
Work in Progress: Increasing Schedulability via
on-GPU Scheduling*

Joshua Bakita and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill, USA

Email: {jbakita, anderson}@cs.unc.edu

Abstract—GPUs are increasingly needed to run a variety of
tasks in embedded systems, from object recognition to conver-
sational chat. Some of these tasks are safety-critical, real-time
tasks, where completing each by its deadline is essential for
system safety. To meet the practical constraints of real-world
systems, these tasks much also be run efficiently. Unfortunately,
current techniques to schedule GPU-using tasks onto a single
GPU while respecting deadlines impart high overheads, leading to
inefficiency and substantial capacity loss during formal analysis.
We address this problem by moving GPU scheduling from the
CPU to the GPU. Our approach limits overheads, increasing the
proportion of CPU tasks which can meet their deadlines by as
much as 12.1% while increasing available GPU capacity.

I. INTRODUCTION

Embedded real-time systems are being called upon to
perform increasingly complex tasks, from perception and
planning in a self-driving car to natural language processing
for an intelligent assistant. GPUs are currently the most
readily available and widely used processor for these types
of computations. Due to practical constraints on commercial
embedded systems (e.g. size, weight, power, and cost), it has
become necessary to maximize efficiency by sharing a single
GPU among multiple tasks. In many of these systems, it is
essential to ensure that safety-critical tasks—those for which
failure could result in death or destruction—always complete
by their deadlines.

Unfortunately, current techniques to schedule multiple
GPU-using tasks onto a single GPU impart high overheads.
Such overheads consume valuable processor time that could be
used to execute tasks. We find that this cost easily exceeds 11%
of system capacity when schedulers must execute frequently,
This limits the range of task sets in which all tasks can be
guaranteed to meet their deadlines.

Our solution. We eliminate the overheads inherent in prior
approaches to GPU scheduling by moving GPU scheduling
off of the CPU and onto the GPU. Fig. 1 illustrates how
our approach (bottom) differs from that of prior work (top)
during an invocation of the GPU scheduler. Note how the CPU
timeline is entirely absent from the bottom of the figure—our
solution does not rely on any CPU computations to execute
a scheduling decision. Instead, our scheduler runs in-between
each GPU task’s execution (similar to how CPU schedulers
are conventionally run between CPU tasks).

*Work supported by NSF grants CPS 2038960, CPS 2038855, CNS
2151829, and CPS 2333120, and ONR contract N0001424C1127.

CPU

GPU

Prior

GPU

Ours

Task 1

Task 2

Scheduler Logic Interrupt

Context Switch

Time

Fig. 1. Our scheduling technique removes high-overhead CPU–GPU syn-
chronization operations by moving GPU scheduling off of the CPU.

Prior work. Most prior work has focused on eliminating a
need for GPU scheduling by either allowing only one task to
use the GPU at a time, or by subdividing the GPU into pieces
that are each used only by one task at a time. GPUSync [1] is
an exemplar of the earlier approach, whereas the SMLP [2],
built on hardware [3], [4] or software-based GPU partition-
ing techniques [5]–[7], represents the latter approach. These
approaches are limited in that they exclusively grant some
portion of the GPU to a single task until that task yields access
to the GPU; they have no way of evicting an overrunning
task from the GPU. Without an eviction mechanism, an urgent
GPU-using task may have to wait for less-important tasks to
complete before gaining access to the GPU. This can make
it impossible to guarantee that deadlines will be met. In
contrast, preemptive GPU schedulers such as TimeGraph [8],
Capedioci et al.’s EDF scheduler [9], and GCAPS [10] have
the ability to preempt tasks on the GPU, ensuring that urgent
GPU-using tasks will not have to wait for lower-priority
ones before running.1 These prior works only have acceptable
overheads for scheduling algorithms that run infrequently, and
cannot support the needs of frequently-run schedulers such as
Pfair [11] or EEVDF [12].

Contributions. In this work, we:

1) Demonstrate that GPU scheduling from the CPU is
fundamentally high-overhead.

2) Build a GPU scheduler supporting NVIDIA GPUs that
runs entirely on the GPU.

3) Evaluate our scheduler, finding that it eliminates on-CPU
overheads and reduces on-GPU overheads.

