
Hardware Compute 
Partitioning on NVIDIA GPUs
Joshua Bakita and James H. Anderson

Department of Computer Science
University of North Carolina, Chapel Hill

1



How can we do 
more, with less?

2



3

➔ Concurrency, with hardware 
partitioning

➔ Concurrency, with hardware 
partitioning

How can we do more, with less, on the CPU?

Processor Cores Memory Caches and 
Interconnects Main Memory (DRAM)

L2

L2

L2

L2

L3

L1D CacheL1I Cache

➔ Concurrency, with hardware 
partitioning

Core 3

DRAM 0

DRAM 1

CPU

Core 2

Core 1

Core 0

GPU

Common thread: Concurrency, with interference 
managed via hardware partitioning



4

SM #0

SM #9

SM #8

SM #1 SM #2 SM #3

SM #7 SM #6 SM #5

SM #4Crossbar Bus

GPU

To
 G

PU
 D

RA
M

s To G
PU DRAM

s

L2 Slices

L2 Slices

How can we do more, with less, on the GPU?

➔ Concurrency, with hardware 
partitioning [1]

Memory Caches and 
InterconnectsCompute Units

➔ No hardware partitioning 
available



Assumption: No Capacity To Reclaim

Why concurrency on-GPU?

5

Some assumptions worth revisiting…

Reality:
Trends in GPU 

architecture 
have increased 
wasted capacity



Why concurrency on-GPU?

6

Some assumptions worth revisiting…

Assumption: Interference Worse than On-CPU

SM #0

SM #9

SM #8

SM #1 SM #2 SM #3

SM #7 SM #6 SM #5

SM #4Crossbar Bus

GPU

To
 G

PU
 D

RA
M

s To G
PU DRAM

s

L2 Slices

L2 Slices



Why concurrency on-GPU?

7

Some assumptions worth revisiting…

Assumption: Interference Worse than On-CPU

SM #0

SM #9

SM #8

SM #1 SM #2 SM #3

SM #7 SM #6 SM #5

SM #4Crossbar Bus

GPU

To
 G

PU
 D

RA
M

s To G
PU DRAM

s

L2 Slices

L2 Slices

Reality:
GPUs are highly 

capable of 
interference-free 

concurrency



Key Goals

Spatial partitioning for GPU compute units that is:

Flexible

8

Easily ApplicableHardware-Enforced

Prior work:
NVIDIA MIG [9]

With key insights drawn from GPU architectural norms and native GPU 
scheduling systems, we achieve all three for any NVIDIA GPU from the past 10 

years.

Prior work:
Fractional GPUs [1]

Closest prior work:
AMD Compute Unit Masking [14, 15]



Enabling Hardware-Enforced 
Compute Partitioning

9

Goal 1 of 3



Tasks may misbehave due to:

Why Hardware Enforcement?

10

Hardware-Enforced Partitioning

Engineering 
Oversight Malfunction Malice

and these are fatal to cooperation-based software partitioning.



Patents may describe 
non-existent inventions. We 
verify by cross-referencing:
➔ Open-Source Headers
➔ Open-Source Drivers
➔ NVIDIA Documentation
➔ Experiments
➔ …

Untapped documentation:
➔ Patent Applications
➔ Granted Patents

Hardware-Enforced Part.

Elucidating GPU 
Capability

11

Patents may describe 
non-existent inventions.

None of these describe a 
flexible and easily applicable 

partitioning technique 



One Sentence of Documentation

12

Hardware-Enforced Partitioning

Part of a Task MetaData (TMD) structure

A TMD describes a single program (a kernel) to be run on the GPU until completion.

From clb0c0qmd.h

From US 2013/0152094A1

Can these fields control kernel-to-SM 
assignment?



Hardware-Enforced Partitioning Illuminating GPU Terms & Our Timeline Figures 13

Each stream is a FIFO 
of GPU kernels. 

Kernels must be in 
separate streams to 
execute concurrently

Each compute unit

Kernel launch times

A kernel is broken into 
blocks, and then the 

blocks are scheduled 
concurrently on the 

GPU

A timeline of which 
kernels (K_), execute 
which blocks (: __) 

on which GPU 
compute unit (SM)



Hardware-Enforced Partitioning Applying the SM_DISABLE_MASK 14

Key Insight:
GPU hardware can control which 

compute units a kernel is 
scheduled on

In the TMD's 
SM_DISABLE_MASK

For K1: Set bits 5:8
For K2: Set bits 0:4



Enabling Flexible Compute 
Partitioning

15

Goal 2 of 3



16

Means of answering:

1. Investigate hardware design
2. Test with benchmarks

We do both.

Given working partitioning, is it 
flexible and reliable enough to be 

useful?

