def. 2.

To calculate Mi:j , we measured PETs for all benchmark
tasks and SMT combinations for three different configurations:
no cache isolation, L3 isolation, and both L2 and L3 isolation.
For L3 isolation, we allocated each task eight L3 cache ways,
while for both L2 and L3 isolation, we allocated each task
16 L3 ways and half of the L2 colors, hence half of the
L3 colors as well—refer again to Fig. 5. Note that, in both
configurations, the total available L3 cache space is the same
(we consider more restricted allocations later). We computed
Mi values (which pertain to Level C) similarly, but did not
assume any cache isolation (as Level-C tasks are provided no
cache isolation from one another).

Table I summarizes the Mi:j values we recorded for each
benchmark suite and configuration by giving the frequency
with which we saw Mi:j < 1—i.e., the percentage of task
pairs that benefit from SMT—and the mean of Mi:j values in
the range (0, 1]—which provides a sense of the typical extent
of improvement when there was improvement. We also include
the mean of per-task-pair coefficients of variation (CV).8 As an
example, the row in bold indicates that, with both L2 and L3
isolation, all DIS task pairs benefit from SMT, with a typical
per-pair Mi:j value of 0.34 (recall that a smaller Mi:j value
indicates a higher benefit). Our full tables of both Mi:j values
and Mi values (which are not summarized here) are online.6

Obs. 1. SMT is beneficial, even without any spatial isolation.

This can be observed from Table I. Even without providing
any cache isolation, we found the percentage of task pairs that
benefit from SMT to be at least 68% (row 4, Table I), and the
mean Mi:j values of such tasks to be at most 0.52 (row 7).

Obs. 2. Cache isolation minimally impacts SMT effectiveness.

As seen in Table I, mitigating L2 or L3 interference yielded
little benefit for any of our benchmark suites. This surprising
result may indicate that cache interference is not a dominant
factor in our benchmark PETs, or that the negative effects of
cache isolation evenly balance out the positive ones. We intend
to further explore this observation in our camera-ready paper.

0246810121416
Cache half ways allocated

2

4

6

8

10

E
xe

cu
ti

o
n

 t
im

e
 m

u
lt

ip
li

e
r

matrix

transitive

neighborhood

pointer

update

field

Cache Half Ways Allocated

0
2

4
6

8
10

12
14

16
W
SS
(M
B
)

0

5

10

15

20

25

E
x
ec
u
ti
o
n
ti
m
e
m
u
lt
ip
li
er

2

4

6

8

10

Fig. 7. DIS task execution times with a 4MB WSS as a function of allocated
L3 cache space. The 3D inset shows corresponding data for the matrix
benchmark for different WSSs.

C. Performance Effects of Cache Allocations

While cache isolation reduces interference, it decreases the
maximum amount of cache available to a task. In the previous
subsection, we considered the benefits of reduced interference,
and here we consider the downsides of reduced cache space.
Such downsides have been well-studied in prior work (e.g.,
see [9], [63]). Nonetheless, as our schedulability study in
Sec. VI relies on execution-time and overhead measurements
taken on our hardware platform, we conducted new experi-
ments to assess the impacts of cache-space limits. We note
also that such impacts have not been considered before in a
system with dual L2/L3 cache management.

To investigate these impacts, we measured the execution
times of all the DIS benchmarks in all WSS configurations
for all potential L3 way allocations. We also used coloring to
allocate half of the L2 cache. As a result, the L2 cache space
was halved to 256KB and each allocated L3 way was halved
to a 512KB half-way. We collected an extensive amount of
data, most of which is available in our online appendix.6 A
sample of this data is given in Fig. 7, which depicts a 2D
graph with a 3D inset. The 3D inset plots execution times for
the matrix benchmark (y axis) as a function of the number
of available L3 half-ways (x axis) and WSS (z axis). The 2D
graph shows a slice of the 3D graph for all benchmarks at a
WSS of 4MB.

Obs. 3. With respect to allocated L3 cache space, tasks tend to
fall into three categories: no sensitivity, moderate sensitivity,
and high sensitivity.

In Fig. 7, field exhibits no sensitivity (it tends to maintain
L2 cache affinity), update and pointer exhibit moderate
sensitivity, and the other benchmarks exhibit high sensitivity.

VI. SCHEDULABILITY STUDY

To assess the benefits of adding SMT to MC2 in a
holistic sense, we conducted a large-scale overhead-aware
schedulability study. In such a study, a large number of

8The coefficient of variation is the standard deviation divided by the mean.

