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Abstract—Embedded and autonomous systems are increasingly
integrating AI/ML features, often enabled by a hardware accel-
erator such as a GPU. As these workloads become increasingly
demanding, but size, weight, power, and cost constraints remain
unyielding, ways to increase GPU capacity are an urgent need. In
this work, we provide a means by which to spatially partition the
computing units of NVIDIA GPUs transparently, allowing oft-
idled capacity to be reclaimed via safe and efficient GPU sharing.
Our approach works on any NVIDIA GPU since 2013, and can be
applied via our easy-to-use, user-space library titled libsmctrl.
We back the design of our system with deep investigations into
the hardware scheduling pipeline of NVIDIA GPUs. We provide
guidelines for the use of our system, and demonstrate it via an
object detection case study using YOLOv2.

I. INTRODUCTION

To counteract frequency-scaling limitations, processor man-
ufacturers have increasingly turned to multiprocessing to meet
ever-increasing computational demands. While well-studied
for CPUs, this surge in parallelism has also affected com-
putational accelerators such as GPUs. As such accelerators
see increasing adaptation in embedded and real-time systems,
effective utilization of this parallelism is crucial to meet size,
weight, power, and cost (SWaP-C) constraints.

Unfortunately, current GPU-management and scheduling
approaches often treat the GPU as a single, monolithic device
and enforce mutually-exclusive access control. This can result
in severe capacity loss, and is akin to scheduling only one task
at a time on a multicore CPU. Fig. 1(a) shows such losses on
a five-compute-unit GPU.

Innovation in GPU scheduling has been held back by
two issues. First, increasing GPU parallelism has not been
partnered with a manufacturer-provided means to spatially
partition compute units—the ability to run multiple tasks at
once, with each task assigned to a mutually-exclusive subset
of processing cores. Second, GPU hardware architecture and
scheduling mechanisms are largely undocumented, preventing
third parties from building efficient GPU-partitioning systems.

In this work, we present a novel mechanism for high-
granularity spatial partitioning of GPU compute units on all
NVIDIA GPUs from 2013 to the present day. This enables
more efficient scheduling, as in Fig. 1(b). (We further explain
this figure in Sec. II.) In this work, we further justify com-
pute partitioning use by uncovering hardware parallelism and
subdivisions of the memory and scheduling units in NVIDIA
GPUs. We focus on NVIDIA GPUs due to their industry-
leading architectures and adoption rates.

*Work was supported by NSF grants CPS 1837337, CPS 2038855, and CPS
2038960, ARO grant W911NF-20-1-0237, and ONR grant N00014-20-1-2698.
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Fig. 1. With time-sharing, only one task can use the GPU at a time. This
results in capacity loss when individual tasks cannot saturate the GPU compute
cores (SMs) as in (a). Our work enables spatial partitioning, allowing the GPU
to be subdivided among multiple tasks, reclaiming idle capacity as in (b).

Prior work. Existing efforts to partition NVIDIA GPUs have
been hamstrung by elusive documentation, and thus suffer
unacceptable fragility, overheads, or programming-model con-
straints. One approach, used to implement a concept called
“fractional GPUs” [1], [2], requires each GPU computation to
be modified such that it cooperatively yields unallocated com-
puting resources. Another approach, used in some recent GPU
interference-analysis work [3], [4], injects custom “blocking
kernels” to force subsequent work to execute on a subset
of computing resources. Both of these approaches inherit
many of the problems of cooperative multitasking, including
a lack of isolation from misbehaving tasks. These approaches
also curtail the permissible types of kernel launches, cause
unavoidable instruction-cache interference, and, among other
pitfalls, require extensive expert program modification.

Contributions. In this work, we:
1) Reveal a hardware mechanism for spatial partitioning of

compute units in all NVIDIA GPUs since 2013.
2) Build and demonstrate a simple, effective, and portable

GPU spatial partitioning API.
3) Provide heretofore unpublished details on the hardware

scheduling pipeline of NVIDIA GPUs.
4) Detail heretofore unpublished architectural patterns used

in NVIDIA GPUs, including the layout of and intercon-
nects between compute and memory units.

5) Evaluate the limits of, and develop guidelines for, the
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effective use of spatial partitioning on NVIDIA GPUs.
6) Demonstrate via a case study how spatial partitioning

can be applied to increase GPU utilization and reduce
latency for a convolutional neural network (CNN).

Organization. We define key GPU terms in Sec. II before
more thoroughly discussing relevant prior work in Sec. III.
We detail our partitioning method and API in Sec. IV, and
support the usefulness of our approach via an elucidation of
GPU hardware in Sec. V. We evaluate our method and provide
guidelines for its use in Sec. VI, demonstrate effectiveness via
a case study in Sec. VII, and conclude in Sec. VIII.

II. BACKGROUND

To provide initial terms and context, we overview recent
NVIDIA GPU architecture and the CUDA programming
framework often used by GPGPU (General-Purpose GPU)
tasks.

GPU architecture overview. GPUs are highly parallel ac-
celerators, typically built of several discrete functional units
that each have the internal capability for parallelism. Fig. 2
shows the internal functional units of one such recent NVIDIA
GPU. The eight GPCs (General Processing Clusters),1 each
consisting of sixteen SMs (Streaming Multiprocessors), col-
lectively compose the GPU’s compute/graphics engine.2 SMs
are arranged in groups of two per TPC (Thread Processing
Cluster).3 Each SM contains 64 CUDA cores. Other GPU
engines include five asynchronous copy engines, three video
encoding engines, one video decoding engine, and one JPEG
decoding engine.4 Prior work has shown that these engines
can operate with some degree of independence from the
compute/graphics engine [6].

CUDA overview. In order to simplify programming these
complex accelerators, NVIDIA developed the CUDA program-
ming language and API. An example CUDA program, which
adds two vectors A and B in parallel on the GPU, is shown

1Formerly known as a Graphics Processing Cluster.
2Due to manufacturing yields, at most seven of the eight GPCs are enabled

in shipping products, with between seven and eight TPCs per GPC [5]
3Formerly known as a Texture Processing Cluster.
4Also known as PCE, NVENC, NVDEC, and NVJPG respectively.
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Fig. 2. Architecture of a recent NVIDIA discrete GPU.

in Alg. 1. Procedures executed on the GPU are called CUDA
kernels. Comments in Alg. 1 describe each step. Note that
even this simple example utilizes both the compute/graphics
engine (Line 13) and a copy engine (Lines 11 and 14).

