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How can we do 
more, with less?
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Doing More with Less: Leveraging the GPU
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Many GPU Engines

My prior work

More efficiently using GPU 

compute cores

This work

More efficiently using 

multiple GPU engines



Prior Work on Efficient GPU Engine Use
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Elliot et al. [2]

Use Engines in Parallel, with Locking
Use Engines Synchronously, and 

Preempt

Capodieci et al. [3]

Misses deadlines Misses deadlinesProblem: Models of the GPU that don't generalize



Key Goals

Rules of NVIDIA GPU-internal scheduling that are:

Comprehensive
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NecessaryDependable

Via new experimental tools and approaches, we derive such rules for any NVIDIA 
GPU from the past 8 years.



Dependable GPU Scheduling 
Rules
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Goal 1 of 3
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Dependable Scheduling Rules Divide and Conquer
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Dependable Scheduling Rules Divide and Conquer
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Streams
Compute Engine

Physical 
Copy 

Engine

Physical 
Copy 

Engine

On-CPU On-GPU

Cores

[UNKNOWN]

[UNKNOWN]

Our tool nvdebug
observes the CPU-GPU 

interface
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nvdebug

Observes GPU state via PCIe and platform registers.

On Linux:

1. Install gcc and linux-headers-generic
2. Clone http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git
3. Run make and sudo insmod nvdebug.ko

Code is open source and documented. See 

https://www.cs.unc.edu/~jbakita/rtas24-ae/ to get started.

Portable: Works on any 
NVIDIA GPU of compute 
capability >3.0 (2013)* 
and Linux >4.9 (2016)

Dependable Scheduling Rules

Key insight:
GPU internal 
scheduling 

structures are 
rarely redesigned



Comprehensive GPU Scheduling 
Rules
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Goal 2 of 3
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Dependable Scheduling Rules
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Comprehensive Scheduling Rules Prior Work [5] (Amert, 2017)
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Comprehensive Scheduling Rules Prior Work [3] (Capodieci, 2018)
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Runlist
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Comprehensive Scheduling Rules Connecting Prior Work
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RunlistChannels Runlists
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Comprehensive Scheduling Rules Connecting Prior Work
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Streams
Compute Engine

Physical 
Copy 

Engine

On-CPU On-GPU

Channels Runlists

Cores

Logical 
Copy Engine

Logical 
Copy Engine



Compute EngineCompute Engine
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Comprehensive Scheduling Rules Example
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Comprehensive Scheduling Rules Example
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Streams
Compute Engine

Physical 
Copy 

Engine
Logical 

Copy Engine

Logical 
Copy Engine

On-CPU On-GPU

Channels Runlists

Cores



Necessary GPU Scheduling Rules
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Goal 3 of 3
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Necessary Scheduling Rules
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Necessary Scheduling Rules Actual GPU: RTX 6000 Ada
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Per-Engine Locking
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Necessary Scheduling Rules

Assume each engine can be used simultaneously.

Create one lock per engine.

To use an engine, obtain the lock.
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Necessary Scheduling Rules Problems with Per-Engine Locking
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Necessary Scheduling Rules Problems with Per-Engine Locking
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Necessary Scheduling Rules Problems with Per-Engine Locking
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Key Issue: Number of copy 
engines >= maximum 
asynchronous copies



Management-free analysis via a large 

number of streams [4]

Preemptive scheduling via resetting 

the runlist [3]

Problems with other management
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Dependable Scheduling Rules

Key Issue:
Cannot use more streams 
than there are channels.

Key Issue:
Only preempts tasks on the 

first runlist



Conclusions
We provide rules of NVIDIA GPU-internal scheduling that are:

Comprehensive
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Dependable Necessary

Do GPUs change too 
much?

Are the rules needed for 
safe GPU management?

Can it describe the path 
from CUDA to the GPU?

Yes! We fill in all 

previously 

unknown gaps in 

the pipeline.

No. Our nvdebug 

tool shows that 

internal structures 

rarely change.

Yes. Their absence 

results in a loss of 

generalizability.



What you have to read the paper for…
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Evaluation:
● A detailed theoretical analysis of how prior 

GPU management approaches can break 
down

Tooling:
● Details on the use and features of nvdebug
● Our new microsecond-accurate GPU 

microbenchmark suite gpu-microbench

Regarding rules:
● Eight detailed rules, covering tasks to 

channels, channels to runlists, and runlists 
to engines

● Detailed microbenchmark experiments to 
justify and demonstrate each rule

+ More details and background on everything 
covered in this presentation



Thanks! 
Questions?

Contact:

Email: jbakita@cs.unc.edu

Twitter: @JJBakita

Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 29
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