9



TABLE II
PARAMETERS USED IN SCHEDULABILITY STUDIES

Param. Config. Level A Level B Level C
Crit. C-Heavy [10,30] [50,70]
Util. % AB-Mod. [35,45] [10,30]
Task Light [.001,.03] [.001,.05] [.001,.1]
Util. Medium [.02,.1] [.05,.2] [.1,.4]

Heavy [.1,.2] [.2,.4] [.4,.6]
Period Many {5,10,20} {20,40,80,160} [10,100]
(ms) Short {3,6} {6,12} [3,33]

Contrast {3,6} {96,192} [10,100]
Long {48,96} {96,192} [50,500]

WSS (MB) Default 〈2.0, 2.0, .0032〉
Cache Sens. Default {1.16,2.95,15.68}
SMT DIS .00,〈.34, .20, .01〉 〈1.60, .54, 1〉
Effect. TACLe .15,〈.40, .21, .01〉 〈1.79, .32, 1〉

SD-VBS .05,〈.52, .17, .01〉 〈1.72, .13, 1〉
TACLe+ .15,〈.40, .21, .01〉 〈1.72, .13, 1〉SD-VBS
Prior .20,〈.60, .07, .01〉 〈1.80, .10, 1〉

[a, b] denotes a uniform distribution; 〈µ, σ,⊥〉 denotes a normal distri-
bution centered at µ with standard deviation σ, where values less than
⊥ are replaced with ⊥ to prevent nonsensical (i.e., negative) values;
{E} denotes a random choice from the elements of set E.

synthetic task systems is generated and their schedulability
tested under different schemes. Schemes can represent
different choices of analysis, heuristics, and hardware
features (e.g., SMT) that impact schedulability. Such studies
elucidate which schemes generally improve schedulability by
aggregating the results of many task systems.

Synthetic task generation. Our schedulability-study frame-
work is based on the open-source framework used by prior
MC2 projects found at [52]. Many of the initial steps taken in
the task-generation process here are documented extensively
in prior MC2 works [8], [9], [18], [19], [24], [27]–[29].

Task generation is informed by the distributions in Table II.
Some parameters listed here have different configuration
options. Of particular relevance to our study are the Cache
Sensitivity and SMT Effectiveness parameters. Cache
Sensitivity determines how much the Level-A PET of each
task inflates when given no L3 cache allocation. SMT
Effectiveness gives Mi:j values at Levels A and B, and
Mi values at Level C. The distribution options for these
parameters are based on the benchmark data shown in Fig. 7
and in Table I. A scenario is a selection of configuration for
each parameter; considering different scenarios allows us to
examine task-system-related tradeoffs. The detailed steps of
the task-generation process are in our online appendix.6

Assumptions. Models of synthetic tasks on multicore
platforms inevitably require simplifying assumptions. For
example, prior MC2 schedulability studies have made
assumptions about task interdependencies [8] and buffer-
access patterns [29]. During task generation, we assumed that
Cache Sensitivity and SMT Effectiveness are independent.
In reality, a task’s memory-access pattern affects both
Cache Sensitivity and SMT Effectiveness (e.g., via memory
stalls). From the data we have observed, ignoring such
interdependencies in task generation does not cause large
differences between synthetic PETs and corresponding

benchmark measurements.

Evaluation methodology. We considered three schemes:
Solo, which disallows threading (as in the preexisting MC2

framework), Threaded, which threads tasks as per Sec. IV,
and Solo+Threaded, which deems systems schedulable
whenever either Solo or Threaded does so. These schemes
have been sufficient to produce a rich set of observations
from our schedulability study, though the consideration of
alternative SMT-aware schemes would be useful in the future.

We considered both eight- and 16-core variants of our
3950X platform (two CCXs or four). We evaluated all scenar-
ios in the eight-core case, but only a subset in the 16-core case
(so that our study could complete in a reasonable amount of
time). Our 16-core findings reinforce our eight-core findings,
so we omit them here. In total, we considered 120 eight-core
scenarios. For each scenario, scheme, and system utilization
(from 0.5 to twice the core count), we measured the fraction of
schedulable task systems within ±5% with 95% confidence.
This took over 1,700 CPU hours (more than two CPU months).