When a kernel is launched, the number of threads is
specified as a number of thread blocks,5 and threads per
block. In our example, for a 2,000-entry vector, one could
set numBlocks = 2 and threadsPerBlock = 1000,
as a block can contain no more than 1024 threads.

All CUDA applications run in their own memory address
space, called a context, and time-division multiplexing is used
to arbitrate among active CUDA and otherwise GPU-using
applications (such as display tasks) by default [7].6 Inside

5Also known as Cooperative Thread Arrays (CTAs).
6NVIDIA MPS or MiG can bypass this, but are only available in discrete

and server GPUs respectively [8], [9]. Despite repeated calls from academia,
NVIDIA has brought neither technology to its embedded chips.

Algorithm 1 Vector Addition in CUDA.
1: kernel VECADD(A: ptr to int, B: ptr to int, C: ptr to int, len: int)
2: i := blockDim.x * blockIdx.x + threadIdx.x ▷ Calculate index based on built-in thread and block information
3: if i >= len then
4: return ▷ Exit thread if out of vector bounds
5: end if
6: C[i] := A[i] + B[i]
7: end kernel
8: procedure MAIN
9: cudaMalloc(d_A, len) ▷ (i) Allocate GPU memory for arrays A, B, and C

10: . . .
11: cudaMemcpy(d_A, h_A, len) ▷ (ii) Copy data from CPU to GPU memory for arrays A and B
12: . . .
13: vecAdd<<<numBlocks, threadsPerBlock>>>(d_A, d_B, d_C, len) ▷ (iii) Launch the CUDA kernel on GPU
14: cudaMemcpy(h_C, d_C, len) ▷ (iv) Copy results from GPU to CPU array C
15: cudaFree(d_A) ▷ (v) Free GPU memory for arrays A, B, and C
16: end procedure
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a single CUDA application, multiple FIFO queues called
streams can be used to allow work to use the GPU fully
concurrently [10]. Combining all CUDA-using functionality
into a single context with multiple streams is often done to
avoid cases where several small applications, none of which
can fully use the GPU, are exclusively timesliced [11]. A toy
illustration of this is shown in Fig. 1, where combining multi-
ple applications into a single context reduces GPU busy time
by > 60%—if the GPU’s SMs can be hardware partitioned.
Without hardware partitioning, Job 1 would attempt to use
two SMs when run alongside the others, preventing Job 2
from starting. With partitioning, we can force Job 1 to use a
single SM for twice as long, yielding a more efficient overall
schedule.

Real-time terminology. Tasks are composed of jobs, with a
rate of release known as a period. After release, each job and
must complete by a subsequent deadline. If tasks release jobs
exactly at the start of their period they are known as periodic.
If, instead, the period only defines a minimum separation
between releases, the task is known as sporadic. Tasks may
have an associated criticality, which reflects their relative
importance in the system. For example, in a self-driving car, a
pedestrian-detection task would have high criticality, whereas
in-screen display updates would have low criticality.

III. RELATED WORK

Hardware predictability is key in embedded and real-time
systems. Since the advent of applying GPUs towards general-
purpose compute tasks, researchers have sought to develop
management approaches that enforce predictable behavior
when a GPU is shared among applications.

One of the most notable early works in this area is
TimeGraph [12], which uses an interception layer and GPU-
interrupt-driven scheduler to serially arbitrate GPU work sub-
mission. This scheduling approach theoretically still applies
to NVIDIA GPUs, but requires fully open-source drivers and
does not allow for parallel executions on the GPU.

Another, simpler, but more broadly applicable approach
to predictably share a GPU is to treat it as a resource to
which accesses are protected by mutual-exclusion locking.
The GPUSync framework [13] and extensions [6] can be
considered exemplars of this approach. These works fur-
ther innovate by allowing for predictable intra-GPU sharing.
Through the observation that some auxiliary GPU units such as
the copy engines can operate independently of compute work,
these works allow for per-GPU-engine-granularity locking.
This enables, for example, one application to perform GPU
computations while another performs copies.

Subsequent to these works, significant effort has gone into
allowing more predictable intra-GPU sharing, particularly of
the GPU’s primary compute/graphics engine. The recent work
of Otterness and Anderson [14], [15] provided a breakthrough
in this area, by allowing multiple applications to simulta-
neously share commodity AMD GPUs through transparent,
hardware spatial partitioning of the main compute cores.
This technique has yet to be extended to NVIDIA GPUs,

with recent work remaining constrained to software-emulated
partitioning [1]–[4], or conceptual analysis [16].

Significant supporting work to reverse engineer GPU design
has accompanied GPU management efforts. Historically, com-
modity GPU designs have been shrouded in secrecy. Even in-
struction encodings—a commonly shared piece of information
for any processor—have remained secret for GPUs [17]–[19].
Notable reverse engineering works include those of Otterness
et al., Amert et al., and Olmedo et al. to expose the queue
structure used for compute work in NVIDIA GPUs [10], [20],
[21], the work of Capodieci et al. and Spliet and Mullins to
clarify the preemption capabilities of NVIDIA GPUs [7], [22],
and the work of Jain et al. to elucidate the memory hierarchy
in NVIDIA GPUs [1]. Outside of the academic community,
the Nouveau [23] and Mesa [24] reverse-engineered NVIDIA
GPU driver projects provide crucial details on GPU-to-CPU
interfaces.

Despite these efforts, we are aware of no published method
that implements transparent spatial partitioning of the com-
pute/graphics engine for NVIDIA GPUs.

IV. IMPLEMENTING COMPUTE PARTITIONING

We now discuss how we enable transparent hardware parti-
tioning of compute units in NVIDIA GPUs, and overview our
easy-to-use, portable, user-space API for doing so.

A. Partitioning on TPC Boundaries

We implemented partitioning by activating two existent,
but little-known and unused fields in an obscure NVIDIA
data structure known as a TMD (Task MetaData) used to
launch GPU compute work [25] (we return in detail to this
structure in Sec. V).7 The fields we uncovered are named
SM_DISABLE_MASK_LOWER and _UPPER. These fields are
publicly listed, from TMD structure V1.6 (Kepler) to V3.0
(Ampere) [26], but not used in any open-source software. As
one of, if not the only, public reference to an SM mask, we
decided to explore the purpose and functionality of these fields.
We refer to these fields as the SM mask going forward.

