
Demystifying NVIDIA GPU Internals to Enable
Reliable GPU Management*

Joshua Bakita and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Email: {jbakita, anderson}@cs.unc.edu

Abstract—As GPU-dependent artificial intelligence and ma-
chine learning workloads increasingly come to embedded, safety-
critical systems—such as self-driving cars—real-time predictabil-
ity for GPU-using tasks becomes essential. This paper identifies
flaws in three different real-time GPU management approaches
that are largely the result of incomplete information about
NVIDIA GPU internals. Details concerning this missing informa-
tion are elucidated via experiments. Based on this information,
key rules of GPU scheduling are identified and shown necessary
for safe GPU management.

I. INTRODUCTION

Over the past decade, GPUs have enabled a revolution in
artificial intelligence and machine learning (AI/ML) [1]. This
revolution has led to ever-more-capable autonomous systems,
including safety-critical systems such as self-driving cars.
In order to deploy such safety-critical systems with GPUs,
real-time predictability must be ensured. Canonically, this is
done by bounding the response times of GPU-using tasks by
applying real-time GPU management and analysis techniques.

Unfortunately, the response-time bounds provided by most
real-time GPU management and analysis frameworks are
unreliable. For each of three different approaches—mutual-
exclusion-based management [2], preemption-based manage-
ment [3], and management-free response-time analysis [4]—
Fig. 1 illustrates a scenario in which each makes a false
assumption about GPU behavior. In all cases, these false
assumptions lead to the failure of analytical response-time
bounds—a harbinger of catastrophe.

This paper is directed at elucidating the reasons for these
failures. Through deep hardware investigation, we uncover that
all these failures are due to overlooked rules of NVIDIA GPU
scheduling. We experimentally frame and unveil the missing
scheduling rules, as well as evaluate their necessity for safe
GPU-management-and-analysis techniques.

Prior work. Understanding GPU scheduling rules has long
been a known prerequisite for accurate GPU response-time
analyses. All the works [2]–[4] mentioned in Fig. 1 come
from groups with a strong history of elucidating and publishing
GPU scheduling rules [5]–[8]. Our work broadens these efforts
by providing heretofore hidden details concerning key GPU
functionality.

*Work supported by NSF grants CPS 2038960, CPS 2038855, CNS
2151829, and CPS 2333120.

Assumed Actual

Launch ordering of 10 single-stream kernels (K1-K10) [4]

Predictable ordering Incorrect ordering
leading to bad bounds

Joint preemptability of GPU engines [3]

No interference after
preemption

Incomplete preemption
leading to bad bounds

Independent lockability of GPU copy engines [2]

Copies in different
directions co-run

Copies may conflict,
leading to bad bounds

2Time 0 1

Copy
Task 0Release

Compute Task 0 Task 1

Preemption

2Time 0 1

Task 0

Compute Task 0 Task 1

1

Task 1
Copy Task 0

2Time 0 1

Copy 1 Task 1

Compute Task 0

Task 2

Copy 2

2Time 0 1

Copy 1 Task 1

Compute Task 0

Task 2
Copy 2

K1 K2 K3 K4 K5

K6 K7 K8 K9 K10

K1 K2 K3 K4 K5

K6 K7 K8 K10 K9

Fig. 1. Real-time GPU management and analysis techniques make dangerous
assumptions about GPU behavior.

Contributions. In this work, for NVIDIA GPUs, we:
1) Experimentally derive rules of scheduling behavior that

span from GPU library to on-engine-dispatch.
2) Provide context to allow delineating current and prior

scheduling rules as hardware- or software-enforced.
3) Build and open-source a tool—nvdebug—for directly

examining GPU hardware scheduling state (bypassing
user- and kernel-space libraries or drivers).

4) Demonstrate the necessity of our scheduling rules for
real-time GPU management and response-time analysis.

Organization. We provide key terms in Sec. II, before more
thoroughly discussing prior work in Sec. III. We then frame
and present our experimentally-derived scheduling rules in
Sec. IV and Sec. V. The necessity of these rules for real-
time GPU management is evaluated in Sec. VI. We conclude
in Sec. VII, and provide supplementary details about our new
GPU-scheduling-examination tool in Appx. A.

GPU
DRAMs

GPU
DRAMs

R
e
st

 o
f

S
y
st

e
m

 (
C

P
U

s,
 D

R
A

M
s,

 s
to

ra
g
e
,
e
tc

)

Memory Crossbar

L2 Slices L2 Slices

NVIDIA Ampere Discrete GPU (GA100)

Video
Decode

Video
Encode

JPEG
Decode

Copy

PCIe Bus

Eight General
Processing

Clusters (GPCs)
of the

Compute/Graphics
Engine

Three
Video

Encoders

GPU
DRAMs

L2 Slices

Five Copy
Engines

Fig. 2. Functional blocks of a recent NVIDIA discrete GPU.

II. BACKGROUND

We begin with a cursory overview of GPU architecture and
programming paradigms. We focus exclusively on NVIDIA
GPUs due to their commonality and industry-leading archi-
tecture.

GPU architecture. GPUs are often thought of and referred
to as singular accelerators. This is a significant simplification.
GPUs, since the very beginning, have been composed of many
different functional units. On modern NVIDIA GPUs, these
units are referred to as engines. Fig. 2 illustrates the engines
available on a recent NVIDIA GPU. The largest and most crit-
ical one is the Compute/Graphics Engine, which contains all
the general-purpose processing cores. Five copy engines sup-
port this by asynchronously handling data movement between
GPU DRAM, CPU DRAM, and other GPUs. Supplemental
special-purpose engines include three video encode, one video
decode, and one JPEG decode engine.

All engines are connected to GPU DRAM via the internal
crossbar bus. This bus also connects to the PCIe lanes, allow-
ing engines to optionally, but slowly, access CPU memory.

NVIDIA’s embedded “Tegra” GPUs differ by sharing a die
with the CPU and by replacing the GPU DRAMs with a
bridge to a CPU-shared DRAM controller. For the purposes of
this work, the internal topology and architecture of NVIDIA’s
embedded GPUs can otherwise be considered identically-
patterned as discrete GPUs from the same architectural family.

GPU programming model. Common GPU programming
APIs include Vulkan, OpenCL, and CUDA. These are all sup-
ported by NVIDIA GPUs, and leverage the same underlying
components. We focus on CUDA due to its simplicity and
common use in real-time literature.

In Alg. 1, we illustrate a CUDA-using program that adds
two vectors in parallel on the GPU. All of the shown
operations are in respect to a single, implicit GPU virtual
address space called a context, which is created per-GPU-
using task.1 Lines 4 and 6 in our example transfer input to,
and output from, the GPU context via a copy engine. In-
between, Line 5 launches the vector-add operation on the
GPU’s Compute/Graphics Engine; such operations are known
as kernels. In processing this kernel, the GPU will invoke one
instance of VECADD for each element of the vector. Given a
sufficiently many-core GPU, the addition of each element will
be calculated and completed simultaneously.

