
Framework Features

Our Solution

Work in Progress: Increasing Schedulability
via on-GPU Scheduling

Can We Have Both?Joshua Bakita (jbakita@cs.unc.edu) and James H. Anderson (anderson@cs.unc.edu)
University of North Carolina at Chapel Hill

When scheduling multiple tasks on one GPU, by executing the GPU scheduler on the GPU rather
than on the CPU, we can reduce absolute overhead, and eliminate capacity loss that occurs on the

CPU.

We do this by developing a new scheduling framework for discrete NVIDIA GPUs that runs
entirely on the GPU itself.

The Pitch

Problem

Yielding lower absolute
overheads

And eliminating any CPU time
cost

Tbl. 1. Absolute overhead of
our approach (vs. 421–783 µs

typical with GCAPS)

Fig. 4. Illustration of
execution steps with our
approach to GPU scheduling.Fig. 1. Illustration of execution steps

for prior work on GPU scheduling; e.g.,
GCAPS or TimeGraph.

Ⓑ

Ⓒ

RTAS
2025

GPU interrupts to
the CPU to run

scheduler ①

But interrupt latencies
can be in the hundreds

of microseconds ②

Fig. 2. 0, 25, 50, 75, and 100th
percentile time between triggering an
interrupt on the GPU and receiving it

on the CPU (100 samples).

And dedicating a CPU core for
spin-based synchronization is

expensive ③

Leading to reduced
schedulability, esp.

when the
scheduler must be

run frequently ④

Fig. 3. Schedulability under G-EDF on the
CPU for tasks of medium periods and
utilizations after the overhead of
interrupt-driven GPU scheduling (165 µs
every 2 ms in this experiment), or of
dedicating a CPU core to GPU scheduling.

We run GPU scheduling
synchronously on the

GPU
Ⓐ

Limiting Preemption Overhead

Instruction-level
preemption

Thread-block-
level preemption

Fig 5. We use low-overhead predefined preemption points (thread-block
boundaries) for our scheduler, and arbitrary ("instruction-level")
preemption for tasks. This reduces the amount of state that must be saved
or restored for our scheduler, while still ensuring that budgets are
accurately enforced for tasks.

Our GPU scheduling framework:
- Works on many NVIDIA GPUs (2018+)
- Supports arbitrary schedulers via a

plugin-based interface
- No task modifications required
- No hardware modifications required
- Works for any task type (CUDA,

OpenGL, Vulkan, etc.)
- Preserves logical isolation between tasks
- Uses hardware-enforced time budgeting

Full implementation of our work is under
submission to appear at an operating

systems conference later in 2025.

