
Demystifying NVIDIA GPU
Internals to Enable Reliable
GPU Management
Joshua Bakita and James H. Anderson

Department of Computer Science
University of North Carolina, Chapel Hill

1

How can we do
more, with less?

2

Doing More with Less: Leveraging the GPU

3

Many GPU Engines

My prior work

More efficiently using GPU

compute cores

This work

More efficiently using

multiple GPU engines

Prior Work on Efficient GPU Engine Use

4

Elliot et al. [2]

Use Engines in Parallel, with Locking
Use Engines Synchronously, and

Preempt

Capodieci et al. [3]

Misses deadlines Misses deadlinesProblem: Models of the GPU that don't generalize

Key Goals

Rules of NVIDIA GPU-internal scheduling that are:

Comprehensive

5

NecessaryDependable

Via new experimental tools and approaches, we derive such rules for any NVIDIA
GPU from the past 8 years.

Dependable GPU Scheduling
Rules

6

Goal 1 of 3

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Dependable Scheduling Rules Divide and Conquer

8

Streams
Compute Engine

Physical
Copy

Engine

Physical
Copy

Engine

On-CPU On-GPU

Cores

[UNKNOWN]

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Dependable Scheduling Rules Divide and Conquer

9

Streams
Compute Engine

Physical
Copy

Engine

Physical
Copy

Engine

On-CPU On-GPU

Cores

[UNKNOWN]

[UNKNOWN]

Our tool nvdebug
observes the CPU-GPU

interface

10

nvdebug

Observes GPU state via PCIe and platform registers.

On Linux:

1. Install gcc and linux-headers-generic
2. Clone http://rtsrv.cs.unc.edu/cgit/cgit.cgi/nvdebug.git
3. Run make and sudo insmod nvdebug.ko

Code is open source and documented. See

https://www.cs.unc.edu/~jbakita/rtas24-ae/ to get started.

Portable: Works on any
NVIDIA GPU of compute
capability >3.0 (2013)*
and Linux >4.9 (2016)

Dependable Scheduling Rules

Key insight:
GPU internal
scheduling

structures are
rarely redesigned

Comprehensive GPU Scheduling
Rules

11

Goal 2 of 3

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Dependable Scheduling Rules

12

Streams
Compute Engine

Physical
Copy

Engine

On-CPU On-GPU

Cores

[UNKNOWN]

[UNKNOWN]

G
P

U
-U

s
in

g

T
a

s
k

 1

Comprehensive Scheduling Rules Prior Work [5] (Amert, 2017)

13

Streams
Compute Engine

Physical
Copy

Engine

On-CPU On-GPU

Cores

Queues

[UNKNOWN]

G
P

U
-U

s
in

g

T
a

s
k

 2

G
P

U
-U

s
in

g

T
a

s
k

 1

Comprehensive Scheduling Rules Prior Work [3] (Capodieci, 2018)

14

Streams
Compute Engine

Physical
Copy

Engine

On-CPU On-GPU

Cores

Queues

G
P

U
-U

s
in

g

T
a

s
k

 2

Runlist

G
P

U
-U

s
in

g

T
a

s
k

 1

Comprehensive Scheduling Rules Connecting Prior Work

15

Streams
Compute Engine

Physical
Copy

Engine

On-CPU On-GPU

Cores

Queues

G
P

U
-U

s
in

g

T
a

s
k

 2

RunlistChannels Runlists

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Comprehensive Scheduling Rules Connecting Prior Work

16

Streams
Compute Engine

Physical
Copy

Engine

On-CPU On-GPU

Channels Runlists

Cores

Logical
Copy Engine

Logical
Copy Engine

Compute EngineCompute Engine

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Comprehensive Scheduling Rules Example

17

Streams

Physical
Copy

Engine
Logical

Copy Engine

Logical
Copy Engine

On-CPU On-GPU

Channels Runlists

Cores

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Comprehensive Scheduling Rules Example

18

Streams
Compute Engine

Physical
Copy

Engine
Logical

Copy Engine

Logical
Copy Engine

On-CPU On-GPU

Channels Runlists

Cores

Necessary GPU Scheduling Rules

19

Goal 3 of 3

Compute Engine

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Necessary Scheduling Rules

20

Streams

Physical
Copy

Engine
Logical

Copy Engine

Logical
Copy Engine

On-CPU On-GPU

Channels Runlists

Cores

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Necessary Scheduling Rules Actual GPU: RTX 6000 Ada

21

Streams
Compute Engine

Logical
Copy Engine

Physical
Copy

Engine

Logical
Copy Engine

Logical
Copy Engine

Logical
Copy Engine

Physical
Copy

Engine

On-CPU On-GPU

Channels Runlists

Cores

Per-Engine Locking

22

Necessary Scheduling Rules

Assume each engine can be used simultaneously.