Activating partitioning. Unfortunately, modifying a TMD
created by the CUDA library is somewhat difficult—the TMD
is almost immediately uploaded onto the GPU after construc-
tion. In order to modify the TMD, we discovered and utilized
an undocumented CUDA debugging callback API to intercept
and modify the TMD after construction, but before upload
onto the GPU. Using this mechanism, we experimented with
the SM mask and found, on older GPUs, it is a bitmask where
an enabled bit indicates a disabled SM for the kernel described
by the TMD. This can allow for spatial partitioning of SMs.
Given a mutually exclusive partition configuration, partitioning
can be enforced by setting the SM mask for every kernel such
that every kernel in one partition is prohibited from running
on any SM of another partition. We show such partitioning in
Fig. 3.

7The TMD is called a QMD in some sources. QMD stands for Queue
MetaData. This has been subsumed by the TMD, and old behavior can be
accessed by flipping the IS_QUEUE TMD bit [25], [26]
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Fig. 3. Partitioning a GTX 1060 3 GB into four- and five-SM partitions.
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Fig. 4. An "SM mask" acting as a TPC mask on the Telsa P100 GPU.

The experiment in Fig. 3 involves two kernels, K1 and
K2, which spin for a fixed amount of time. K2 is launched
immediately after K1, and needs to complete about half as
much work. Launch times are indicated by the colored arrows
at the bottom. Each shaded square in this plot represents the
execution of a block of a kernel, with height representing the
number of resident threads, and width representing the length
of execution. The jth block of kernel i is denoted Ki:j. We
show CUDA’s default behavior at left, and the behavior with
an SM mask at right.

In the left plot, observe how K1’s work is immediately
distributed among all the SMs of the GPU upon launch, and
that the blocks of K2 are prevented from starting execution
until after K1’s initial set of blocks completes. This pattern
remains no matter the priority of K2, mirroring the findings
of [10]. At right, we enable an SM mask of 0x1e0 on K1,
and 0x01f on K2. With these masks, SMs 5-8 are disabled
for K1, and SMs 0-5 are disabled for K2. Observe how this
partitioning also allows for K2 to begin and finish earlier, as
no blocks of K1 prevent K2 from starting on SMs 5-8.

TPCs, not SMs. The promising results of Fig. 3 led us to
experiment on other, more recent, NVIDIA GPUs where we
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Fig. 5. Illustration of floorsweeping asymmetrically impacting GPU layout
and TPC numbering for two GP106 dies.

discovered an interesting discrepancy. We show this in Fig. 4.
We again launch two kernels, but flip every-other bit in the
SM mask, and run the experiment on two GPUs: first on the
GTX 1060 3GB at left, then on the Tesla P100 at right. Based
on the behavior in Fig. 3, we would expect our odd/even SM
mask to disable every odd SM for K1, and every even SM for
K2. This expectation holds only on the left. With the P100,
the pattern repeats at double the period. Why?

The GTX 1060 and Tesla P100 are both based on NVIDIA’s
Pascal architecture, but use dies configured in a slightly
different way. The P100 and newer GPUs are configured more
similarly to the GA100 in Fig. 2, with two SMs per TPC,
whereas the GTX 1060 and older GPUs have a one-to-one SM
to TPC ratio. This key difference, and substantial supporting
results, points to the "SM mask" actually serving as a TPC
mask to the GPU. Presumably, the name of the field in the
TMD is inherited from the days when the number of TPCs and
SMs were identical, allowing for more term interchangeability.

B. Partitioning on GPC Boundaries

Many GPU resources are instantiated on a per-GPC basis
(more on this in Sec. V-C), so it may be desirable to obviate
contention by aligning GPU partitions to GPC boundaries.
Earlier work on AMD GPUs [14] assumed a constant mapping
of compute units to shader engines (a GPC’s AMD equiva-
lent). NVIDIA GPUs are different. We illustrate this for two
instances of the GTX 1060 3 GB’s GP106 die in Fig. 5.
Disabled TPCs are crossed out, and the remaining TPCs are
renumbered. Note how both dies have nine enabled TPCs,
but not the same TPCs. The first TPC of GPC 1 is disabled
at right, but not at left. Instead the first TPC of GPC 0 is
disabled. This causes TPC 4 to be in GPC 0 at right, but
in GPC 1 at left. In our experiments, we find this pattern
repeated across most NVIDIA GPUs from the past several
years. Why would two ostensibly identical GPUs have such
different internal configurations?

This difference between dies stems from floorsweeping, a
technique increasingly employed by NVIDIA in recent years.
As GPU dies have grown in size to meet ever-increasing
computational demands, the likelihood of die manufacturing
errors has increased. Floorsweeping enables use of these
imperfect dies by fusing off (“sweeping” away) the defective
parts, allowing the remaining parts to function normally. As
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TABLE I
API OF OUR LIBSMCTRL LIBRARY.

Library Function Description Supported On
libsmctrl_set_global_mask(uint64_t mask) Set TPCs disabled by default across the entire appli-

cation. A set bit in the mask indicates a TPC is to
be disabled globally.

CUDA 10.2 through 12.1

libsmctrl_set_stream_mask(cudaStream_t stream,
uint64_t mask)

Set TPCs disabled for all kernels launched via
stream (overrides global mask).

CUDA 8.0 through 12.1

libsmctrl_set_next_mask(uint64_t mask) Set TPCs to be disabled for the next kernel launch
from the caller’s CPU thread (overrides global and
per-stream masks, applies only to next launch).r

CUDA 11.0 through 12.1

libsmctrl_get_gpc_info(uint32_t* num_gpcs,
uint64_t** tpcs_for_gpc, int dev)

Get number of GPCs for device number dev, and a
GPC-indexed array containing masks of which TPCs
are associated with each GPC.

Compute Capability 5.0
and up (nvdebug mod-
ule required)

libsmctrl_get_tpc_info(uint32_t* num_tpcs, int
dev)

Get total number of TPCs on device number dev. Compute Capability 3.5
and up

die manufacturing errors are randomly distributed, the disabled
units vary from die to die, as in Fig. 5.

Coupled with floorsweeping, dies are binned based on their
number of defective parts. For the GP106 die shown in Fig. 5,
if no TPCs are defective it is sold as a GTX 1060 6 GB, if at
most one TPC is defective it is sold as a GTX 1060 3 GB, if
at most two TPCs are defective it is sold as a Quadro P2000,
and so on. Dies beyond a defect threshold are discarded.