As the memory copies and kernel execution occur asyn-
chronously relative to the CPU, most CPU time in this program
will be spent implicitly waiting for the GPU engines to
complete their operations. To ensure ordering of asynchronous
GPU operations, CUDA implicitly creates and enqueues these
in a CUDA stream, which enforces FIFO ordering. For calls
that would explicitly result in a CPU-visible side effect, CUDA
will implicitly block inside the call until all prior asynchronous
operations complete. The call on Line 6 in this example is
one such case; it will block until both the kernel execution
dispatched on Line 5, and the memory copy, complete.

1Multiple contexts per-task are possible, but discouraged [6]. We assume a
one-to-one task-to-context mapping unless otherwise noted.

Algorithm 1 Vector Addition in CUDA.
1: procedure MAIN
2: cudaMalloc(d_A, len) ▷ (i) Allocate GPU (“device”) memory for arrays A (shown), B, and C (not shown)
3: . . . ▷ (ii) Allocate and load input data into arrays A and B (not shown)
4: cudaMemcpy(d_A, h_A, len) ▷ (iii) Copy data from CPU (“host”) to GPU memory for arrays A (shown) and B (not shown)
5: vecAdd<<<numBlocks, threadsPerBlock>>>(d_A, d_B, d_C, len) ▷ (iv) Launch the “vecAdd” CUDA kernel on-GPU
6: cudaMemcpy(h_C, d_C, len) ▷ (v) Copy results from GPU to CPU memory for array C
7: cudaFree(d_A) ▷ (vi) Free GPU memory for arrays A (shown), B, and C (not shown)
8: . . . ▷ (vii) Output array C, an element-by-element sum of arrays A and B (not shown)
9: end procedure

10: kernel VECADD(A: ptr to int, B: ptr to int, C: ptr to int, len: int)
11: i := blockDim.x * blockIdx.x + threadIdx.x ▷ Calculate index based on built-in thread and block information
12: if i >= len then
13: return ▷ Exit thread if out of vector bounds
14: end if
15: C[i] := A[i] + B[i]
16: end kernel

kernel

CUDA-Using Task

CUDA Runtime Library

CUDA Driver Library

Linux Kernel

GPU HW Scheduler

Kernel Execution

Li
n
ke

d
 L

ib
s

G
P
U

 H
W

user

Fig. 3. Path from launch to execution for
a CUDA kernel.

For kernels enqueued in
CUDA streams, schedul-
ing behavior with respect
to competing streams is
difficult to analyze, as the
path from task to GPU
core is convoluted. After
a kernel is launched into
a stream, it is processed
through two userspace li-
braries before reaching
the GPU hardware (HW)
scheduler. This scheduler makes the final determination about
when, and on what part of the GPU, blocks of the kernel will
be executed. We illustrate this process in Fig. 3. (Note that
the userspace library can communicate directly with the GPU.
This avoids the overhead of a system call, but also makes
kernel launches challenging to monitor.)

III. RELATED WORK

Researchers have investigated the temporal predictability of
GPUs since early in their application towards general-purpose
computation. Unfortunately, as GPU complexity rivals, if not
exceeds, that of high-end CPUs, it has taken exceptionally
long to answer even basic questions of GPU arbitration and
scheduling. The extreme secrecy of GPU hardware has only
exacerbated this problem.2 We only touch on particularly
relevant works in this section; for more, see a recent, extensive
survey of GPU use in safety-critical systems [12].

To bypass the unknowns of GPU scheduling, a common
approach involves minimizing its role. Two exemplars of this
approach are TimeGraph [13] and GPUSync [14], which avoid
unpredictable arbitration by only giving the GPU one piece of
work at a time.

TimeGraph [13] functions by queuing GPU work on the
CPU, releasing one item at a time to the GPU in priority order.
GPU-to-CPU interrupts are used to indicate the completion of
each piece of work, triggering the selection and release of
the next item. S3DNN [15] is a more recent, special-purpose
example of this approach, but with the added ability to release
groups of GPU work, rather than just one item at a time.

GPUSync [14] and extensions [2] take a different approach
to ensure mutual exclusion. To improve real-time analyzability,
these works treat the GPU as a resource and require applica-
tions to hold a mutual-exclusion lock while using the GPU.
This easier-to-implement approach has seen increasing adap-
tation in real-time systems, from TimeWall [16], to NVIDIA’s
DRIVE OS System Task Manager.3 While this does ensure
safety, it suffers from a capacity-loss problem; few applications
are able to consistently fully utilize the GPU while holding the
mutual-exclusion lock, resulting in lost capacity.

In search for a system that is easy to analyze and implement,
but which avoids the capacity-loss problem of mutual exclu-

2For example, even NVIDIA GPU instruction encodings are secret [9]–[11].
3See Compute Graph and Constraints in the DRIVE OS System Task

Manager SDK Reference for more, version 5.10 as of writing.

GPU-Using Task

GPU Library

GPU Kernel Driver

GPU-Using Task

GPU Library

Host Interface

PBDMA PBDMA

Chan

T
S
G

Chan Chan

T
S
G

Chan

R
u
n
lis

t

①

Contain
Pushbuffers

②

③

To GPU Engines

④

kernel

user

GPU

Fig. 4. High-level GPU cross-context scheduling pipeline.

sion, many recent papers have worked to dissect the native
scheduling capabilities of GPUs. Otterness et al. [17], Amert
et al. [5], Olmedo et al. [7], and Bakita and Anderson [8]
elucidated the arbitration and dispatch order of intra-context
CUDA calls, while Otterness and Anderson have done simi-
larly for AMD GPUs [18], [19].

More efficient management and analysis approaches have
been built on these details. Examples span from granular
locking (or reservations [20]) based on hardware partitioning
of compute [8] and memory [21], to preemptive EDF based
on creative use of hardware capabilities [3], to analysis for
unmanaged GPU-using tasks [4]. Unfortunately, these works
make inconsistent assumptions about NVIDIA GPU behavior.

For example, consider copy engine behavior. Capodieci et
al. [3] assume and manage copy engines as though they are co-
scheduled with compute, but Elliot et al. [2], [14] assume and
manage copy engines as though they operate asynchronously
of compute (and each other). Given these seemingly incom-
patible assumptions, how do we build a coherent model of
GPU scheduling?

To reconcile this tension and build a model, we provide a
framing of NVIDIA GPU hardware scheduling that subsumes
and extends prior work, coupled with specific, experimentally-
derived rules.

IV. HIGH-LEVEL FRAMING

We begin our contributions with a high-level framing
of NVIDIA GPU scheduling. We focus on the start of
the pipeline: from command launch, through cross-context
scheduling, to engine hand off. This complements prior work
on the subsequent steps for the compute engine [7], [8].

The numbered steps in Fig. 4 guide our explaination of the
high-level flow. We forgo digressing into caveats; such low-
level details are for the rules to come in Sec. V.

Our information comes from a combination of open-source
GPU drivers [22]–[24], NVIDIA patents [25], our experiments
in Sec. V, and other sources.