For each scenario, we generated a schedulability graph
indicating how the fraction of schedulable task systems varies
per scheme (Solo+Threaded is not pictured as it is implicit
from the other schemes). Graphs that highlight our observa-
tions are presented in Figs. 8-10 (our full set of graphs has
been provided as supplementary materials). Note that system
utilizations are graphed under Level-A pessimism and the
usage of threading, so systems with utilization greater than
the core count may be deemed schedulable.

To consider our schemes quantitatively, we use Schedulable
Utilization Areas (SUAs). For a single scenario, the SUA of
a scheme is the area under its curve in the corresponding
schedulability graph. This area is computed by the trapezoid
rule. The SUA for a set of multiple scenarios is then the
arithmetic mean of the SUAs of each scenario.

Results and observations. We now provide several observa-
tions that follow from the totality of our collected data. We
illustrate these observations using the plots in Figs. 8-10.

Obs. 4. Over all scenarios, the SUA of Solo+Threaded is
32% greater than that of Solo.

A near-average scenario is shown in Fig. 8. The magnitude
of this improvement is greater than that in prior work on
SMT [3], which reported SUA improvements of around 19%.
We believe this additional improvement is due to this prior
work not considering overheads. While overheads clearly
impact the schedulability of systems with or without SMT, the
task-pairing heuristic we use to apply threading to Levels A
and B effectively reduces the number of tasks to be scheduled,
thereby reducing the corresponding scheduling overheads.

Obs. 5. In the best scenarios, the SUA of Solo+Threaded is
45% greater than that of Solo.

This is backed by Fig. 9, where Threaded gives an SUA
improvement of 47%. The SUA of Threaded is 45% greater
than that of Solo in 43% of all scenarios. Having DIS

10



0 2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
Sc

he
du

la
bi

lit
y

Solo
Threaded

Fig. 8. AB-Moderate, Moderate, Long, DIS.

0 2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

Solo
Threaded

Fig. 9. AB-Moderate, Long, Light, DIS.

0 2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

Solo
Threaded

Fig. 10. C-Heavy, Long, Light, Prior.

SMT Effectiveness distribution, like in Fig. 9, is beneficial
to Threaded as the distribution has smaller SMT Effective-
ness values than the others. Having light per-task utilizations
and AB-moderate period distributions, like in Fig. 9, are
much beneficial to Threaded. First, since tasks with light
utilizations are unlikely to exceed the framework’s cap on
threaded utilizations, light per-task utilizations afford more
opportunities for using SMT. Second, the aforementioned
reduction in overhead increases as more tasks are threaded.

Obs. 6. In some scenarios, the SUA of Threaded is less than
that of Solo.

This is backed by Fig. 10, where Threaded gives a 12%
reduction in SUA compared to Solo. Threaded has lower
SUA than Solo in only 2.5% of all scenarios. Threaded is
less effective for systems with high SMT effectiveness, as
Prior SMT Effectiveness parameter in our case. Threaded
is also tend to be less effective for the C-Heavy criticality

distribution compared to AB-moderate criticality distribution.
This may because of the increased per-task utilizations, which
are penalized by our Level-C schedulability conditions.

Overall, SMT shows great promise for increasing the set
of schedulable task systems on hardware that supports it;
however, care must be taken such that SMT is not used in
situations like those in Obs. 6. To avoid this, more advanced
heuristics must be designed. Rather than just seeking to lower
overall system utilization, such heuristics need to balance this
objective against the fact that doing so may lead to increased
capacity loss. Another option could be employing SMT, or not,
on a per-level basis; perhaps the scenario in Fig. 10 would be
better if SMT were used for Levels A and B, but not C.

VII. CASE STUDIES

To validate the safe usage of SMT by our proposed ap-
proach and support the results of our schedulability study,
we conducted case-study experiments. We created ten task
systems corresponding to the difficult-to-schedule scenario
corresponding to a similar graph as shown in Fig. 8. Note
that, Solo has zero schedulability for this scenario. In each task
system, we constructed Level-A and -B tasks from the TACLe
benchmarks as representative of tasks having small runtimes
and WSSs, and Level-C tasks from the SD-VBS benchmarks
as representative of tasks having less-deterministic compu-
tation. We executed each task system for 60 minutes on
both CCXs of our 3950X platform. Across all task systems,
we observed no deadline misses by Level-A or -B tasks.
Surprisingly, we did not observe deadline misses by Level-
C tasks, an unexpected result as they are SRT. Across all task
systems, 85% of the Level-A and -B tasks were paired, while
15% of the Level-C tasks were threaded. These results suggest
the applicability of our approach to a real system.