1TimeGraph cannot always preempt overrunning tasks due to contemporary
hardware limitations, but does stop such tasks when possible.

1

Task 1 Task 2 Task 3Start - Task ID
- Time Budget Ⓐ

Ⓑ
...

Fig. 2. Illustration of a GPU runlist of three tasks.

4) Test the analytical benefits of on-GPU scheduling, show-
ing a 11.6–12.1% capacity improvement.

II. BACKGROUND

A. Task Model

Each task i in our system has a period Ti and worst-case
execution time Ci. Tasks release jobs every Ti time units, and
each job may take up to Ci time units to execute. We assume
implicit deadlines, such that each job must complete within
Ti time units. The utilization of each task is Ui = Ci

Ti
, and

the total system utilization is U =
∑n

i=0 Ui, where n is the
number of tasks. In this work, we treat the GPU and CPU
as separate systems that communicate asynchronously. Each
system has its own total utilization and set of tasks.

B. Built-in GPU Scheduling

Both NVIDIA and AMD GPUs support running multiple
tasks on the GPU by rapidly switching between them, i.e. time-
slicing them. On NVIDIA GPUs, this time-slicing is done by
a built-in round-robin scheduler [9]. The set of tasks it runs
is defined by a runlist (Fig. 2) that is provided by the GPU
driver. Each entry in the runlist represents a task, a budget, and
other state (A in Fig. 2). The built-in scheduler processes the
list in order, running each task for its specified budget before
preempting it and switching to the next task (B in Fig. 2).
The driver sets each budget to 2 ms by default. A task forfeits
the remainder of its budget if it finishes early. After reaching
the end of the runlist, the built-in scheduler returns to the
beginning of the runlist and repeats the scheduling process.

C. Fundamental Overheads of on-CPU GPU Scheduling

0 100 200 300
Interrupt Latency (µs)

GTX 295
(2009)

GTX 1070
(2016)

RTX 2080 Ti
(2018)

RTX 6000 Ada
(2022)

G
P

U
 M

od
el

Fig. 3. 0, 25, 50, 75, and 100th percentile time between triggering an interrupt
on the GPU and receiving it on the CPU (100 samples).

For a GPU scheduler such as TimeGraph [8], a principal
overhead is the time required for the GPU to signal the CPU
of the completion of a task via an interrupt, i.e., the interrupt
latency (squiggle in Fig. 1). We benchmarked this overhead
on several generations of GPUs (methodology in Appx. A),
and plot the results in Fig. 3.

Note how interrupt latencies have increased with time. On
the GTX 295 (a variant of the GTX 285 used by Time-
Graph [8]), the mean latency is 5 µs, but on the 13-years-newer

RTX 6000 Ada, the mean latency is 56 µs. For schedulers
which use interrupts to trigger the scheduler, these overheads
are fundamental; it requires at least as much time as the
interrupt latency for the CPU to be informed of an event on
the GPU. These costs can compound quickly. For a scheduler
signaled every 2 ms (e.g. Pfair [11] or EEVDF [12]), 56 µs
would represent a 2.8% overhead cost, just for interrupts.

III. OUR SOLUTION: ON-GPU SCHEDULING

Our solution eliminates the expense of CPU–GPU synchro-
nization by making GPU scheduling decisions via a scheduling
task running directly on the GPU. Fig. 1 shows a timeline
comparing the two approaches during a task switch.

With the prior approach (top), the CPU must be signaled that
the GPU has completed Task 1, must execute the scheduling
algorithm, and must signal the GPU to switch to Task 2.
On the RTX 6000 Ada, signaling the CPU via an inturrupt
takes 50 µs on avg (Fig. 3), and switching between tasks
tasks about 65 µs (in our tests). This implies that no matter
how fast a GPU scheduler is at making scheduling decisions,
it will always require at least 115 µs to switch between
tasks. Assuming 50 µs to execute the scheduling algorithm
and a 2 ms scheduling frequency (matching the built-in GPU
scheduler), for every 2000 µs of CPU time, 165 µs (8.25%)
would be lost to the scheduler while the GPU sits idle.