① Scheduling initialization. Tasks initialize their scheduling
state via the GPU kernel driver. This includes a pushbuffer (a

TABLE I
GPUS TESTED IN OUR EXPERIMENTS

GPU Name
Compute
Capability5 Year Architecture

GTX 1060 3 GB 6.1 2016 Pascal
GTX 1080 Ti 6.1 2017 Pascal
Jetson TX2 6.2 2017 Pascal (embedded)
Titan V 7.0 2017 Volta
Jetson Xavier 7.2 2018 Volta (embedded)
RTX 2080 Ti 7.5 2018 Turing
A100 40 GB 8.0 2020 Ampere
Jetson Orin 8.7 2022 Ampere (embedded)
RTX 6000 Ada 8.9 2022 Ada Lovelace

queue detailed in [8]), encapsulated with bookkeeping infor-
mation as a channel. All a task’s channels are encapsulated
with context information into a Time-Slice Group (TSG). A
TSG is made runnable via insertion into one of the GPU’s
runlists (detailed later), and a user-accessible pointer to the
pushbuffer is passed to userspace.

② Commands to streams to channels. As GPU operations
are requested, the associated commands are enqueued into
streams, and these streams are mapped onto pushbuffers. Com-
mands may consist of kernel launches, copy commands, and
various other operations.4 If not explicitly using a stream, a de-
fault or implicit stream is constructed. As channel pushbuffers
are mapped into user-writable memory, command enqueueing
does not require a syscall.

③ Channels to runlists. Commands accumulate in push-
buffers until the GPU HW scheduler (also known as the “Host
Interface”) selects a channel for scheduling. Selection works
in two levels: the GPU globally round-robin timeslices across
tasks’ TSGs, and all channels in the currently active TSG are
cyclically scanned for pushbuffers with pending commands.

④ Runlists to engines. Once the GPU HW scheduler identifies
a channel with pending commands, it leverages a hardware
Pushbuffer DMA (PBDMA) unit to pull commands from CPU
to GPU. From here, they are parsed and passed off for engine-
specific scheduling (as detailed for the compute engine in prior
work [8]).

V. LOW-LEVEL RULES

We now provide rules for channel-, runlist-, and engine-
level scheduling (steps ②, ③, and ④ in the prior section) after
an overview of our methodology and tooling.

A. Methodology and Tools

We perform our experiments on x86_64 and aarch64 Linux
systems with a sampling of GPUs from the past seven years, as
listed in Table I. We guarantee that our rules hold for all these
devices, even though we only show a sampling of the results.
(We also test on some older GPUs, but find the differences
too extensive for easy inclusion.)

4The GPU supports arbitrary commands via the “software” engine that
interrupts into the kernel driver.

5Compute capability distinguishes variants within an architectural family.

For all our experiments, we disable background GPU work.6

For tools, we leverage cuda_scheduling_examiner
by Otterness et al. [17], and develop two new tool suites:
nvdebug and gpu-microbench.7

nvdebug. nvdebug is a kernel module that exposes an in-
terface in /proc for transparently monitoring and controlling
GPU scheduling state. That includes the capability to view
internal GPU topology, such as the number and types of
engines. Our tool mirrors open-source NVIDIA GPU kernel
drivers [22], [23], [26] in how it accesses GPU registers,
enabling reliability across a wide range of GPUs and kernels
(including Tegra platforms). For more details on this tool and
its capabilities, see Appx. A.

gpu-microbench. Utilizing the detailed information avail-
able from nvdebug, we built a library of microbenchmarks
that intricately monitor or benchmark specific GPU engines.
These carefully-targeted benchmarks allow for compositional
experimentation on scheduling behavior. Two key tools in this
suite are exec_logger and copy_monitor. These utilize
the compute and copy engines respectively while recording at
microsecond granularity when each engine is active. Many of
the tools in this suite are the result of years of expert tuning
and bug fixing, so please consider reusing them.

We now apply our tools to derive low-level rules of GPU
scheduling behavior.

B. Rules for Channels

Channels (and their encapsulated pushbuffers) are closest
to streams, thus closest to tasks, and therefore are a natural
starting point for our rules.

R1. Every GPU-engine-using op. goes through a channel.

Without channels, no GPU-using operations are possible.
We verify this by using nvdebug’s disable_channel
interface to disable all channels associated with a task, and
then attempt to launch kernels or copies via a variety of APIs.
(Disabled channels are skipped by the GPU HW scheduler.8)
We find that any type of kernel launch, copy launch, or device-
mapped memory allocation is unable to complete until the
channels are re-enabled.

R2. A task’s number of channels limits intra-task parallelism.

As all GPU-using operations require a channel, problems
emerge for work enqueued while all channels are busy. Specifi-
cally, false dependencies will occur between work in unrelated
streams. Normally, streams are supposed to be independent,
with the head of each stream being equivalently accessible to
the GPU HW scheduler for dispatch. When a false dependency
emerges, the head of one stream becomes dependent on queued

6On the Jetson TX2, after disabling all background GPU-using tasks, some
entries remained on the GPU runlist. We disabled these entries in the runlist
using nvdebug to ensure no unexpected interference.

7Both available online at https://www.cs.unc.edu/~jbakita/rtas24-ae/.
8In [24], manuals/ampere/ga100/dev_pbdma.ref.txt, line 3803.

https://www.cs.unc.edu/~jbakita/rtas24-ae/
https://nvidia.github.io/open-gpu-doc/manuals/ampere/ga100/dev_pbdma.ref.txt

K1:0 K2:0 K3:0 K4:0

K5:0 K6:0 K7:0 K8:0

K9:0 K10:0 K11:0 K12:0

K13:0 K14:0 K15:0 K16:0

K17:0 K18:0 K19:0 K20:0

K21:0 K22:0 K23:0 K24:0

K25:0 K26:0 K27:0 K28:0

K29:0 K30:0 K31:0 K32:0

K33:0

K34:0 K35:0 K36:0

Blocking Due to Insufficient Channels
Stream 1 (Stream 1)

Stream 2 (Stream 2)

Stream 3 (Stream 3)

Stream 4 (Stream 4)

Stream 5 (Stream 5)

Stream 6 (Stream 6)

Stream 7 (Stream 7)

Stream 8 (Stream 8)

Stream 9 (Stream 9)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Time (seconds)

SM 0
SM 1
SM 2
SM 3
SM 4
SM 5
SM 6
SM 7
SM 8

K1:0 K2:0 K3:0 K4:0

K5:0 K6:0 K7:0 K8:0

K9:0 K10:0 K11:0 K12:0

K13:0 K14:0 K15:0 K16:0

K17:0 K18:0 K19:0 K20:0

K21:0 K22:0 K23:0 K24:0

K25:0 K26:0 K27:0 K28:0

K29:0 K30:0 K31:0 K32:0

K33:0 K34:0 K35:0 K36:0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Time (seconds)

SM 0
SM 1
SM 2
SM 3
SM 4
SM 5
SM 6
SM 7
SM 8

Behavior with Sufficient Channels

Fig. 5. Nine streams in-use on GTX 1060 3GB with eight compute channels
(top) versus nine compute channels (bottom).

work in another stream to complete before it can be dispatched
by the GPU. Such false dependencies can prevent kernels at
the head of their stream queue from reaching idle GPU cores.
By default, through at least CUDA 12.2 on x86_64, only eight
channels are created per-context for compute.9 This is as low
as two-per-context on NVIDIA’s embedded “Jetson” boards.10

We experimentally demonstrate how a lack of channels
triggers false dependencies and compromises parallelism in
Fig. 5 (top). This figure presents a timeline of when and where
blocks of 36 kernels execute on the GPU. We launch four
kernels into each of nine streams. The kernel launch times
are indicated by arrows at the bottom left for each stream,
and each thread block is annotated with the kernel name
and thread block index, separated by a colon. Streams are
indicated by color/pattern. Note that, as launches into each
stream complete from time 0 to 0.26 s, the head of each
stream near-immediately begins executing on the GPU—up
until Stream 9. At this point, a false dependency emerges.
All eight compute channels are in-use, and so no channel is
available for Stream 9. This condition persists until all work
in Stream 1 is fully dispatched at time 0.7.