When partitioning TPCs, each bit in the mask corresponds
to a TPC after they have been renumbered, as in Fig. 5. This
means that TPC to GPC mappings are necessary to partition
on GPC boundaries across dies. We determined which GPU
registers contain this information, and built a Linux kernel
module named nvdebug to extract and expose this via an
interface in /proc.8

C. Our API

Combining together the capability to partition TPCs and
GPCs, we present our flexible user-space library and API,
titled libsmctrl, written in C. We detail our API in Table I,
with function names and parameters in the first column,
function description in the next, and finally the prerequisites
for use of the function. We support setting the TPC mask
at global, per-stream, and per-kernel levels, where setting a
mask at higher-granularity will override a lower-granularity
mask. This allows for most TPCs to be idled by default, with
access granted only to explicitly permitted streams or kernels.
Our library supports aarch64 and x86_64 CPUs, and CUDA
versions stretching as far back as 2016. Our library is fully
user-space, and compiled binaries are portable to any recent
Linux kernel and NVIDIA driver. When active, our library
adds only a few instructions of overhead onto each kernel
call. Our implementation primarily relies on an undocumented
CUDA callback API, but we employ several other techniques
on older CUDA versions.

Basic partitioning. An example of our API in a CUDA
program is shown in Listing 1. We assume a nine-TPC GPU,
but a real program should compute the mask dynamically after
using libsmctrl_get_tpc_info() to get the number
of TPCs. For most programs, we recommend disabling most

8See documentation linked at https://www.cs.unc.edu/~jbakita/rtas23-ae/.

1 int main() {
2 // Allow work to only use TPC 1 by default
3 libsmctrl_set_global_mask(~0x1ull);
4 ...
5 // Stream-ordering is still respected with
6 // partitioning, so avoid the NULL stream
7 cudaStream_t urgentStream, otherStream;
8 cudaStreamCreate(&urgentStream);
9 cudaStreamCreate(&otherStream);

10 // Override the global default settings
11 // Allow otherStream to use the first 5 TPCs
12 libsmctrl_set_stream_mask(otherStream,
13 ~0x1full);
14 long_kernel<<<2048, 2048, 0, otherStream>>>();
15 // Allow urgentStream to use the last 4 TPCs
16 libsmctrl_set_stream_mask(urgentStream,
17 ~0x1e0ull);
18 // Launch short, sporadic work as it arrives
19 bool done = 0;
20 while (!done)
21 wait_for_work_or_done(&done);
22 sporadic_work<<<32, 32, 0, urgentStream>>>();
23 cudaStreamSynchronize(urgentStream);
24 }
25 }

Listing 1. Example usage of partitioning API (9 SM GPU).

TPCs by default—CUDA may implicitly launch internal ker-
nels to support some API calls and, if no default mask is set,
those calls may interfere with your partitions. In Listing 1 we
set the global default on Line 3, permitting work to run only on
TPC 0 unless otherwise specified. It is possible to disable all
TPCs by default (with a mask of ~0ull),9 but we recommend
against this, as it causes kernels launched with the default TPC
mask to hang indefinitely (including CUDA-internal ones).

Continuing on in the example of Listing 1, we create CUDA
streams on Lines 7–9 to allow for concurrent kernel launches
(prior work [10] discusses why this is necessary), and set
the TPCs these streams can use on Lines 12 and 16. We
allow otherStream to use TPCs 0–4, and urgentStream
to use TPCs 5–8. This allows us to launch long-running
and difficult-to-preempt kernels in otherStream, while
still being able to immediately start sporadic work via
urgentStream as it arrives. Our API is highly flexible, and
supports many other usage patterns not detailed here.

GPC partitioning. To support partitioning on GPC bound-

9Postfix ull indicates a 64-bit literal, and ~ is bitwise inversion.

5
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1 // Get mask of enabled TPCs for each GPC
2 uint32_t num_gpcs;
3 uint64_t *tpcs_for_gpc;
4 libsmctrl_get_gpc_info(&num_gpcs,
5 &tpcs_for_gpc);
6 assert(num_gpcs >= 2);
7
8 // Allow the next kernel to run on any TPC in
9 // the first two GPCs

10 uint64_t tpc_mask = 0;
11 tpc_mask |= tpcs_for_gpc[0];
12 tpc_mask |= tpcs_for_gpc[1];
13
14 // The above lines created a bitmask of TPCs to
15 // enable, so invert to get the disable mask
16 libsmctrl_set_next_mask(~tpc_mask);

Listing 2. Example usage of GPC information API.

aries, we provide a easy-to-use wrapper function around our
nvdebug kernel module, and include a brief example of this
in Listing 2. This example allocates the TPCs of two GPCs to
the next kernel launch. Line 4 obtains an num_gpcs-length
array of bitmasks. Array index i is associated with GPC i, and
if bit j is set in the mask in that entry, TPC j is associated
with GPC i. A TPC may only be associated with one GPC.
On Lines 10–12 we combine the bitmasks of the TPCs for
GPCs 0 and 1, then apply the mask on Line 16.

D. Limitations

Our system works by intercepting TMDs after construction
on the CPU, but pre-GPU-upload. As such, it will not work for
kernels with TMDs constructed and executed from the GPU
without the involvement of the CPU, such as when CUDA
Dynamic Parallelism (CDP) or CUDA Graphs are used.

Further, we cannot partition GPUs with over 64 TPCs, as
all versions of the TMD structure presently contain only 64
bits for partitioning. No shipping GPU has that many TPCs,
but NVIDIA’s upcoming H100 allegedly contains up to 72.

Finally, our current library does not support per-GPU global
partition configuration, but could easily be extended to do so.

V. HOW NVIDIA GPUS SCHEDULE COMPUTE

The usefulness of GPU partitioning hinges on the ability
of GPU hardware to supply jobs and data to each partition
in parallel. In this section, we take a deep-dive into the
architectural patterns of NVIDIA GPUs, with a particular
focus on how they allow for parallelism at every step of a
kernel’s journey from user-space dispatch to completion.

We first briefly consider our sources of information before
delving into the full pipeline, as numbered in Fig. 6.

A. Sourcing Architectural Details

We gleaned architectural information from cross-referenced
public sources. NVIDIA’s patents cover the implementation
of GPU compute priorities [27], block distribution logic [28],
[29], preemption design [30], and more [25], [31]–[34]. As
patents can describe non-existent or infeasible inventions, we
verified if the parents discuss hypothetical or actual designs
by cross-referencing them with NVIDIA’s open-source nvgpu
driver [35], NVIDIA’s public headers [26], the work of the
Nouveau and Mesa projects [23], [24], and other sources.
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see Fig. 7 for detail
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Fig. 6. High-level GPU hardware compute scheduling pipeline.