VIII. CONCLUSION

We have presented an extension of the MC2 framework that
enables SMT-aware scheduling at all criticality levels. Intro-
ducing this awareness motivated providing dual L2/L3 shared-
cache management. Through benchmarking experiments, we
also examined how the use of SMT affects execution times
in the presence of other interference sources. Based on data
from these experiments and measured overheads on our 3950X
platform, we conducted a large-scale overhead-aware schedu-
lability study to assess the effectiveness of using SMT. In this
study, SMT enabled average SUA gains of 22% and best-case
gains of over 50%. We reinforced these results by conducting
case-study experiments involving actual running programs.

Due to space limitations, we focused our attention on the
interference-mitigation mechanism shown to be of greatest
impact in the pre-existing MC2 framework, namely shared-
cache management. However, the pre-existing MC2 also pro-
vides other management features to mitigate interference due
to DRAM conflicts, data sharing, I/O, etc. In future work, we
intend to examine SMT alongside these features. Additionally,
our 3950X platform enables a richer array of cache and bus-
management options that warrant further consideration.

11



REFERENCES

[1] S. Osborne and J. Anderson, “Simultaneous multithreading and hard real
time: Can it be safe?” in ECRTS ’20, 2020, pp. 14:1–14:25. [Online].
Available: https://www.cs.unc.edu/∼anderson/papers/ecrts20b.pdf

[2] S. Osborne, J. Bakita, and J. Anderson, “Simultaneous multithreading
applied to real time,” in ECRTS ’19, 2019, pp. 1–22. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2019/10740

[3] S. Osborne, S. Ahmed, S. Nandi, and J. Anderson, “Exploiting simul-
taneous multithreading in priority-driven hard real-time systems,” in
RTCSA ’20, 2020, pp. 1–10.

[4] A. Alhammad and R. Pellizzoni, “Trading cores for memory bandwidth
in real-time systems,” in RTAS ’16, 2016, pp. 1–11.

[5] A. Alhammad, S. Wasly, and R. Pellizzoni, “Memory efficient global
scheduling of real-time tasks,” in RTAS ’15, 2015, pp. 285–296.

[6] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis, “Evaluation of cache
partitioning for hard real-time systems,” in ECRTS ’14, 2014, pp. 15–26.

[7] N. Audsley, “Memory architecture for NoC-based real-time mixed
criticality systems,” in the First Workshop on Mixed Criticality, 2013,
pp. 37–42.

[8] M. Chisholm, N. Kim, B. Ward, N. Otterness, J. Anderson, and F. D.
Smith, “Reconciling the tension between hardware isolation and data
sharing in mixed-criticality, multicore systems,” in RTSS ’16, 2016, pp.
57–68.

[9] M. Chisholm, B. Ward, N. Kim, and J. Anderson, “Cache sharing and
isolation tradeoffs in multicore mixed-criticality systems,” in RTSS ’15,
2015, pp. 305–316.

[10] G. Giannopoulou, N. Stoimenov, P. Huang, and L.Thiele, “Scheduling
of mixed-criticality applications on resource-sharing multicore systems,”
in EMSOFT ’13, 2013, pp. 1–15.

[11] M. Hassan and H. Patel, “Criticality- and requirement-aware bus arbi-
tration for multi-core mixed criticality systems,” in RTAS ’16, 2016, pp.
1–11.

[12] M. Hassan, H. Patel, and R. Pellizzoni, “A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems,”
in RTAS ’15, 2015, pp. 307–316.

[13] J. Herter, P. Backes, F. Haupenthal, and J. Reineke, “CAMA: A
predictable cache-aware memory allocator,” in ECRTS ’11, 2011, pp.
23–32.

[14] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and P. Cazorla,
“A dual-criticality memory controller (DCmc) proposal and evaluation
of a space case study,” in RTSS ’14, 2014, pp. 207–217.

[15] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh,
“A predictable and command-level priority-based DRAM controller for
mixed-criticality systems,” in RTAS ’15, 2015, pp. 317–326.

[16] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajku-
mar, “Bounding memory interference delay in COTS-based multi-core
systems,” in RTAS ’14, 2014, pp. 145–154.

[17] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for
practical OS-level cache management in multi-core real-time systems,”
in ECRTS ’13, 2013, pp. 80–89.