In Fig. 5 (bottom), we repeat the same experiment, but with
an increased number of channels.11 As expected, no false de-
pendencies occur—all nine streams are executed concurrently.

Implications for real-time systems. Our findings add nuance
to rule G2 from the work of Amert et al. [5], which claims

9Reported by nvdebug; also mentioned at https://forums.developer.nvidia.
com/t/how-many-streams-maximum-number-of-streams/6571/6.

10Observed as two on the Jetson Xavier with CUDA 10.2, and four on the
Jetson Orin with CUDA 11.4. Double this number of channels are created,
but CUDA appears to have a bug where only half are used on Jetson boards.

11Via the environment variable CUDA_DEVICE_MAX_CONNECTIONS.

20 slices
80 ms

overlaid

Lo
g

g
e
r

2
 C

o
m

p
le

te
s

In
it

ia
liz

a
ti

o
n

Lo
g

g
e
r

2
 B

e
g

in
s

In
it

ia
liz

a
ti

o
n

Fig. 6. Timeline of timeslice intervals for two instances of exec_logger
concurrently running on the GTX 1060 3GB. Inset collapses vertical space to
show that each task executes in mutually exclusive intervals of time.

that the kernel at the head of a stream queue is enqueued for
execution. Instead, the kernel at the head of a stream queue
is enqueued for execution only if the number of streams used
is less than the number of channels. Functionally, this means
that no more than eight streams should be used, or the number
of channels must be reconfigured (for prior rules to hold).

C. Rules for Runlists

For a channel, and its wrapped pushbuffer of commands, to
be scheduled, it is normally inserted into a runlist (often via
an optional TSG). Is this the only way?

R3. To be scheduled, channels must be part of a runlist.

A runlist is a hard prerequisite to launching work from a
channel. NVIDIA source code implies this.12 We also observe
this behavior using nvdebug to watch channel and runlist
statuses—every enabled channel is associated with a runlist.
How many of these channels may be active simultaneously?

R4. A runlist may have up to one task active per associated
engine.13

Before explaining this rule, we must explain what we mean
by a task being active. For tasks using a TSG, this refers to
the TSG being active. For tasks directly inserting channels on
the runlist without a TSG, this refers to at least one of the
task’s channels being active.

For cases when only one engine is associated with a runlist
(as we commonly find in Sec. V-D) the rule simplifies to:
each runlist has up to one task active. We demonstrate this
for compute, then copy tasks.

For compute, we co-run two exec_logger tasks, and plot
the execution intervals in Fig. 6. Logger 1 is started first,

12In [22], src/common/sdk/nvidia/inc/ctrl/ctrla06f/ctrla06fgpfifo.h line 67.
13When using NVIDIA Multi-Process Service (MPS), this does not

apply—it breaks our assumption that there is only one task per context. On
GPUs since Volta, when MPS is enabled, each application runs as a subcontext
of an MPS-created context. Our rules still likely apply if you consider all
MPS-using tasks together as a single task, but we have not verified this.

https://forums.developer.nvidia.com/t/how-many-streams-maximum-number-of-streams/6571/6
https://forums.developer.nvidia.com/t/how-many-streams-maximum-number-of-streams/6571/6
https://github.com/NVIDIA/open-gpu-kernel-modules/blob/main/src/common/sdk/nvidia/inc/ctrl/ctrla06f/ctrla06fgpfifo.h#L67

0 5 10 15 20
Time [milliseconds (ms)]

0 MiB

6 MiB

12 MiB

18 MiB

24 MiB

30 MiB
Da

ta
 C

op
ie

d

Copy Monitor 1
Copy Monitor 2

Fig. 7. Progress of two co-running copies in separate contexts over time on
the GTX 1060 3GB.

and Logger 2 after Logger 1 is initialized. In this timeline,
each consecutive execution—timeslice—of each application
is plotted at a differing y-value to allow for more easily
distinguishing the boundaries between intervals. Furthermore,
the slope of this line thus indicates how rapidly timeslicing is
happening. For example, in the right of the figure, each task
is receiving approximately 20 timeslices per 80 ms. The slice
lengths are largely consistent, at about 2 ms each.

First, observe the mutually-exclusive execution intervals
(inset). Only one task executes instructions at any given time,
despite each task requiring only a fraction of the GPU.

Second, note that Logger 1’s execution is interrupted several
times before Logger 2 completes initialization and launches its
kernel (area between the vertical dashed lines). This indicates
that initializing a CUDA context generates compute-engine
interference; this lasts about 100 ms in our case.

Returning to justification for our rule, we now experiment
with co-running copies via two instances of copy_monitor.
(This benchmark is carefully crafted to only utilize and mon-
itor the copy engines; it launches no compute work.) We plot
the progress of each copy over time in Fig. 7. The behavior
here mirrors what we saw with compute tasks—only one copy
progresses at a time, and the copies trade off about every 1 ms.

This demonstrates that individual uses of an engine are
mutually-exclusive, but a further implication of our rule is
that two tasks may co-run on a runlist, if they use different
engines. We demonstrate this case as part of justification for
our next rule.

R5. A GPU’s number of runlists limits independent inter-task
parallelism

In justifying this rule, we show two sub-rules: (i) that
runlists enable independent inter-task parallelism; (ii) that
independent inter-task parallelism is not possible without
multiple runlists. By “independent inter-task parallelism” we
mean that the active task on a runlist is only a function of
other tasks on the same runlist using the same engine, and is
unrelated to tasks active (or inactive) on any other runlist.

We begin with two experiments for subrule (i). Using
nvdebug, we determine that our GTX 1060 3 GB has
separate runlists for compute and copy tasks. We investi-
gate their independence by co-running exec_logger and

0 5 10 15 20
Time [milliseconds (ms)]

0

5

10

15

Ti
m

es
lic

e
Nu

m
be

r

Exec Logger 1
Exec+Copy

(a) Compute intervals.

0 5 10 15 20
Time [Milliseconds (ms)]

0 MiB
14 MiB
28 MiB
42 MiB
56 MiB
70 MiB
84 MiB

Da
ta

 C
op

ie
d

Copy Monitor 1
Exec+Copy
Copy Monitor 2

(b) Copy progress.

Fig. 8. Times when copy and compute operations complete for four tasks—
compute-only, exec+copy, copy-only, and copy-only—on the GTX 1080 Ti
(similar results on RTX 6000 Ada). Initialization omitted. Shaded regions
indicate times exec+copy task is making copy progress.

copy_monitor instances. We find that these tasks execute
continuously, unhindered by one another, confirming that the
two runlists operate at least somewhat independently.14

Does this independence persist if a copy-and-compute-
using task is added? We tested this by running such a task
alongside an instance of exec_logger and two instances of
copy_monitor. If runlists are scheduled independently, our
copy-and-compute-using task may use the compute and copy
engines at unsynchronized times. This is exactly what occurs,
as shown in Fig. 8. These figures are formatted similarly to
past figures and show identical time periods. We add shaded
regions to both figures for the intervals during which the copy-
and-compute task makes copy progress.