As an example of our validation process, consider NVIDIA’s
patent for TMD error checking [25]. Part of this patent
describes, in order, the fields of the TMD structure. A publicly
available header,10 used in the Mesa project,11 also provides
the ordering and names of TMD fields. These sources match,
indicating that the patent likely describes real hardware. We
applied this process, or performed verification experiments, to
attain the following content.

As the following information is generally a synthesis of all
the above sources, we omit redundant inline citations. To the
best of our knowledge, our discussion is accurate for NVIDIA
GPUs from Kepler through at least Ampere.

B. The Compute Scheduling Pipeline

We now begin following the path of a single kernel through
the GPU scheduling pipeline. Formally, we define a compute
job on the GPU as a single kernel launch.

10classes/compute/clc0c0qmd.h in open-gpu-doc [26].
11gallium/drivers/nouveau/nvc0/clc0c0qmd.h in Mesa [24].
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1 Kernel instantiation. On NVIDIA GPUs, kernels are
internally described via the aforementioned TMD structure.
Beyond the already-discussed properties, it describes the
thread blocks, threads per block, and shared memory resources
needed for the kernel, and includes the address of the kernel’s
entry point (among many other fields, such as priority). After
a user-space library (such as CUDA or OpenCL) constructs a
TMD, it enqueues a launch command containing a pointer
to the TMD into the next available command slot in a
command segment. A command segment is a contiguous block
of memory containing GPU commands.

The TMD is used as a kernel descriptor and handle through-
out the scheduling pipeline, persisting until all computations
of the GPU kernel are complete.

2 Host Interface.12 The GPU’s Host Interface bridges the
gap from CPU to GPU for the TMD. This unit contains one
or more Pushbuffer Direct Memory Access units (PBDMAs),
along with context-switching control logic, among other sub-
units. The PBDMAs load commands from user space via an
indirect buffer, which is a circular buffer of pointers to com-
mand segments.13 These structures, shown at the top of Fig. 6,
allow user-space applications to directly dispatch commands to
the GPU without system call or driver overheads. The PBDMA
units individually load, parse, and cache commands at a rate
much faster than that of most GPU engines. While in our
illustration, we show GPU command queues as located in CPU
memory (as is most common), they can also be located in GPU
memory. After command acquisition and parsing, the Host
Interface forwards the command to the appropriate engine. In
the case of a kernel launch, it passes the TMD to the Compute
Front End.

3 Compute Front End. The Compute Front End relays
TMD pointers from 2 , the Host Interface to 4 , the Task
Management Unit. Further, we understand that this unit can
orchestrate context switches in subsequent units.14 While this
unit processes TMDs at a rate decoupled from the others, it
may cause work to queue if the incorrect context is active. We
focus on a single context in this work, and so do not further
consider said issue. Further details on this unit are elusive. 15

4 Task Management Unit (TMU).16 Illustrated in Fig. 7, the
Task Management Unit queues TMDs by priority and arrival
order until 5 , the Work Distribution Unit, is ready to receive
them. Due to the explicit scheduling responsibilities of the
TMU, we investigate it in depth.

The TMU is built around a series of priority-level, singly-
linked lists, with one linked-list-head and -tail pointer tracked
for each priority level. Each list is exclusively composed of

12Also known as “FIFO” in Nouveau.
13A “pushbuffer” is a combination of these segments and pointers.
14Via the Front-End Context Switch (FECS) unit. See Spliet et al. [22].
15The Compute Front End (COMP FE), like the better-documented and

similarly-situated Graphics Front End (GFX FE), likely also configures 6 ,
the Execution Engine and Memory, but this is difficult to confirm.

16More recently called the “Scheduler Unit” or “SKED” in patents [33],
[34], and known in marketing text as the Grid Management Unit (GMU) [36].
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Fig. 7. A three-priority task management unit with five queued TMDs.
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Fig. 8. A six-slot work distribution unit on a four-TPC GPU.

TMDs. In Fig. 7, we show a unit supporting three priority
levels, with TMDs illustratively numbered by arrival order.
Three TMDs are in the highest-priority-level list, none are
in the medium-priority-level list, and two TMDs are in the
lowest-priority-level list. Each priority-level list is formally
called a TMD Group.

These lists allow the TMU to reorder TMDs that it receives,
such that higher-priority ones skip ahead of lower-priority
ones. Upon TMD arrival from the Compute Front End, or
elsewhere,17 the TMU reads the TMD’s GROUP_ID field, and
appends the TMD to the tail of the specified TMD Group.18

For example, in Fig. 7, TMD4 is the most-recently arrived
high-priority TMD, and TMD2 is the most-recently arrived
low-priority TMD.

As unit 5 in the scheduling pipeline signals readiness for
another TMD, the TMU removes and passes the head of the
highest-priority non-empty list. This is illustrated with the bold
outlines and “Next TMD” box in Fig. 7. Given the TMU state
of Fig. 7, TMDs would exit the TMU in the following order:
TMD1, TMD3, TMD4, TMD0, and then TMD2.

The TMU is the final unit which can receive TMDs at a
rate decoupled from the TMD completion rate. This causes
TMDs to eventually accumulate in the TMU whenever kernels
are dispatched by user space at a rate faster than they can
complete.

5 Work Distribution Unit (WDU).19 Illustrated in Fig. 8
the Work Distribution Unit dispatches TMDs from task slots

17The TMU may receive new TMDs directly from GPU compute units
when features such as CUDA Dynamic Parallelism are employed.

18Unless field ADD_TO_HEAD_OF_QMD_GROUP_LINKED_LIST is true.
19Also known as the CUDA Work Distributor (CWD) in marketing litera-

ture [36], and as the Compute Work Distributor in a recent patent [28].
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to available TPCs. The number of task slots is hardware
limited,20 forcing the WDU to make scheduling decisions with
incomplete information, eg. when the number of ready kernels
exceeds the number of task slots.

The WDU signals unit 4 , the TMU, for a new TMD
whenever a task slot becomes available. It then inserts the
TMD into a task slot in the Task Table, and inserts a reference
to the TMD in the Priority-Sorted Task Table. The priority-
sorted table is ordered first by priority, then by arrival time.
The Load Balancer dispatches thread blocks from the TMD
at the head of the priority-sorted table. Once all of a TMD’s
blocks are launched, it is removed from the priority-sorted
table, but left in the Task Table until all its blocks complete.