We instead use the time that the GPU would have sat idle
to perform GPU scheduling directly on the GPU (bottom in
Fig. 1). This eliminates the need for an interrupt, but introduces
the need to switch to and from the GPU-scheduling task on the
GPU. With some scheduler optimizations to reduce switching
time,2 the time required for this additional switch is about the
same as the cost of an interrupt, meaning that it continues to
take 165 µs to switch between tasks on the GPU.3 However,
all on-CPU overheads are eliminated, freeing up capacity for
other CPU tasks.

IV. IMPLEMENTATION

We implemented our on-GPU scheduling framework on the
NVIDIA RTX 2080 Ti and RTX 6000 Ada. We had to ensure
that: (1) only tasks selected by our scheduler are run, (2) events
such as task completion, creation, or destruction trigger our
scheduler, (3) the driver cannot preempt our scheduler, and
(4) our scheduler has equivalent privileges as the driver in
accessing scheduling data structures and registers.

Controlling task selection. Our framework forces the build-
in round-robin scheduler to run our selected task by only
enabling at most two tasks in the runlist at a time: our
scheduler task, and the task we would like to schedule. We
then control how long the task we are scheduling may run for
by setting its hardware-enforced budget (to, e.g., 2 ms). After
this budget expires, the build-in scheduler will switch back to
our scheduling task. Our scheduler can then enable a different

2Thread-block-level preemption, also known as SM draining [13], allows
for lower context switching times if tasks manually insert preemption points.

3This assumes that the GPU scheduling algorithm runs sufficiently fast on
the GPU; we have observed this in practice.

2

task and repeat the process. This implements task selection
and ensures that our scheduler is invoked on task completion.

Enabling event receipt. When a GPU task is created or
destroyed, we want our scheduler to be triggered to handle
the event, rather than allowing the built-in scheduler to take
over. We discover that the GPU driver always writes tasks into
the runlist in the order in which they were created, and always
resets the built-in scheduler to the first entry of the runlist after
a GPU task is created or destroyed. By always launching our
GPU-scheduling task before any others, we can ensure it is
at the start of the runlist, and that it will always be the first
task to run after a GPU task is created or destroyed. We can
then detect and handle such events in the GPU scheduler by
scanning and detecting additions or removals from the runlist.

Running our scheduler non-preemptively. We prevent the
driver or built-in scheduler from interrupting our scheduler
by disabling instruction-level preemption for our scheduler
task on the GPU. Instead, we use a preemption mode2

which can only take effect at predefined points in a tasks’
execution. We then insert said points between iterations of
our scheduler, making each iteration of our scheduler execute
non-preemptively.4

Accessing privileged registers and memory. To implement
our scheduling framework, we need to be able to modify
and resubmit the runlist from within a GPU task. These are
privileged operations, as they require access to GPU control
registers and physical memory. We address this problem by
creating a Linux kernel module to modify the GPU page
tables for our scheduling task, mapping in all of GPU physical
memory and the GPU control registers.5

V. EVALUATION

We evaluate the absolute overheads of on-GPU scheduling,
and consider how the move from on-CPU to on-GPU schedul-
ing effects the overall capacity of the system.

A. Absolute Overheads

To measure the absolute overheads of our approach, we
compare how long it takes to complete a task set with
NVIDIA’s built-in scheduler vs. with our on-GPU scheduler
configured to mimic the round-robin scheduling policy of the
built-in scheduler. (We verified visually via the context-switch-
tracing feature of NVIDIA’s Nsight Systems profiler that both
produce identical schedules.) The built-in scheduler uses a
dedicated hardware unit and has no overhead cost, so any
increase in execution time observed when running a task set
under our scheduler is our scheduler’s absolute overhead.

4Non-preemptive execution appears as a hang to the driver, and can trigger
an attempted GPU reset. We disable the context-switch timeout watchdog to
ensure that the GPU is not reset while our scheduler is running.

5GPU control registers are normally only visible to the CPU, and have no
corresponding physical address on the GPU, making it impossible to map
them into a GPU virtual address space normally. However, the GPU has a
special type of virtual memory mapping used for accessing shared regions of
CPU memory. We use this mapping type to map a set of CPU addresses which
does not correspond to CPU physical memory, but corresponds to the PCIe
control region for the GPU, enabling access to the GPU control registers.