Note how the copy-and-compute task executes on the com-
pute cores (Fig. 8a) at times unrelated to when copies progress
(Fig. 8b). Consider its second shaded copy interval; during its
entirety a completely unrelated task—the exec_logger—
executes on the compute cores. This supports our first exper-
iment by demonstrating that runlists operate independently,
even in complex scenarios.

We now justify sub-rule (ii): that independent inter-

14With the exception that compute is still hindered during context ini-
tialization (as in Fig. 6); curiously, it is also briefly interrupted when
copy_monitor does large, GPU-device-mapped memory allocations.

0 5 10 15 20
Time [milliseconds (ms)]

582

583

584

585

586
Ti

m
es

lic
e

Nu
m

be
r

Exec Logger 1

(a) Compute interval (continues uninterrupted during copy).

1049 µs

1024 µs

(b) Copy progress.

Fig. 9. Times when copy and compute operations complete for two co-
running tasks—exec_logger and copy_monitor—on the Jetson TX2.
Initialization omitted. Shaded regions indicate times copy_monitor is
making progress, and are 1049 µs wide, whereas the gaps are 1024 µs wide.

task parallelism is not possible without multiple runlists.
Using nvdebug, we identify that the Jetson TX2 con-
tains two engines that share a single runlist. We demon-
strate non-independence by co-running exec_logger and
copy_monitor, and plot the results in Fig. 9.

Compute work appears to run continuously (Fig. 9a),
but copies appear timesliced (Fig. 9b)—even though
exec_logger does not execute copies. At first, we sus-
pected experimental error or a missed background task as
to blame for the unusual copy engine interference, but after
extensive experimentation, we verified that the TX2’s single
runlist is to fault for this strange interference.

Key to this conclusion is a subtle difference: 1024 µs for
a timeslice on compute-associated channels, versus 1049 µs
for copy-exclusive channels [26]. We discover that the time
that our copy is interrupted for is not the time required to
run another copy, but the time for a compute timeslice. Why
then is compute not interrupted while the copy runs (shaded
in Fig. 9)? Based on how the GPU is documented to handle
semaphores,15 the runlist scheduling system must snoop each
runlist independently of the currently-running task, preempt
only once the next channel has been identified, and only pre-

15Obliquely documented in [24], manuals/ampere/ga100/dev_pbdma.ref.txt,
section "Semaphore switch option" (line 3797).

TABLE II
ENGINES ON GTX 1060 3GB

Engine Name Runlist
Graphics/Compute 0
[Graphics] Copy Engine 0 (GRCE0/LCE0)
[Graphics] Copy Engine 1 (GRCE1/LCE1)

Runlist 0

Video Decoder 0 (NVDEC0) Runlist 1
Video Encoder 0 (NVENC0) Runlist 2
Sequencer Runlist 3
N/A Runlist 4
Copy Engine 2 (LCE2) Runlist 5
Copy Engine 3 (LCE3) Runlist 6

TABLE III
ENGINES ON JETSON ORIN

Engine Name Runlist
Graphics/Compute 0
[Graphics] Copy Engine 0 (GRCE0/LCE0)
[Graphics] Copy Engine 1 (GRCE1/LCE1)

Runlist 0

Copy Engine 2 (LCE2) Runlist 1
Copy Engine 3 (LCE3) Runlist 2
Graphics/Compute 1 Runlist 2

empt the engines needed by the next channel. Whereas copy-
exclusive channels never need the compute engine, compute-
associated channels may optionally include copy commands.
This appears to cause copy engines that share a runlist with
compute tasks to be timesliced across both compute- and
copy-using tasks.16 This demonstrates that when tasks share a
runlist, they are at best semi-independent—fully independent
scheduling requires multiple runlists.

Note that, by demonstrating two tasks simultaneously active
on a single runlist, this experiment also supports R4.

Implications for real-time systems. Our findings both chal-
lenge and support assumptions made for prior real-time man-
agement systems. Works that claim and manage only a single
runlist [3] risk overlooking significant interference channels
from unmanaged access to other GPU engines via other
runlists. Furthermore, prior per-engine-granularity locking ap-
proaches [2] appear risky if multiple engines share a runlist.
On the other hand, such locking techniques seem safe in
circumstances where there are at least as many runlists as
engines, but is this a common configuration?

D. Rules for Runlist to Engine Mappings

In the previous section, we noted that the number of engines
associated with a runlist is core to runlist behavior (R4). We
now explore and give rules for how runlists map to engines.

R6. A runlist may be bound to more than one engine.

As evidenced by the experiments supporting R5, a single
runlist can serve multiple engines. This configuration is not

16For those familiar with NVIDIA’s terminology, our specific understanding
is that the PBDMA units (desc. in [8]) each snoop different runqueues in the
runlist, where each channel is associated with one or more different runqueues.
Each runqueue is restricted in the types of commands it may run. While
compute-associated channels may optionally use the copy runqueue, copy-
exclusive channels only use the copy runqueue. The result is round-robin
arbitration among all runqueue-using channels, for each runqueue in a runlist.

https://nvidia.github.io/open-gpu-doc/manuals/ampere/ga100/dev_pbdma.ref.txt

TABLE IV
ENGINES ON RTX 6000 ADA

Engine Name Runlist
Graphics/Compute 0
[Graphics] Copy Engine 0 (GRCE0/LCE0)
[Graphics] Copy Engine 1 (GRCE1/LCE1)

Runlist 0

Copy Engine 2 (LCE2) Runlist 1
Copy Engine 3 (LCE3) Runlist 2
Copy Engine 4 (LCE4) Runlist 3
Video Decoder 0 (NVDEC0) Runlist 4
Video Decoder 1 (NVDEC1) Runlist 5
Video Decoder 2 (NVDEC2) Runlist 6
N/A Runlist 7
Video Encoder 0 (NVENC0) Runlist 8
Video Encoder 1 (NVENC1) Runlist 9
Video Encoder 2 (NVENC2) Runlist 10
JPEG Decoder 0 (NVJPG0) Runlist 11
JPEG Decoder 1 (NVJPG1) Runlist 12
JPEG Decoder 2 (NVJPG2) Runlist 13
JPEG Decoder 3 (NVJPG3) Runlist 14
Optical Flow Accelerator Runlist 15
Sequencer Runlist 16

unique to the TX2. All NVIDIA GPUs we have experi-
mented with have a runlist supporting both compute and copy
operations. Despite this, we have not observed the TX2’s
problematic behavior on other GPUs—we suspect this is
because CUDA always prefers to use the commonly-available
copy-only runlists instead.

R6 follows from the experiments supporting R5, but
we further support it with GPU topology data provided
by nvdebug’s device_info interface. We include the
experimentally-extracted information for a sampling of GPUs
in Table II, Table III, and Table IV. Each row corresponds
to a single runlist (right) with all associated engines (left).
Copy engines are numbered sequentially by the hardware, even
though the first two have special graphics-related capabilities
and are also known as GRCEs.