Fig. 8 illustrates the WDU state shortly after receiving the
TMDs of Fig. 7, and after dispatching all blocks of TMD1.
We reflect which kernels are executing on which TPCs via
shading of the TPC Resource Trackers. These units relay states
and commands between the TPCs and the WDU. Note how
TMD1 is still executing (light hatching) on the TPCs, and
so remains in the Task Table. TMD3, as the highest-priority
and earliest-arrived TMD, is now dispatching blocks to TPCs.
TMD4 is waiting for TMD3 to dispatch all its blocks before it
can move to the head of the priority table and dispatch blocks.

This ordering and dispatch process can be disturbed by two
things: TPC partitioning, and pending higher-priority work in
4 , the TMU. When TPC partitioning is in-use, if a TPC has
available capacity, but the TMD at the head of the sorted table
is prohibited from executing on that TPC, the WDU will skip
forward in the table until it finds a TMD allowed to execute
on the available TPC (or reaches the end of the table). If, for
example, TMD3 was prohibited from executing on TPC4, the
Load Balancer could instead dispatch blocks from TMD4.

When all WDU task slots are occupied, and any task slot
contains a TMD with priority lower than any pending in
4 , the TMU, the lower-priority TMD will be evicted from
the WDU and replaced with the higher-priority TMD. When
this occurs, the evicted TMD stops dispatching blocks and
completes blocks already in progress. The evicted TMD is
then inserted into the head of the respective priority-level list
in the TMU. We will further explore what this means for real
workloads in Sec. VI.

This concludes our coverage of the TMD from construction
to dispatch. We now consider aspects of GPU architecture that
are relevant while a thread block executes.

C. Memory Parallelism

Inherited from the high-bandwidth needs of graphical-
processing tasks, GPUs are massively parallel in ways far be-
yond the high number of CUDA cores. This subsection extends
the background of Sec. II with new details on the parallelism
of GPU caches, interconnects, and DRAM controllers.

6 Execution engine and memory subsystem. We illustrate
the data and instruction pipelines, from L1 caches to DRAM

20Documented as the “Maximum number of resident grids per device” in
Table 15 of the CUDA C++ Programming Guide [37].
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Fig. 9. Topology of GPU execution engine and memory subsystem.

chips, for the execution engine in Fig. 9. An “I” (resp.
“D”) postfix on a cache indicates an instruction (resp. data)
cache. Starting at the bottom in Fig. 9, consider the Memory
Partition Units. These are typically configured as one-per-
DRAM chip, with each partition unit containing a DRAM
controller and a subset of the L2 cache. Each partition unit
independently connects to every GPC via a crossbar bus, such
that partitioning Memory Partition Units will also partition the
crossbar bus and L2.

The crossbar bus links inside each GPC with a Memory
Management Unit (MMU, with associated Translation Looka-
side Buffer, TLB) for virtual memory support.21 This connects
to L1 data caches in each SM, and to a GPC-wide L1.5I cache.
The L1.5I cache respectively feeds per-SM instruction caches.

In all, each GPC can theoretically be configured to operate
with an exclusive subset of the GPU’s cache, bus, and DRAM
resources (if Memory Partition Units are partitioned, as in [1]).
Further, each SM can operate from its L1 cache without
generating interference.

To summarize this section, we find GPU hardware to be
more than capable of feeding jobs to many partitions simulta-
neously, and also find it capable of supplying partitions with
uncontended cache, bus, and DRAM resources.

VI. EVALUATING COMPUTE PARTITIONING

We now evaluate spatial compute partitioning to assess its
scalability, its intersections with hardware scheduling units,
and its usefulness compared to prior work.

A. Methodology

Our experiments utilized a variant of the
cuda_scheduling_examiner framework integrated
with our libsmctrl library. Unless otherwise noted, all
experiments ran without other processes competing for the
GPU. We found minimal impact due to host platform or
Linux kernel version, so we do not control for those variables
in our experiments.

21Some GPUs instead put the MMU in the Memory Partition Unit.
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Fig. 10. Complex TPC partitioning on the GTX 970.

B. Compute Partitioning: Flexible and Portable?

At this point, we have only shown TPC partitioning in
small experiments involving few kernels. How does it scale
to systems of many kernels and compute partitions?

We experimented with complex arrangements of the
GPUSpin and multikernel benchmarks, finding no ap-
parent limits on the number or arrangement of TPC partitions
allowed, discovering no ways TPC partitioning could compro-
mise the semantics of CUDA, and encountering few portability
limits.

We plot a representative experiment in Fig. 10. This plot
shows 38 kernels, across 17 unique TPC partitions and two
streams. This experiment demonstrates per-kernel partitioning,
stream-ordering, and complex partitioning. We discuss these
aspects before considering how they apply to GPUs beyond
the GTX 970 used in Fig. 10.

Per-kernel partitions. In the experiment of Fig. 10, every
kernel is assigned a different partition than its predecessor. For
example, consider Stream 2 (red). In the “T” at the bottom, K7
runs two blocks in a partition including only SM 5, whereas
the subsequent K8 in uses a partition including SM 1-5. K7
and K8 (along with all other kernels) are released just before
the 1.0s mark, but the partition is encoded into the kernel’s
TMD—not as a global GPU property—so it automatically
takes effect when the kernel begins.

Preservation of stream-ordering. The GPU preserves the
ordering of kernels in streams, even when a subsequent kernel
may require a mutually exclusive set of SMs. For example,
in Stream 2 in Fig. 10, K9 only needs SM 5, and K10 only
needs SM 10. However, K10 does not start until K9 completes.
CUDA stream semantics require subsequent kernels in the
same stream to not launch until all prior ones have been
completed—we find that to be preserved, even when TPC
partitioning is in use.

Complex and overlapping partitions. TPC partitions may
contain holes or overlap, and have no size restrictions. (By
holes, we mean non-contiguous sets of TPCs.) For example,
the “E” in Stream 1 of Fig. 10 features holes in K8 and K9’s

TABLE II
GPUS TESTED IN OUR EXPERIMENTS

GPU Name Compute
Capability Architecture

Tesla K40 3.5 Kepler
GTX 970 5.2 Maxwell
Jetson TX1 5.3 Maxwell (embedded)
Tesla P100 6.0 Pascal
GTX 1060 3 GB 6.1 Pascal
GTX 1070 6.1 Pascal
GTX 1080 6.1 Pascal
Jetson TX2 6.2 Pascal (embedded)
Titan V 7.0 Volta
Jetson Xavier 7.2 Volta (embedded)
Tesla T4 7.5 Turing
A100 40 GB 8.0 Ampere

partitions, which are the non-adjacent SMs 7, 9, and 11. For
an example of overlap, throughout the rest of Stream 1, we
allow the partitions of each kernel to fully overlap with those
of Stream 2, creating the mix of kernels from different streams
in the “R”, “A”, “S” and periods. We see no variation in the
behavior as the partition size is varied, with between one and
ten SMs per partition in Fig. 10.

