Work in Progress: Increasing Schedulability
via on-GPU Scheduling

Joshua Bakita (jbakita@cs.unc.edu) and James H. Anderson (anderson(@cs.unc.edu)
University of North Carolina at Chapel Hill

The Pitch

When scheduling multiple tasks on one GPU, by executing the GPU scheduler on the GPU rather

than on the CPU, we can reduce absolute overhead, and eliminate capacity loss that occurs on the
CPU.

We do this by developing a new scheduling framework for discrete NVIDIA GPUs that runs
entirely on the GPU 1tself.

A A A
FaVW.LiVaN
A A A
Y v N R
A,
Yat V.
¥

zzzzzzzzzzzd N Task 1 Scheduler Logic

Our Solution

Time —> _
o Task 1 Scheduler Logic |~ Interrupt D2 Conteﬁ inl N
: Fig. 4. Illustration of .
Task 2 Context SV(VItCh N execution steps with our We run GPU schedulmg
Fig. 1. Illustration of execution steps GPU interrupts to approach to GPU scheduling. SYHChI"OﬂOUSly on the
for prior work on GPU scheduling; e.g., GPU
GCAPS or TimeGraph. the CPU to run _ @
scheduler O
74
OVERHEAD OF ON-GPU SCHEDULING ON RTX 6000 ADA
B RTX 6000 66\2(123 — , 4 Task Time w/ Built-in Time w/ on-GPU / Overhead
= RTX 208 . ASKS (baseline) (ms) (ours) (ms) (per 1invocation)
S 2018 —L]] ' 2 04,218 08,578 05 s
- GTX 1070 _ —{H 3 141,334 147,922 95 us
?5 G)2(02196 4 188,450 198,021 104 us
- 5 235,540 248,463 112 s
2009) . | | | —
0 100 200 300 4) Tbl. 1. Absolute overhead of
4 Bt | "\ lInterrupt Latency (ps) Yielding lower absolute our approach (IVS' ,451(}‘(7:8:1)%3
ut mtc::rrupt atencies Fig. 2.0, 25, 50, 75, and 100th overheads typical wit)
can be in the hundreds percentile time between triggering an _ “)
of microseconds @ interrupt on the GPU and receiving it
74 on the CPU (100 samples). 4 h
N And eliminating any CPU time
And dedicating a CPU core for cost ©
spin-based synchronization is \- /
expensive
N P ©)
o 100- T Framework Features
S 2|
> 7 - .
|5 —— GPU Scheduling on GPU (ours) Our GPU scheduling framework:
E . "
G 501 — GPUscheduling on GPU (prior) - Works on many NVIDIA GPUs (2018+)
= ===+ GPU Scheduling on Dedicated CPU Core . ,
S 25 - Y - Supports arbitrary schedulers via a
) . . .
o R plugin-based interface
0 1' > 3 A - No task modifications required
System Utilization (CPU) - No hardware modifications required
CPU for tasks of medium periods and ops
utilizations after the overhead of SCthUlablllty, esp. OpenGLa Vuu{ana etC.)
interrupt-driven GPU scheduling (165 ps when the - Preserves logical isolation between tasks
every 2 ms in this experiment), or of scheduler must be . .
dedicating a CPU core to GPU scheduling. - Uses hardware-enftorced time budgetlng

K run frequently @

Limiting Preemption Overhead

THE UNIVERSITY

UNC

REAL TIME SYSTEMS GROUP L101] Qe " Instruction-level _(Thread-block-
preemption) _level preemption
I
Full implementation of our work 1s under GPU w[——l—t
submission to appear at an operating < Task 1 Shadilsr Logle
systems conference later in 2025. Task 2 Context Switch

Fig 5. We use low-overhead predefined preemption points (thread-block
boundaries) for our scheduler, and arbitrary ("instruction-level")
preemption for tasks. This reduces the amount of state that must be saved
or restored for our scheduler, while still ensuring that budgets are
accurately enforced for tasks.