All runlists adhere to R6, and—with the exception of
Runlist 0—every runlist is associated with only one engine.
This results in many runlists on modern GPUs such as the RTX
6000 Ada—a significant opportunity for parallelism. Building
off the patterns presented in the tables, we draw a further
conclusion about how engines are configured.

R7. Each engine is bound to only one runlist.

Note how no engine names are repeated in any of the
tables—this is a hardware restriction. The device topology
(PTOP) registers used by nvdebug’s device_info inter-
face map each engine to one runlist. Without nvdebug, this
rule is very difficult to derive, as it is not always experimen-
tally evident—we explain why in our next rule.

R8. Copy engines may appear to violate R7 due to copy-
engine-specific shared hardware.

An obscure layer of indirection can compromise scheduling
independence for copy engines. We demonstrate this via the
experiment plotted in Fig. 10. In this figure, we plot how
long a repeating GPU-to-CPU CUDA copy takes on two

RTX 6000 Ada GTX 1080 Ti
GPU Under Test

0 ms
5 ms

10 ms
15 ms
20 ms
25 ms
30 ms

20
0M

iB
 C

op
y

Ti
m

e
(m

ax
)

With OpenGL Competitor
Without OpenGL Competitor

Fig. 10. OpenGL texture uploads can block CUDA copies in the opposite
direction, even if channels, runlists, and LCEs are mutually exclusive.

GPUs in two circumstances: alone, and co-run with a texture-
uploading OpenGL task. On paper, these two systems should
behave identically: CUDA reports the same number of copy
engines for both, nvdebug shows that both have at least
two copy engines with independent runlists, and both act
similarly when executing only CUDA tasks. If anything, the
six-year-newer (and 24× more expensive) RTX 6000 Ada
should perform better—but this is not the case. While our
OpenGL task is executing, we observe copies to the GPU
slowed approximately 2× on the RTX 6000 Ada, but barely
slowed (perhaps by DRAM interference) on the GTX 1080 Ti.

Up to this point in the paper, "copy engines" have been
synonymous with NVIDIA’s Logical Copy Engines (LCEs).
Unfortunately, LCEs are not sufficient to execute a copy
operation; they rely on a lower-level unit, the Physical Copy
Engines (PCEs) [27]—this is where we find an explanation
for the surprising result in Fig. 10.

A set of GPU registers controls how LCEs map to PCEs.
We extract and plot these seemingly-constant mappings for a
selection of GPUs in Fig. 11. The register structure restricts
copy configurations in two ways: (i) each PCE may be associ-
ated with up to one LCE or GRCE; and (ii) only GRCEs may
share a PCE associated with another GRCE or LCE. When
PCE sharing is utilized for GRCEs, copies from Runlist 0 can
interfere with copies in other runlists—this is exactly what
we see happening in Fig. 10. As shown in Fig. 11, the default
copy engine configuration for the RTX 6000 Ada maps both
GRCEs onto LCEs. From our experiments, we surmise that
whichever GRCE handles texture uploads has been mapped
onto the LCE that handles GPU-to-CPU CUDA copies.

Implications for real-time systems. Generally, scheduling
for each GPU engine is fully independent—only the GRCEs
compromise isolation for any engine. This strongly supports
a per-engine locking approach, but not k-exclusion locking—
one copy engine may not at all be like another, depending on
GRCE and PCE configuration.

VI. EVALUATION

We evaluate our rules in the context of three GPU manage-
ment and analysis approaches: management-free analysis by
Yang et al. [4], preemptive EDF via runlist management by

GRCE0
GRCE1
LCE2
LCE3

Runlist 5
Runlist 6

Runlist 0PCE0
PCE1
PCE2

GTX 1060 3GB

GRCE0
GRCE1
LCE2
LCE3

Runlist 1
Runlist 2

Runlist 0
PCE0
PCE1

Jetson Orin

GRCE0
GRCE1
LCE2
LCE3

Runlist 8
Runlist 9

Runlist 0

LCE4 Runlist 10

PCE0
PCE1
PCE2
PCE3

RTX 2080 Ti

GRCE0
GRCE1
LCE2
LCE3

Runlist 8
Runlist 9

Runlist 0

LCE4 Runlist 10

PCE0
PCE1

RTX 6000 Ada

Insufficient Physical
Copy Engines to enable
Logical Copy Engine 4

Physical Copy Engine 0
is unused on the 2080 Ti
due to hardware errata

GRCE0/GRCE1 are identical to LCE0/LCE1

Fig. 11. Interconnectedness between Runlists, Logical Copy Engines (LCEs), Graphics Copy Engines (GRCEs), and Physical Copy Engines (PCEs) for a
variety of GPUs 2016–2022. Only PCEs can actually perform the copy. The GTX 1080 Ti configuration (not shown) is identical to the GTX 1060 3GB
configuration (shown).

Capodieci et al. [3], and mutual-exclusion-based management
by Elliott et al. [14].

Our goal in this section is to demonstrate that our rules are a
prerequisite to safe GPU management. We cannot demonstrate
that our rules are sufficient, but we can show that they are
necessary. We do this by showing that prior approaches fail
without the consideration of our rules.

A. Necessity for Management-Free Analysis [4]

Yang et al. [4] have developed response-time analysis for
GPU-using directed-acyclic-graph (DAG) tasks, without re-
quiring any GPU-management middleware. They substantially
limit the programming and system model to simplify the
analysis—a defensible choice, as they target OpenVX tasks
for whom these limits are insignificant.

By R2, any GPU management approach should not use
more streams than channels, or risk compromised parallelism
and undefined behavior. In the work by Yang et al. [4], one
stream is used per-job, and the total number of co-running jobs
is not limited. If our rule is necessary, Yang et al.’s analysis
should be compromised by ignoring our rule.

Problematic assumptions. In [4], jobs are restricted from
launching more than one kernel. This allows for them to use
a simplified derivative of the scheduling rules from Amert et
al. [5] in their analysis. The simplified ruleset is as follows: (i)
a kernel is enqueued on the EE queue when launched; (ii) a
kernel at the head of the EE queue is dequeued from that queue
once it becomes fully dispatched; and (iii) a block of the kernel
at the head of the EE queue is eligible to be assigned if its
resource requirements are met. “Fully dispatched” means that
all blocks of the kernel have begun or completed execution;
“EE queue” is a first-in-first-out (FIFO) queue whose behavior
is defined by the above rules; and “resource requirements” are
GPU cores and shared memory.

We now show that, as this ruleset ignores R2, it is incorrect.
This requires defining some of the specific behavior that occurs
when R2 is violated before we can give our counter-example
to the ruleset of Yang et al..

Implications of our rules.

Corollary 1. A channel is not guaranteed to be available
until the last kernel in the currently-active stream is fully
dispatched.

In Fig. 5 we show that the last kernel must be at least
partially dispatched before a channel is freed. In supplemental
experiments, we add more blocks to the kernels and observe
that all blocks must be dispatched before a channel is reliably
freed.

Corollary 2. Streams waiting for channels are not assigned
channels in FIFO order.

We repeat the experiment of Fig. 5 with ten streams and
a longer K3, finding that Stream 10 is assigned a channel
before Stream 9—even though kernels are launched in Stream
9 before Stream 10.

Counter-example. Consider 10 different GPU jobs which
release in order, each consisting of a single large kernel
launched in a single-use CUDA stream.