Portability. Fig. 10 shows an experimental result from a single
GPU, however, we find this behavior to hold on every recent
NVIDIA GPU. Specifically, any GPU of Compute Capability
3.5 (2013) or greater, and CUDA 8.0 (2017) or newer supports
TPC partitioning via our libsmctrl library. This includes
embedded GPUs, such as that in the ARM64-based NVIDIA
Xavier System-on-Chip. We list all specific GPUs we tested
in Table II.

C. When Hardware Scheduling Breaks Down

In Sec. V, we discussed how much of the GPU, including
most parts of the scheduling pipeline, is highly parallel and
unlikely to hinder multiple compute partitions from running
simultaneously. In this subsection, we examine the narrow
cases when it does prevent partitions from running in parallel.

The consequences of greedy assignment. The WDU, the
last step in the scheduling pipeline, dispatches blocks from
kernels in global priority and then time-of-arrival order, with
limited situations in which it will skip ahead. This greedy
assignment approach can result in particularly non-optimal
block assignments when overlapping partitions are in use.

We demonstrate one such case in Fig. 11. Both subfigures
have identical configurations; the GPU is split into two par-
titions: SM 0-9 for Stream 1, and SM 0-3 for Stream 2. K1
and K2 are GPUSpin benchmarks launched simultaneously
with identical configurations in both subfigures. In the desired
outcome, at right, both kernels complete all their blocks before
time 0.5s. However, this outcome only occurs approximately
50% of the time. The result at left occurs otherwise.

In the experiment of Fig. 11, K1 and K2 race to the WDU.
Whichever reaches the WDU first has all its blocks dispatched
first. When K1 arrives first, its blocks are dispatched across
every TPC in its partition according to a previously researched
assignment algorithm [21]. This saturates all the TPCs in K2’s
partition, forcing it to wait until K1 completes before running.
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Fig. 12. Task Slot exhaustion on the GTX 1060 3GB causing an unrelated
partition to block K33 from dispatching blocks.

If K2 arrives first, its blocks are dispatched across its partition,
then K1’s across its, resulting in a more-efficient assignment.

The consequences of task slot exhaustion. The constrained
number of Task Slots are one of the few limits in the hardware
scheduling pipeline in NVIDIA GPUs. Effectively, the number
of Task Slots limits the number of kernels that the WDU can
simultaneously consider for dispatch onto the GPU.

Task slots fill in priority order, with lower-priority tasks
evicted as higher-priority ones become available in the TMU.
This can cause unrelated compute partitions to block one
another when many streams and stream priorities are in use.

We illustrate one such case for the GTX 1060 3GB, which
has 32 Task Slots, in Fig. 12.

Fig. 12 includes 33 streams, each containing a single,
respectively numbered kernel. The GPU is partitioned roughly
in half: Streams 1-32 on SMs 0-3, and Stream 33 on SMs 4-8.
K33 consists of 60, 750ms blocks, whereas K1-K32 consist
of one, 2.5s block. All kernels are derived from the GPUSpin
benchmark. Stream 1-32 are higher priority than Stream 33.

Observe how K33 stops dispatching new blocks shortly
after time 0.2s, not resuming until time 0.4s. K33 is in an
independent stream and partition, but gets evicted from the
WDU by the TMU after K1-K32 arrive, as they are higher
priority. While these 32 kernels wait to complete execution,
no Task Slots are available, and K33 must wait in the TMU,
unable to dispatch blocks. Once one of the higher-priority
kernels completes, as they do around time 0.4s, their Task
Slot is vacated, allowing K33 to take it, and once more resume
dispatching blocks.

In order to prevent this sort of blocking across unrelated
partitions, we recommend using no more CUDA streams than
the GPU has WDU slots, or prohibiting the use of CUDA
stream priorities across all partitions. As long as the number
of pending kernels does not exceed the number of WDU slots,
eviction will not occur, nor will it occur if all kernels have
identical priority.

D. Evaluating Partitioning Strategy

The principle preexisting work on spatial partitioning of
GPU compute units found that the assignment of compute
units to partitions is crucial on AMD GPUs, as adding compute
units to partitions may slow the partition in some cases [14].
That work proposed and evaluated two partitioning strategies:
SE-packed, and SE-distributed. SE stands for Shader Engine,
and is equivalent to a GPC in our context. The SE-packed
algorithm attempts to allocate all TPCs from the same GPC
to the partition before expanding the partition across multiple
GPCs. Alternatively, the SE-distributed algorithm attempts to
distribute the TPCs of each partition across GPCs as evenly
as possible. As this language has been adopted by other
work [16], we continue its use here.

To evaluate if any similar slowing effects occur on
NVIDIA GPUs, we port the relevant portions of the
hip_plugin_framework used in [14] to our variant of
the cuda_scheduling_examiner and reproduce their
experiment, with the results shown in Fig. 13.

In Fig. 13, we mirror the figure layout of prior work [14];
Fig. 9, including how long a matrix multiply takes for each
partition size under each assignment algorithm. Unlike on
AMD GPUs, we find that adding an additional compute unit
(TPC) to a partition does not slow that partition, no matter
whether the unit is assigned from the same, or a different GPC.
This is evident by the near-identical alignment of execution
times for each algorithm. However, this finding does not
obviate considerations around inter-task interference, and so
we recommend using the SE-packed assignment strategy to
minimize intra-GPC cache and bus interference.
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Fig. 13. SE-packed vs SE-distributed on the Titan V GPU.

VII. CASE STUDY

In order to demonstrate the real-world usefulness of our
GPU partitioning framework, we perform a case study where
we apply TPC partitioning to a GPU shared by two instances
of the YOLOv2 [38] convolutional neural network (CNN)
trained for object detection.

