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The Pitch

When scheduling multiple tasks on one GPU, by executing the GPU scheduler on the GPU rather

than on the CPU, we can reduce absolute overhead, and eliminate capacity loss that occurs on the
CPU.

We do this by developing a new scheduling framework for discrete NVIDIA GPUs that runs
entirely on the GPU 1tself.
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Limiting Preemption Overhead
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Fig 5. We use low-overhead predefined preemption points (thread-block
boundaries) for our scheduler, and arbitrary ("instruction-level")
preemption for tasks. This reduces the amount of state that must be saved
or restored for our scheduler, while still ensuring that budgets are
accurately enforced for tasks.