Under the ruleset of Yang et al., by rule (i) they are all
immediately put on the EE queue by order of arrival, and per
(ii) and (iii) they are progressively dequeued and executed on
the GPU in FIFO order as resources become available.

Under our rules, the ordering can be different. The first
8 streams and their kernels will be assigned channels and
executed, but kernels 9 and 10 will have to wait until a channel
is freed, per Corollary 1. Once one of the first 8 kernels is
fully dispatched and its channel becomes free, that channel
may be assigned to either kernel 9 or kernel 10 per Corollary
2—this is the key point where a problem emerges. If kernel
10 is assigned a channel first, it will execute before kernel 9,
resulting in a non-FIFO order of execution.

In Yang et al., the response-time bound (Theorem 3) for
a job omits consideration of all jobs released after that job,
dependent on GPU kernels being dequeued in FIFO order.
Our above counter-example shows that later-released kernels
may cut-ahead, adding unaccounted-for delays, breaking the

response-time bound proof of [4]. If R2 were taken into
account, and fewer streams used than channels, this problem
would have been avoided.

B. Necessity for Preemptive EDF On-GPU [3]

Capodieci et al. [3] developed a mechanism to enable
preemptive EDF scheduling on the GPU. Task scheduling
is done by only inserting channels for a single application
at a time on the runlist, and preemption is implemented by
resetting the runlist.

The key problem with this work is that a TX2-specific
attribute—the presence of only one runlist—is claimed as a
general rule of NVIDIA GPU scheduling (as repeated in their
later work [7]).

Problematic assumptions. In the work of Capodieci et al.,
they claim that only one task is active on a runlist at a time.
This directly contradicts R4. They also overlook that other
non-compute engines require access to a runlist, a conflict with
R7. In follow-on work, when observing an instance of R5,
they instead indirectly question R3—the only claim of their
original work that our rules directly align with.

However, are our rules strictly required for this management
technique to be safe?

Counter-example. Consider a system of two GPU-using tasks
on the NVIDIA Jetson Xavier. Task 1 performs compute
and copy operations, whereas Task 2 performs only compute
operations. Task 1 has a period of 3s, relative deadline of 2s,
cost of 2s, and phase of 0.5s. Task 2 has a period of 3s, relative
deadline of 3s, cost of 1s, and phase of 0. In this system, Task
2 will always release part-way through Task 1’s execution,
and have an earlier deadline, hence higher priority according
to EDF. The result will be that Task 2 preempts Task 1 on
every release.

According to Capodieci et al., this preemption would be
implemented by reconfiguring the compute runlist to only
contain Task 2—this should work, per R3. However, the Jetson
Xavier includes a second runlist for copy operations. Per R5,
even though Task 1 is no longer active on the compute runlist,
its copies may continue unhindered on other runlists. Such co-
running copies have been shown to severely delay compute
work on the Jetson Xavier [7], causing Task 2 to miss its
tight deadline. If R3, R5, and R7 were taken into account, the
second runlist would not have been overlooked, could have
been preempted, and the safety of the system preserved.

C. Necessity for Granular GPU Locking [2], [14]

Glenn et al. [2], [14] propose managing the GPU by making
each copy and compute engine a lockable resource, such
that existing resource-management analysis can be applied to
GPU-using tasks.

R8 and R6 show that the presence of multiple copy engines
does not guarantee their independence, as would be required
to treat them as separately lockable resources. This lacking
copy independence is the key problem with a granular locking
approach.

Problematic assumptions. Glenn et al. assume that if a
GPU has at least two copy engines, copies in independent
directions can proceed independently—a contradiction of R8.
Furthermore, they assume that—no matter the number of copy
engines—those copy engines are scheduled independently of
the compute engine. R6 contradicts this; copy and compute en-
gines may share a runlist, making scheduling non-independent.
Other assumptions of that work are now outdated, such as
the non-preemptability of copy engines, but we focus only
on the overly-optimistic assumptions, rather than the overly-
pessimistic ones.

Counter-example. Consider the system of Fig. 10 on the
RTX 6000 Ada: one CPU-to-GPU copy+graphics task, and an-
other GPU-to-CPU copy task on a two-copy-engine-containing
system. Given that CUDA reports two copy engines on this
system, the following locks would be created: Lock 1 for CPU-
to-GPU copies, Lock 2 for GPU-to-CPU copies, and Lock 3
for compute/graphics work. Task 2 could freely acquire Lock
2 for its GPU-to-CPU copies at the same time that Task 1
holds Lock 1 or Lock 3—no locks are contended for, and so
management is a no-op.

However, due to how the visible copy engines are mapped to
the underlying copy hardware, the copies of Task 1 and Task
2 would contend for access to a single PCE, taking double
the time expected. This compromises execution time bounds,
leading to unreliably-met deadlines. If hardware mappings
were taken into account as required by R8—perhaps extracted
via our nvdebug tool—only one copy engine lock would
have been created and per-engine mutual exclusion would be
restored.

VII. CONCLUSION

In this work, we identified key behaviors of NVIDIA GPUs
that can compromise the safety of preexisting real-time GPU
management frameworks. In order to protect future GPU-
management efforts from such hazards, we experimentally
derived and codified GPU scheduling rules for the lowest-level
scheduling primitives—channels, runlists, and engines. We
analytically evaluate the necessity of our rules for GPU man-
agement and analysis, finding that our rules expose counter-
examples in three prior works. To assist others in maintaining
and adding to our scheduling rules, we open-sourced all our
tools, including our nvdebug Linux kernel module.

In future work, we aim to develop rules for how run-
lists are arbitrated and budgeted when containing multiple
tasks; a sufficiently-high-accuracy model may allow offload-
ing scheduling from management frameworks onto the HW
scheduler—reducing capacity loss.

APPENDIX A
NVDEBUG : A NEW GPU INSPECTION TOOL

The hazards we have identified in prior work highlight the
need for greater visibility into the scheduling mechanisms
of NVIDIA GPUs. In order to enable other researchers to
continue our work, and to verify that future management
approaches works as expected, we are open-sourcing our

1 user@machine:~$ cat /proc/gpu1/runlist0
2 +---- TSG Entry 1 ---+
3 | Scale: 3 |
4 | Timeout: 128 |
5 | Length: 1 |
6 +---------------------+
7 +- Channel Info 1 -+
8 | Enabled: 1|
9 | Next: 0|

10 | Force CTX Reload: 0|
11 | Enable set: 0|
12 | Enable clear: 0|
13 | PBDMA Faulted: 0|
14 | ENG Faulted: 0|
15 | Status: 0|
16 | Busy: 0|
17 ...

Listing 1. Example usage of nvdebug runlist information API.

nvdebug tool. Our tool allows for transparently inspecting
and modifying GPU scheduling state, irrespective of the GPU
driver in use.
nvdebug is a loadable Linux kernel module, and interacts

directly with the GPU via memory-mapped I/O operations.
This bypasses the GPU driver, so it works no matter what
driver, if any, is installed. nvdebug supports both aarch64 and
x86_64 CPUs, works on both integrated and discrete NVIDIA
GPUs, has no dependencies, and requires no configuration.
We have tested it on GPUs from Kepler (2011) through Ada
(2022).