Background and methodology. Object detection systems
form a critical component of camera-based perception for
autonomous systems. These systems take images as input,
detect objects in them, and output bounding rectangles and
labels for each object. Transformer-based systems [39] can
reach higher accuracy than CNNs such as YOLOv2, but the
comparable speed of YOLOv2-like approaches has kept them
relevant in embedded computing applications. We consider
YOLOv2 for these reasons, and because it is built on the
DarkNet framework—a simple and easily-modifiable library.

We modify a DarkNet variant22 to support running multiple
instances of YoloV2 in parallel in different CUDA streams, to
support setting TPC masks for each stream via libsmctrl,
and to integrate with LITMUSRT . LITMUSRT is a patch to
the Linux kernel, adding support for more formal real-time
schedulers than what Linux provides by default [40]–[42].
Our host system23 has plentiful CPU cores, so we use the
partitioned fixed-priority (P-FP) LITMUSRT scheduler and
pin each of our instances of YOLOv2 onto a separate core.
We configure YOLOv2 such that the image copy-in, detection
pass, and result copy-out sequence form a single job. We
run all instances on the NVIDIA Titan V GPU, with TPC
partitioning configured as specified. Images are loaded from
disk in parallel threads. We configure each job with a period of
420ms,24 release jobs of all instances synchronously, and run
10,000 jobs, using a different image as input on each iteration
drawn from the PascalVOC 2012 dataset [43]. Job lengths are
timed using a library from prior work [44].

Protection from competitors. We first consider how our
library is able to protect an instance of YOLOv2 from com-
peting work which malfunctions. Table III contains the key
data discussed throughout this section.

22https://github.com/AlexeyAB/darknet
23Our test system has a 16-core AMD 3950X with 32GiB of RAM running

LITMUSRT 5.4.224, NVIDIA driver 520.56.06, and CUDA 11.8.
24A large period provides margin for our parallel image loading from disk.

TABLE III
YOLOV2 RUNTIMES

Case Competitor Partition Mean Min Max St. Dev.
1 None None 24 20 53 2.7
2 YOLOv2 None 40 35 69 2.8

3 Malfunctioning
YOLOv2 None 82 73 111 2.9

4 Malfunctioning
YOLOv2 50/50 45 35 157 22

When run alone on 8 TPCs,25 YOLOv2 takes 24 ms on
average to process a single frame (Case 1, Table III). When
combined with a second YOLOv2 instance, this time nearly
doubles to 40 ms (Case 2, Table III)—an unsurprising result
given the halved computing resources. More surprisingly, the
standard deviation remains low, and the relative min and max
are hardly changed by the addition of this competing work.

However, this predictability does not persist if the com-
peting instance malfunctions, as demonstrated by Case 3 in
Table III. In this case, the competing instance spawns numer-
ous unexpected kernels, stealing compute from the primary
YOLOv2 instance. This occurs because the WDU dispatches
from all runnable kernels equally, and the faulty addition of
kernels from the competing instance displaces work from our
primary instance. This results in a more-than-doubling of the
primary instance’s execution time to 82 ms—an unacceptable
spillover of a malfunction that should have been contained to
the competing instance.

TPC partitioning can help. When enabled and used to allo-
cate four TPCs to each instance, the execution time distribution
for the primary YOLOv2 instance nearly returns to its pre-
malfunction state—about 44 ms per frame.26 This indicates
that partitioning compute units can be sufficient to protect
against interference; in short:

Obs. 1. TPC partitioning can defend a GPU-context-sharing
task from losing performance to compute-intensive tasks.

Beyond fault containment, this can be usefully applied when
other tasks are unknown or have input-dependent computa-
tional sizes, but are expected to take a relatively constant
amount of compute. However, to apply partitioning in this
context, we must answer how partitions should be sized.

Tuning partition sizes. To investigate how the choice of
TPC partitioning effects runtimes, we tested the full range
of partitioning options for two instances of YOLOv2 on 8
TPCs and plot the results in Fig. 14. This plot shows, for each
partitioning configuration, the mean, min, and max execution
time of each instance. For example, when six TPCs are
allocated to Instance A and two to B, Instance A takes 70
ms per frame, and Instance B takes 30 ms.

25Throughout our case study, we only consider up to 8 TPCs. YOLOv2 is
a small network, and allocations of more than 8 TPCs (on the Titan V) yield
negligible performance improvement.

26The maximum and standard deviation in this case are driven by approx.
7% of samples which are extreme outliers. We suspect that these are not
caused by a partitioning issue—we see them in no other experiment—but
rather an internal CUDA synchronization issue, such as that uncovered in
recent work [45]. We intend to investigate this errata further in future work.
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Fig. 14. Job time of two instances across various partitions of 8 TPCs.

Obs. 2. TPC partitioning allows for smooth adjustment of task
execution times.

As we increase the number of TPCs for an instance in
Fig. 14, min, mean, and max execution times all decline, if
we decrease the number of TPCs, the reverse occurs. This
allows for TPC allocations to be used as a proxy for priority.
The larger an allocation, the sooner it will meet its deadline.
However, there are further complications:

Obs. 3. Providing additional TPCs to a task may provide a
negligible performance improvement.

Fig. 14 shows that for YOLOv2, the incremental benefit of
an additional TPC declines after the addition of a second TPC.
This may indicate that all layers of YOLOv2 can utilize at least
two TPCs (since doubling the partition size halved execution
time), but only some can utilize three or more TPCs—adding
the third TPC (a 50% capacity improvement) only speeds up
YOLOv2 by 14% (10 ms).

In all, our case study found TPC partitioning to be useful
in real-world applications for protection, prioritization, and
characterization, while imputing a minimal performance cost.

VIII. CONCLUSION

In this work, we uncovered a new means by which to
spatially partition the computing cores on all NVIDIA GPUs
since 2013. Our library, libsmctrl, allows for easy parti-
tioning while exposing critical GPU details, such as the TPC
to GPC mappings. We reinforce the usefulness of partitioning
via a deep-dive into the capability of NVIDIA GPU hardware
to support multiple parallel partitions. In our evaluation, we
consider how the GPU’s scheduling hardware can break parti-
tion boundaries and make non-optimal scheduling decisions in
some cases. We compare to prior work, and find our approach
more flexible and capable, while also easily applying to real-
world workloads, as evidenced via our case study.

In future work, we hope to extend our approach such that co-
running partitions need not share CUDA contexts. We further
hope to investigate how the GPU enforces CUDA stream-
ordering, how it schedules other engines such as copy, and

how exactly the GPU Host Interface selects which queue to
pull from when acquiring commands.
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