TABLE I
OVERHEAD OF ON-GPU SCHEDULING ON RTX 6000 ADA

Tasks Time w/ Built-in
(baseline) (ms)

Time w/ on-GPU
(ours) (ms)

Overhead
(% increase)

1 45,442 49,208 8.3%
2 94,218 98,578 4.6%
3 141,334 147,922 4.6%
4 188,450 198,021 5.0%
5 235,540 248,463 5.5%

We tested with task sets of 1–5 tasks on the RTX 6000 Ada,
and present the results in Table I. This table shows how long
each task set took to complete under each scheduler, and the
percent increase in execution time incurred when our scheduler
was enabled. Observe how the overhead of our approach is
4.6% at best, with a slow increase as the number of tasks
increases. The increase is because our scheduling framework
has a runtime complexity of O(n); future implementations
should be able to achieve O(1). For one task, the overhead is
large as it includes both running our scheduler and switching
between tasks (the built-in scheduler need not switch between
tasks when only one is present). For more than one task, tasks
are already being switched between, so enabling our scheduler
only adds the cost of our scheduler itself.

Returning to the cases with 4.6% overheads, since our
scheduler is run once every 2 ms (to match the built-in one),
a 4.6% overhead equates to 91 µs per scheduler invocation on
average. This is significantly less than the 421-783 µs average
per invocation in recent work [10]. Our overhead is even less
than the mean interrupt latency on some GPUs (such as the
96 µs for the RTX 2080 Ti in Fig. 3)—on such GPUs our
scheduler could finish before an on-CPU scheduler would be
able to start.

B. Analytical Benefits to Schedulability

Eliminating the on-CPU overhead of GPU scheduling has
an analytical benefit on both the CPU and GPU, but the
benefit is greatest on the CPU. For a global scheduler, such as
the global earliest-deadline-first scheduler (G-EDF), all tasks
must have their execution times extended to account for the
maximum time that they could be interrupted by an on-CPU
GPU scheduler. We analyze how this affects the total capacity
of the CPU via a schedulability study, a simulation-based way
to evaluate how scheduler and overhead changes effect the
overall ability of a system to guarantee met deadlines. Each
experiment works by generating a set of tasks with a given
total system utilization, and then testing if each scheduling
approach can guarantee met deadlines for that task set.

In our study, we utilized the schedcat framework and
included schedulability tests,6 and considered both four- and
eight-core systems of tasks with moderate periods and utiliza-
tions (as defined in prior work [14]). We charged each task
165 µs every 2 ms to represent the overhead of on-CPU GPU
scheduling. We also compared against the cost of dedicating
an entire CPU core to GPU scheduling (representing an on-
CPU spin-based alternative to interrupt-based signaling), and

6https://github.com/brandenburg/schedcat; descendant from [14].

3

https://github.com/brandenburg/schedcat

0 1 2 3 4
System Utilization (CPU)

0

25

50

75

100
P

er
ce

nt
 S

ch
ed

ul
ab

le

GPU Scheduling on GPU (ours)
GPU Scheduling on CPU (prior)
GPU Scheduling on Dedicated CPU Core

Fig. 4. Ratio of task sets that are schedulable for a given total CPU utilization
on a four-core system. When the overhead of GPU scheduling is added, less
capacity is available to execute CPU tasks.

to our approach (which does not incur any on-CPU overheads).
We generated 2,000 task sets for every 0.25 increase in
system utilization, and tested what proportion of task sets were
schedulable using G-EDF under each scheduling approach.
The results are shown in Fig. 4 for four cores. Each data point
represents what portion of task sets were schedulable (vertical
axis) for a given total system utilization (horizontal axis).

The area under each line is known as the schedulable-
utilization area, and represents the set of task systems that
each approach can schedule. By looking at the difference in
these areas, we can estimate the total system capacity gained
or lost by switching between approaches. In the case of four
cores, switching to on-GPU scheduling increases total system
capacity by 11.6% over on-CPU GPU scheduling, and by
26.0% over GPU scheduling with a dedicated core. In the case
of eight cores, the gains are 12.1% and 12.6% respectively.