[18] N. Kim, M. Chisholm, N. Otterness, J. Anderson, and F. D. Smith, “Al-
lowing shared libraries while supporting hardware isolation in multicore
real-time systems,” in RTAS ’17, 2017, pp. 223–234.

[19] N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F. Smith,
“Attacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning,” Real-Time Systems,
pp. 709–759, 2017.

[20] O. Kotaba, J. Nowotsch, M. Paulitsch, S. Petters, and H. Theiling,
“Multicore in real-time systems – temporal isolation challenges due to
shared resources,” in DATE ’13, 2013.

[21] Y. Krishnapillai, Z. Wu, and R. Pellizzoni, “ROC: A rank-switching,
open-row DRAM controller for time-predictable systems,” in ECRTS
’14, 2014, pp. 27–38.

[22] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore sys-
tems,” in DATE ’10, 2010, pp. 741–746.

[23] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. Phatak, R. Pelliz-
zoni, and M. Caccamo, “A real-time scratchpad-centric OS for multi-
core embedded systems,” in RTAS ’16, 2016, pp. 1–11.

[24] B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making shared caches
more predictable on multicore platforms,” in ECRTS ’13, 2013, pp. 157–
167.

[25] M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee, “Analysis and imple-
mentation of global preemptive fixed-priority scheduling with dynamic
cache allocation,” in RTAS ’16, 2016, pp. 1–12.

[26] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in RTAS ’14, 2014, pp. 155–166.

[27] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-
system support for mixed criticality,” in Workshop on Mixed Criticality:
Roadmap to Evolving UAV Certification, 2009.

[28] M. Chisholm, N. Kim, S. Tang, N. Otterness, J. Anderson, F. D. Smith,
and D. Porter, “Supporting mode changes while providing hardware
isolation in mixed-criticality multicore systems,” in RTNS ’17, 2017,
pp. 58–67.

[29] N. Kim, S. Tang, N. Otterness, J. Anderson, F. D. Smith, and D. Porter,
“Supporting I/O and IPC via fine-grained OS isolation for mixed-
criticality real-time tasks,” in RTNS ’18, 2018, pp. 191–201.

[30] N. Sritharan, A. Kaushik, M. Hassan, and H. Patel, “Enabling pre-
dictable, simultaneous and coherent data sharing in mixed criticality
systems,” in RTSS ’19, 2019, pp. 433–445.

[31] S. Cheng, J. Chen, J. Reineke, and T. Kuo, “Memory bank partitioning
for fixed-priority tasks in a multi-core system,” in RTSS ’17, 2017, pp.
209–219.

[32] J. Xiao, S. Altmeyer, and A. Pimentel, “Schedulability analysis of non-
preemptive real-time scheduling for multicore processors with shared
caches,” in RTSS ’17, 2017, pp. 199–208.

[33] G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni,
and M. Caccamo, “Designing mixed criticality applications on modern
heterogeneous mpsoc platforms,” in ECRTS ’19, 2019, pp. 27:1–27:25.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ECRTS.2019.27

[34] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in ECRTS ’12, April 2012, pp. 299–308.

[35] ——, “Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms,” in RTAS ’13, 2013, pp.
55–64.

[36] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in RTAS ’16, 2016,
pp. 1–12.

[37] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core archi-
tectures,” in RTAS ’13, 2013, pp. 45–54.

[38] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems,” in RTAS ’19, 2019, pp. 1–14.

[39] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in RTAS ’11, 2011, pp. 269–279.

[40] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic memory
contention analysis for parallel real-time tasks under partitioned schedul-
ing,” in RTAS ’20, 2020, pp. 239–252.

[41] M. Xu, L. Thi, X. Phan, H. Choi, and I. Lee, “vcat: Dynamic cache
management using cat virtualization,” in RTAS ’17, 2017, pp. 211–222.

[42] M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee, “Holistic
resource allocation for multicore real-time systems,” in RTAS ’19, 2019,
pp. 345–356.

[43] M. Hassan and R. Pellizzoni, “Analysis of memory-contention in hetero-
geneous COTS mpsocs,” in ECRTS ’20, vol. 165, 2020, pp. 23:1–23:24.

[44] J. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo, “Implementation
of memory centric scheduling for COTS multi-core real-time systems,”
in ECRTS ’19, vol. 133, 2019, pp. 7:1–7:23.