Flexible Partitioning



Investigating 
Hardware Design

We elucidate the design norms of 
NVIDIA's GPU hardware 
scheduling pipeline.

17

Flexible Partitioning Step #1 Not Shown

Step #2 Not Shown

Step #3 Not Shown

Step #4 Not Shown

SM #1 SM #2 SM #3 SM #4

SM #5 SM #6 SM #7 SM #8

Step #5 Work Distribution Unit

Enforcement of the 
SM_DISABLE_MASK 

occurs in the final stage 
of the scheduling critical 

path

SM
_D
IS

AB
LE

_M
AS
K 

un
m

od
ifi

ed

Key insight:
Partitioning will be 
enforced for every 

kernel



To verify partitioning behavior, we test 
complex configurations

Flexible Hardware Partitioning Testing with Benchmarks 18



Flexible Hardware Partitioning Testing with Benchmarks 19

Overlapping 
partitions



Flexible Hardware Partitioning Testing with Benchmarks 20

Overlapping 
partitions

Asynchronous, 
dynamic 
partition 

reconfiguration



Flexible Hardware Partitioning Testing with Benchmarks 21

Overlapping 
partitions

Asynchronous, 
dynamic 
partition 

reconfiguration

Per-kernel 
partitions



Flexible Hardware Partitioning Testing with Benchmarks 22

Overlapping 
partitions

Asynchronous, 
dynamic 
partition 

reconfiguration

Per-kernel 
partitions



Flexible Hardware Partitioning Testing with Benchmarks 23

Overlapping 
partitions

Asynchronous, 
dynamic 
partition 

reconfiguration

Per-kernel 
partitions



Flexible Hardware Partitioning Testing with Benchmarks 24

Overlapping 
partitions

Asynchronous, 
dynamic 
partition 

reconfiguration

Per-kernel 
partitions



Flexible Hardware Partitioning Testing with Benchmarks 25

Overlapping 
partitions

Asynchronous, 
dynamic 
partition 

reconfiguration

Per-kernel 
partitions

Key insight:
GPU scheduling 
behavior can be 
predicted and 

controlled



Enabling Easily Applicable 
Compute Partitioning

26

Goal 3 of 3



27

A simple API

On Linux:
0. Download libsmctrl.h and libsmctrl.so
1. #include "libsmctrl.h" and add -lsmctrl
2. libsmctrl_set_global_mask(uint64_t default_mask)
3. libsmctrl_set_stream_mask(cudaStream_t, uint64_t mask);

No kernel configuration, no driver configuration, and no superuser permissions.

Code is open source and documented. See 
https://www.cs.unc.edu/~jbakita/rtas23-ae.html to get started.

Very portable: Works on 
any NVIDIA GPU of 

compute capability >3.5 
(2013) with CUDA >10.2 

(2019)

Easily Applicable Partitioning
Key insight:

GPU scheduling 
hardware 

changes little 
generation-to-

generation

https://www.cs.unc.edu/~jbakita/rtas23-ae.html


Easily Applicable Partitioning Testing with Real-World Software 28

Consider 2 
co-running 

instances of 
YOLOv2 in 
DarkNet

1 TPC = 2 SMs

Only required 
three lines of 

changes to enable 
partitioning



Conclusions
We build spatial partitioning for GPU compute units that is:

Flexible

29

Hardware-Enforced Easily Applicable

Is there a hardware 
capability?

Can we make GPU 
spatial-partitioning easy?

How can we be confident 
this will work widely?

Hardware norms, 
benchmarks, and

real-world software 
support it

Yes, the 
SM_DISABLE_MASK

Yes, via our 1-line, 
no-install Linux API



What you have to read the paper for…

30

Evaluation:
● Adversarial tests
● How GPU pitfalls noted in prior work still 

effect partitioned GPUs
● Hazards of overlapping partitions
● Comparison to prior work
● Full details on our system setup and 

configuration

API:
● Details on how we modify the TMD
● Full details on our supported API calls, with 

examples
● Details on our API to query GPU silicon 

configuration
● List of every GPU, CUDA version, and CPU 

architecture we tested portability on

Regarding GPUs:
● Distinction
● Extensive details on the NVIDIA GPU 

hardware scheduling pipeline, including:
○ The Host Interface
○ The Compute Front End
○ The Task Management Unit
○ The Work Distribution Unit
○ CPU-to-GPU Buffer Design

● GPU cache hierarchy and bus interconnect 
layout

+ More details and background on everything 
covered in this presentation



Thanks! 
Questions?

Future work:
➔ Cross-context partitioning
➔ Criticality-Aware time-slice 

scheduling

Contact:
Email: jbakita@cs.unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 31

mailto:jbakita@cs.unc.edu
https://twitter.com/jjbakita