After being loaded into the kernel, our tool exposes GPU
information via a series of virtual files in /proc/gpuX for
each GPU X on the system. Key stable APIs include:

1) gpuX/device_info: Print information about GPU
engines, including their associated runlist IDs.

2) gpuX/runlistY: Print the contents of runlist Y.
3) gpuX/disable_channel: On write, disable the

channel associated with the ID written.
4) gpuX/enable_channel: On write, enable the chan-

nel associated with the ID written.
5) gpux/lce_for_pceY: Read which LCE PCE Y is

mapped to.
6) gpux/shared_lce_for_grceY: Read which LCE

(if any) GRCE Y is mapped to.
7) gpux/pce_map: Read a bit mask of which PCEs are

available.
We include an example of using nvdebug to print Runlist 0
for the second GPU in the system ,in Listing 1.

Among the challenges we overcome while constructing
this tool, accessing, parsing, and traversing GPU page tables
to access runlist entries in GPU physical memory proved
particularly difficult. We encourage those further interested in
this topic to consult our code.17

ACKNOWLEDGMENT

The authors thank Benjamin Hadad IV for his implemen-
tation of nvdebug’s device information API on Ampere+
GPUs, and thank Saman Sahebi for his implementation of

17Available online at http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git/.

nvdebug’s PCE to LCE mapping information API on Tur-
ing+ GPUs.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, vol. 25, Dec 2012.

[2] G. A. Elliott, “Real-time scheduling for GPUs with applications in
advanced automotive systems,” Ph.D. dissertation, The University of
North Carolina at Chapel Hill, 2015.

[3] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in
Proceedings of the 39th IEEE Real-Time Systems Symposium, Dec 2018,
pp. 119–130.

[4] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, F. D. Smith,
and S. Wang, “Making OpenVX really "real time",” in Proceedings of
the 39th IEEE Real-Time Systems Symposium, Dec 2018, pp. 80–93.

[5] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
Proceedings of the 38th IEEE Real-Time Systems Symposium, Dec 2017,
pp. 104–115.

[6] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith, “Avoiding pitfalls when using NVIDIA GPUs for real-time
tasks in autonomous systems,” in Proceedings of the 30th Euromicro
Conference on Real-Time Systems, Jul 2018, pp. 20:1–20:21.

[7] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a perfor-
mance and predictability perspective,” in Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium, Apr
2020, pp. 213–225.

[8] J. Bakita and J. H. Anderson, “Hardware compute partitioning on
NVIDIA GPUs,” in Proceedings of the 29th IEEE Real-Time and
Embedded Technology and Applications Symposium, May 2023, pp. 54–
66.

[9] A. B. Hayes, F. Hua, J. Huang, Y. Chen, and E. Z. Zhang, “Decoding
CUDA binary,” in Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization, Feb 2019, pp. 229–
241.

[10] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA Volta GPU architecture via microbenchmarking,” Apr 2018.

[11] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting the
NVIDIA Turing T4 GPU via microbenchmarking,” Mar 2019.

[12] J. Perez-Cerrolaza, J. Abella, L. Kosmidis, A. J. Calderon, F. Cazorla,
and J. L. Flores, “GPU devices for safety-critical systems: A survey,”
ACM Computing Surveys, vol. 55, no. 7, pp. 1–37, Dec 2022.

[13] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU scheduling for Real-Time Multi-Tasking environments,” in Pro-
ceedings of the 2011 USENIX Annual Technical Conference. USENIX
Association, Jun 2011.

[14] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: A framework
for real-time GPU management,” in Proceedings of the 34th Real-Time
Systems Symposium, Dec 2013, pp. 33–44.

[15] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming and
scheduling for GPU-accelerated real-time DNN workloads,” in Pro-
ceedings of the 24th IEEE Real-Time and Embedded Technology and
Applications Symposium, Apr 2018, pp. 190–201.

[16] T. Amert, Z. Tong, S. Voronov, J. Bakita, F. D. Smith, and J. H.
Anderson, “TimeWall: Enabling time partitioning for real-time multi-
core+accelerator platforms,” in Proceedings of the 42nd IEEE Real-Time
Systems Symposium, Dec 2021, pp. 455–468.

[17] N. Otterness, M. Yang, T. Amert, J. Anderson, and F. D. Smith,
“Inferring the scheduling policies of an embedded CUDA GPU,” in Pro-
ceedings of the 13th Annual Workshop on Operating Systems Platforms
for Embedded Real Time Applications, Jul 2017.

[18] N. Otterness and J. H. Anderson, “Exploring AMD GPU scheduling
details by experimenting with “worst practices”,” in Proceedings of the
29th International Conference on Real-Time Networks and Systems, Apr
2021, pp. 24–34.

[19] N. Otterness, “Developing real-time GPU-sharing platforms for
artificial-intelligence applications,” Ph.D. dissertation, The University of
North Carolina at Chapel Hill, 2022.

http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git/

[20] S. K. Saha, Y. Xiang, and H. Kim, “STGM: Spatio-temporal GPU
management for real-time tasks,” in Proceedings of the 25th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, Aug 2019, pp. 1–6.

[21] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional GPUs: Software-
based compute and memory bandwidth reservation for GPUs,” in
Proceedings of the 25th IEEE Real-Time and Embedded Technology
and Applications Symposium, Apr 2019, pp. 29–41.

[22] NVIDIA, “Linux open GPU kernel module source.” [Online]. Available:
https://github.com/NVIDIA/open-gpu-kernel-modules

[23] Nouveau Project Authors, “Nouveau: Accelerated open source driver for
nVidia cards,” 2022. [Online]. Available: https://nouveau.freedesktop.
org/

[24] NVIDIA, “Open GPU documentation.” [Online]. Available: https:
//github.com/NVIDIA/open-gpu-doc

[25] S. H. Duncan, L. V. Shah, S. J. Treichler, D. E. Wexler, J. F. Duluk Jr,
P. B. Johnson, and J. S. R. Evans, “Concurrent execution of independent
streams in multi-channel time slice groups,” U.S. Patent 9,442,759, Sep.,
2016.

[26] NVIDIA, “nvgpu git repository.” [Online]. Available: git://nv-tegra.
nvidia.com/linux-nvgpu.git

[27] M. W. Rashid, G. Ward, W.-J. R. Huang, and P. B. Johnson, “Man-
aging copy operations in complex processor topologies,” U.S. Patent
10,275,275, Apr., 2019.

https://github.com/NVIDIA/open-gpu-kernel-modules
https://nouveau.freedesktop.org/
https://nouveau.freedesktop.org/
https://github.com/NVIDIA/open-gpu-doc
https://github.com/NVIDIA/open-gpu-doc
git://nv-tegra.nvidia.com/linux-nvgpu.git
git://nv-tegra.nvidia.com/linux-nvgpu.git

	Introduction
	Background
	Related Work
	High-Level Framing
	Low-Level Rules
	Methodology and Tools
	Rules for Channels
	Rules for Runlists
	Rules for Runlist to Engine Mappings

	Evaluation
	Necessity for Management-Free Analysis yang2018making
	Necessity for Preemptive EDF On-GPU capodieci2018deadline
	Necessity for Granular GPU Locking elliott2013gpusync, glenndiss

	Conclusion
	Appendix A: nvdebug: A New GPU Inspection Tool
	Acknowledgment
	References