These results indicate that switching to on-GPU scheduling
can increase the capacity on the CPU by 11% or more over the
best alternative approach. We believe that the benefits of our
approach may be substantially greater in real-world systems,
as we purposefully assumed charitable overheads for on-
CPU GPU scheduling—actual overheads for such competing
approaches may be much higher [10].

VI. CONCLUSION

In this work, we presented on-GPU scheduling for NVIDIA
GPUs and demonstrated how it can increase schedulability on
the CPU by 11% or more without incurring high overheads
on the GPU. Outstanding issues include a need to implement
a real-time scheduler for the GPU using our framework,
and a need to test how such changes effect average-case
performance. Further, our scheduling framework does not use
parallelism in its internal algorithms; as the GPU has many
cores, a more-parallel implementation could reduce the rising
overhead costs that we observe for higher task counts.

APPENDIX A
METHODOLOGY OF INTERRUPT EXPERIMENTS

All experiments were performed on an AMD 3950X-based
Linux system, with kernel and driver versions as specified
in Table II, and power management disabled.7 We used a

7Linux’s power management was disabled by writing “n/a” to the file
/sys/devices/system/cpu/cpuX/pm_qos_resume_latency_us.

TABLE II
CONFIGURATIONS USED FOR INTERRUPT LATENCY EXPERIMENTS

GPU Year Kernel Version Driver Version
GTX 295 2009 5.4.224-litmus+ 340.108
GTX 1070 2016 5.4.224-litmus+ 535.216.03
RTX 2080 Ti 2018 5.4.224-litmus+ 535.216.03
RTX 6000 Ada 2022 6.8.0-52-generic 550.142

monitoring task, and a custom Linux hard-interrupt handler
to record timestamps. Both were pinned to the same core, and
used the same clock (CLOCK_MONOTONIC_RAW). Interrupts
were generated by dereferencing a NULL-pointer on the GPU
to trigger a page fault. Immediately before the dereference,
the on-GPU task would flip a bit in shared memory to signal
the monitor task to record a timestamp. Once the interrupt was
received by the kernel, our custom handler would immediately
record a timestamp, and then pass control onto the normal
interrupt-handling path. To compute the interrupt latency, we
took the difference between the two timestamps.

REFERENCES

[1] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: A framework
for real-time GPU management,” in RTSS, Dec 2013.

[2] S. W. Ali, Z. Tong, J. Goh, and J. H. Anderson, “Predictable GPU
sharing in component-based real-time systems,” in ECRTS, Jul 2024.

[3] N. Otterness and J. H. Anderson, “AMD GPUs as an alternative to
NVIDIA for supporting real-time workloads,” in ECRTS, July 2020.

[4] J. Bakita and J. H. Anderson, “Hardware compute partitioning on
NVIDIA GPUs,” in RTAS, May 2023.

[5] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style GPU programming for GPGPU workloads,” in InPar, May 2012.

[6] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and exploiting
flexible task assignment on GPU through SM-centric program transfor-
mations,” in ICS, Jun 2015.

[7] C. Yu, Y. Bai, H. Yang, K. Cheng, Y. Gu, Z. Luan, and D. Qian,
“SMGuard: A flexible and fine-grained resource management framework
for GPUs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 12, Jun 2018.

[8] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Time-
Graph: GPU scheduling for Real-Time Multi-Tasking environments,”
in USENIX ATC, Jun 2011.

[9] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in RTSS,
Dec 2018.

[10] Y. Wang, C. Liu, D. Wong, and H. Kim, “GCAPS: GPU context-aware
preemptive priority-based scheduling for real-time tasks,” in ECRTS, Jul
2024.

[11] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[12] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
C. Plaxton, “A proportional share resource allocation algorithm for real-
time, time-shared systems,” in RTSS, Dec 1996.

[13] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in ISCA, Jun 2014.

[14] B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, UNC Chapel Hill, 2011.

4

	Introduction
	Background
	Task Model
	Built-in GPU Scheduling
	Fundamental Overheads of on-CPU GPU Scheduling

	Our Solution: On-GPU Scheduling
	Implementation
	Evaluation
	Absolute Overheads
	Analytical Benefits to Schedulability

	Conclusion
	Appendix A: Methodology of Interrupt Experiments
	References