[45] M. Hassan, “Discriminative coherence: Balancing performance and
latency bounds in data-sharing multi-core real-time systems,” in ECRTS
’20, vol. 165, 2020, pp. 16:1–16:24.

[46] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “Wcet(m)
estimation in multi-core systems using single core equivalence,” in
ECRTS ’15, 2015, pp. 174–183.

[47] B. Ocker, “FAA special topics,” in Collaborative Workshop: Solutions
for Certification of Multicore Processors, Nov. 2018.

[48] Neoverse E1 Core Technical Reference Manual, ARM, 2019, rev. r1p1.
[49] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M.

Tullsen, “Simultaneous multithreading: a platform for next-generation
processors,” IEEE Micro, pp. 12–19, 1997.

12

https://www.cs.unc.edu/~anderson/papers/ecrts20b.pdf
http://drops.dagstuhl.de/opus/volltexte/2019/10740
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27


[50] J. Bulpin, “Operating system support for simultaneous multithreaded
processors,” Ph.D. dissertation, University of Cambridge, King’s Col-
lege, 2005. [Online]. Available: http://www.cl.com.ac.uk/TechReports/

[51] J. Bulpin and I. Pratt, “Multiprogramming performance of the Pentium
4 with hyperthreading,” in the Third Annual Workshop on Duplicating,
Deconstruction and Debunking, 2004, pp. 53–62.

[52] “LITMUSRT home page,” Online at http://www.litmus-rt.org/, 2020.
[53] S. Vestal, “Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance,” in RTSS ’07, 2007, pp.
239–243.

[54] J. Liedtke, H. Härtig, and M. Hohmuth, “OS-controlled cache pre-
dictability for real-time systems,” in Real-Time and Embedded Tech-
nology and Applications Symposium. IEEE, 1997, pp. 213–224.

[55] AMD64 Technology Platform Quality of Service Extensions, ARM, 2018,
rev. 1.00.

[56] G. Jia, X. Li, Y. Yuan, J. Wan, C. Jiang, and D. Dai, “Pseudonuma
for reducing memory interference in multi-core systems,” in HPC ’14,
2014, pp. 1–8.

[57] M. Hillenbrand, M. Gottschlag, J. Kehne, and F. Bellosa, “Multiple
physical mappings: Dynamic DRAM channel sharing and partitioning,”
in the 8th Asia-Pacific Workshop on Systems, 2017, pp. 1–9.

[58] B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, University of North Carolina at
Chapel Hill, 2011.

[59] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos,
“Mixed criticality real-time scheduling for multicore systems,” in ICESS
’10, 2010, pp. 1864–1871.

[60] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“Taclebench: A benchmark collection to support worst-case execution
time research,” in WCET ’16, 2016, pp. 1–10.

[61] A. A. Division, “DIS Stressmark Suite,” Titan Systems Corporation,
Tech. Rep., 2000, ver. 1.0.

[62] S. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. Taylor, “SD-VBS: the san diego vision benchmark suite,” in
IISWC ’09, 2009, pp. 55–64.

[63] B. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache parti-
tioning on multi-tasking real time embedded systems,” in Proceedings
of the 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, 2008, pp. 101–110.

13

http://www.cl.com.ac.uk/TechReports/
http://www.litmus-rt.org/


APPENDIX A
TASK GENERATION FOR SCHEDULABILITY STUDIES

We now list the steps for generating a task system τ . To
aid in understanding these steps, we include Table II here
with bolded entries and walk through an example of a Level-
B task τi ∈ τ being generated corresponding with those
bold configurations. The steps of this example are given in
bracketed comments. In the example, we denote the Level-L
PET of task τi given W LLC ways as PETL

i (W ), and the
joint Level-L PET of paired task τi:j given W LLC ways as
PETL

i:j(W ).
1) Choose a goal total utilization U for τ , assuming Level-A

pessimism for PETs. [Let U of τ be 10.0.]
2) Determine percent per-level contributions to U by sampling

the relevant configuration for Criticality Utilization %.
[Suppose 40% of U of τ is from Level B. Then, the total
utilization of Level B should be 4.0.]