Create one lock per engine.

To use an engine, obtain the lock.

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Necessary Scheduling Rules Problems with Per-Engine Locking

23

Streams
Compute Engine

Logical
Copy Engine

Physical
Copy

Engine

Logical
Copy Engine

Logical
Copy Engine

Logical
Copy Engine

Physical
Copy

Engine

On-CPU On-GPU

Channels Runlists

Cores

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Necessary Scheduling Rules Problems with Per-Engine Locking

24

Streams
Compute Engine

Logical
Copy Engine

Logical
Copy Engine

Logical
Copy Engine

Logical
Copy Engine

Physical
Copy

Engine

On-CPU On-GPU

Channels Runlists

Cores

Physical
Copy

Engine

G
P

U
-U

s
in

g

T
a

s
k

 2
G

P
U

-U
s

in
g

T

a
s

k
 1

Necessary Scheduling Rules Problems with Per-Engine Locking

25

Streams
Compute Engine

Logical
Copy Engine

Physical
Copy

Engine

Logical
Copy Engine

Logical
Copy Engine

Logical
Copy Engine

Physical
Copy

Engine

On-CPU On-GPU

Channels Runlists

Cores

Key Issue: Number of copy
engines >= maximum
asynchronous copies

Management-free analysis via a large

number of streams [4]

Preemptive scheduling via resetting

the runlist [3]

Problems with other management

26

Dependable Scheduling Rules

Key Issue:
Cannot use more streams
than there are channels.

Key Issue:
Only preempts tasks on the

first runlist

Conclusions
We provide rules of NVIDIA GPU-internal scheduling that are:

Comprehensive

27

Dependable Necessary

Do GPUs change too
much?

Are the rules needed for
safe GPU management?

Can it describe the path
from CUDA to the GPU?

Yes! We fill in all

previously

unknown gaps in

the pipeline.

No. Our nvdebug

tool shows that

internal structures

rarely change.

Yes. Their absence

results in a loss of

generalizability.

What you have to read the paper for…

28

Evaluation:
● A detailed theoretical analysis of how prior

GPU management approaches can break
down

Tooling:
● Details on the use and features of nvdebug
● Our new microsecond-accurate GPU

microbenchmark suite gpu-microbench

Regarding rules:
● Eight detailed rules, covering tasks to

channels, channels to runlists, and runlists
to engines

● Detailed microbenchmark experiments to
justify and demonstrate each rule

+ More details and background on everything
covered in this presentation

Thanks!
Questions?

Contact:

Email: jbakita@cs.unc.edu

Twitter: @JJBakita

Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 29

	Slide 1: Demystifying NVIDIA GPU Internals to Enable Reliable GPU Management
	Slide 2: How can we do more, with less?
	Slide 3: Doing More with Less: Leveraging the GPU
	Slide 4: Prior Work on Efficient GPU Engine Use
	Slide 5: Key Goals
	Slide 6: Dependable GPU Scheduling Rules
	Slide 8: Dependable Scheduling Rules Divide and Conquer
	Slide 9: Dependable Scheduling Rules Divide and Conquer
	Slide 10: nvdebug
	Slide 11: Comprehensive GPU Scheduling Rules
	Slide 12: Dependable Scheduling Rules
	Slide 13: Comprehensive Scheduling Rules Prior Work [5] (Amert, 2017)
	Slide 14: Comprehensive Scheduling Rules Prior Work [3] (Capodieci, 2018)
	Slide 15: Comprehensive Scheduling Rules Connecting Prior Work
	Slide 16: Comprehensive Scheduling Rules Connecting Prior Work
	Slide 17: Comprehensive Scheduling Rules Example
	Slide 18: Comprehensive Scheduling Rules Example
	Slide 19: Necessary GPU Scheduling Rules
	Slide 20: Necessary Scheduling Rules
	Slide 21: Necessary Scheduling Rules Actual GPU: RTX 6000 Ada
	Slide 22: Per-Engine Locking
	Slide 23: Necessary Scheduling Rules Problems with Per-Engine Locking
	Slide 24: Necessary Scheduling Rules Problems with Per-Engine Locking
	Slide 25: Necessary Scheduling Rules Problems with Per-Engine Locking
	Slide 26: Problems with other management
	Slide 27: Conclusions
	Slide 28: What you have to read the paper for…
	Slide 29: Thanks! Questions?