3) Sample the relevant configurations for Task Utilization,
Period, and WSS9 to generate tasks at each level. Briefly,
these choices give, for each level, task utilizations (as-
suming Level-A pessimism and all 16 ways of L3 cache
available), periods, and WSSs, respectively. Level-A PETs
assuming a fully available L3 cache are computed by multi-
plying tasks’ utilizations and periods. [4.0 of task utilization
must be generated for Level-B tasks. τi is such a task.
Suppose its utilization, period, and WSS are chosen to be
0.3, 6 ms, and 4.0 MB. Then PETA

i (16) = 0.3·6 = 1.8 ms.]
4) Sample Cache Sensitivity to determine how much the

Level-A PET of each task inflates when given no L3 cache
allocation. Level-A PETs for L3 allocations between full
and none are interpolated by curves similar to prior MC2

works (but using data point from our measurements) [19].
Such a curve depends on a task’s WSS such that any
allocated cache exceeding its WSS only marginally reduces
its PET. [Suppose τi’s cache sensitivity is chosen to be 2.95.
Then PETA

i (0) = 2.95 · PETA
i (16) = 2.95 · 1.8 = 5.31ms.

τi’s WSS is 4.0 MB (four L3 ways), so ∀W ≥ 4 :
PETA

i (W ) ≈ PETA
i (16). For all other W , PETA

i (W ) is
interpolated from these values.]

5) Sample SMT Effectiveness for each task for each level to
determine by how much PETs are inflated when running
as a thread vs. as a solo task. For Levels A and B, a task’s
threaded PET is its solo PET added to M times the PET of
its paired task. Mi =∞ with probability equal to the fixed
value in the cell in Table II of the current configuration
option. Otherwise, M is drawn from the Normal distribu-
tion next to this value. This methodology follows [1], [3].
For Level-C tasks, threaded PETs are equal to solo PETs
multiplied by the value sampled from the corresponding
Normal distribution in Table II. [Consider Level-B task τj .
Then, with probability 0.68, PETL

i:j(W ) =∞ for W ways

9In prior work on MC2, an analogous parameter called Max Reload Time
was used instead of WSS. Either parameter implicitly defines the other. We
have chosen to make WSS explicit as we believe this increases clarity. We
also inflated the distribution of WSSs for tasks compared to prior MC2 works
as our LLC is larger than that on the prior platform.

TABLE III
PARAMETERS USED IN SCHEDULABILITY STUDIES

Param. Config. Level A Level B Level C
Crit. C-Heavy [10,30] [50,70]
Util. % AB-Mod. [35,45] [10,30]
Task Light [.001,.03] [.001,.05] [.001,.1]
Util. Medium [.02,.1] [.05,.2] [.1,.4]

Heavy [.1,.2] [.2,.4] [.4,.6]
Period Many {5,10,20} {20,40,80,160} [10,100]
(ms) Short {3,6} {6,12} [3,33]

Contrast {3,6} {96,192} [10,100]
Long {48,96} {96,192} [50,500]

WSS (MB) Default 〈2.0, 2.0, .0032〉
Cache Sens. Default {1.16,2.95,15.68}
SMT DIS .05,〈.30, .17, .01〉 〈1.60, .54, 1〉
Effect. TACLe .15,〈.40, .21, .01〉 〈1.79, .32, 1〉

SD-VBS .05,〈.52, .17, .01〉 〈1.72, .13, 1〉
TACLe+ .15,〈.40, .21, .01〉 〈1.72, .13, 1〉SD-VBS
Prior .20,〈.60, .07, .01〉 〈1.80, .10, 1〉

[a, b] denotes a uniform distribution; 〈µ, σ,⊥〉 denotes a normal distri-
bution centered at µ with standard deviation σ, where values less than
⊥ are replaced with ⊥ to prevent nonsensical (i.e., negative) values;
{E} denotes a random choice from the elements of set E.

and level L. Otherwise, suppose Mi is sampled to be 0.4.
Then PETL

i:j(W ) = PETL
i (W ) + 0.4 · PETL

j (W ).]

14


	Introduction
	Background
	Task Model
	Hardware Platform
	SMT Overview
	Preexisting MC² Framework
	Determining PETs

	Implementing Isolation with Threading
	Partitioning the L3
	SMT and Hierarchical Caches
	Other Sources of Interference

	Scheduling and Partitioning with SMT
	Partitioning Level-A and -B Tasks
	Scheduling Level-C Tasks
	Cache Allocation and Overheads
	Schedulability under MC² with SMT

	Benchmark Experiments
	Benchmark Selection
	SMT and Multi-Level Cache Isolation
	Performance Effects of Cache Allocations

	Schedulability Study
	Case Studies
	Conclusion
	References
	Appendix A: Task Generation for Schedulability Studies

