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Abstract
Integrating AI into real-world systems such as autonomous vehicles or interac-
tive assistants requires the use of compute accelerators. Traditional processors
such as x86 or ARM CPUs are insufficient. Unfortunately, real-world systems
have responsiveness requirements, and research is underdeveloped on guarantee-
ing such responsiveness for accelerator-using systems. One constraint has been
uncertainty about what sort of accelerator is best for such systems. In this paper,
we argue that researchers should focus on the GPU as the accelerator of choice for
embedded real-time AI workloads. We argue that GPUs are already being widely
adopted, provide leading compute density, and are architecturally well-suited for
real-world, real-time systems.
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1 Introduction
As AI tasks demand ever-more processing power, compute accelerators—e.g., a
Graphics Processing Unit (GPU), Tensor Processing Unit (TPU), or other matrix
processor—have become critical to completing AI tasks within reasonable timescales.
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In systems with real-world interactivity requirements, such as autonomous vehicles or
intelligent assistants, embedded AI tasks must complete within bounded periods of
time (e.g., in an autonomous vehicle, detect obstacles within 200 ms of obtaining a
camera frame). The field of real-time systems is concerned with making such response-
time guarantees, and these guarantees depend on assumptions about the hardware to
be used, such as the choice of compute accelerator.

Unfortunately, ambiguity about the best accelerator to use for real-time AI tasks
has led researchers to make conservative assumptions about accelerators. This causes
problems when making response-time guarantees, as conservative assumptions—e.g.,
assuming that accelerators do not support preemption—can make it impossible to
provide practical response-time guarantees. For example, if a best-effort task cannot
be preempted by a time-critical one, the critical task may be delayed indefinitely,
leading to an unbounded response time. This problem could be avoided by the use of
a GPU (as GPUs support preemption), but can we assume that?

We argue that GPUs are and will be the accelerator of choice for enabling AI tasks
in real-time, embedded systems. We base our argument on the current rapid adop-
tion of GPUs in real-world systems, and on architectural reasons including compute
density, flexibility, and real-time suitability. By focusing on a specific platform, the
real-time systems community could use more specific, platform-derived assumptions,
and utilize those additional capabilities to craft more broadly-applicable schedulers
and tighter response-time analyses.

2 GPUs are the AI Accelerator

Adoption. Despite many vendors entering the accelerator market in recent years,
this has not meaningfully slowed the adoption of GPUs—especially NVIDIA GPUs—
as the accelerator of choice. On a revenue basis, NVIDIA outsells Intel, AMD, ARM,
Qualcomm, and NXP combined.1 In other words, NVIDIA outsells the entire x86
CPU market, the entire FPGA market, and much of the ARM ecosystem combined.
This dominance is not limited to cloud computing. From the perspective of high-
performance embedded systems, every company approved to operate autonomous
vehicles without a safety driver in California—Waymo, Zoox, WeRide, Nuro, Baidu,
and AutoX—use NVIDIA GPUs in their vehicles (Herger 2024; WeRide.ai 2022;
NVIDIA 2024a,b, 2023, 2021; Baidu 2024).

This market dominance shapes what AI researchers are building models to run
on, what systems researchers are considering to optimize, and what is available on
the market. Historically, the most widely available platform has become the defacto
standard, even when other, arguably better, options were available (e.g., the history
of x86 CPUs). However, GPUs have fundamental strengths beyond momentum.

Flexibility. NVIDIA GPUs are general-purpose accelerators, allowing them to be
used for a diversity of compute-intensive tasks that a complex embedded sys-
tem may need to perform (e.g., a classical graph-search-based planner alongside a

1As of each company’s last-available quarterly revenue on February 27th, 2025; NVIDIA: $39B, Intel:
$14B, AMD: $7.6B, ARM: $1.0B, Qualcomm: $12B, and NXP: $3.2B.
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Table 1 Compute Density of Commercial Off-The-Shelf Processors

GPU CPU Special-Purpose Accelerator

Model NVIDIA
H100 SXM

AMD
EPYC 9755

Cerebras
WSE-3

Tesla
FSD-2

Google
TPU v5p

Date Available Mar 2023 Oct 2024 Mar 2024 Feb 2023 Oct 2023
BF16 TFLOP/s∗ 989 22† 125,000‡ 61§ 459
Die Size (mm2) 814 1,564∗∗ 46,225 361∗∗ 729∗∗

GFLOP/s/mm2 1,216 14 134 168 629
∗Trillions of dense 16-bit floating-point fused-multiply-add (FMA) operations per second.
†EPYC FLOP/s are based off a peak BF16 FMA throughput of 64/cycle per core when
using AVX-512 (Yee 2024).
‡Cerebras only publicly quotes sparse FLOP/s. Their dense FLOP/s (shown here) are
one-tenth the sparse rate (Lie 2023).
§For FSD-2, BF16 is unsupported; this is half the INT8 rate (Patel and Kostovic 2023).
∗∗Size estimated, based off available die shots (AMD 2025; green 2023; Vengineer 2024).

neural-network-based perception system in an autonomous vehicle). Even if a sys-
tem’s compute-intensive workloads are entirely AI-based, the GPU’s general-purpose
capability allows updating the AI system over its lifetime (e.g., switching from
convolutional- to transformer-based neural networks). Special-purpose accelerators
may not be capable of such a switch.

Density. GPUs are efficient at turning die area into compute capacity. Such density
is critical to real-world systems. As the die is the single most expensive part of a
processor, its density shapes the cost and compute capability of the system. Table 1
compares the throughput (TFLOP/s), die size (mm2), and density (throughput per
unit of die area; bold) for several concurrently released high-end processors. Note how
none of the non-GPU processors match the density of NVIDIA’s H100 GPU. The
CPU has especially poor density due to the large caches that must be used to hide
memory latency; accelerators that hide latency in other ways can use more of their
die for compute units. Note that the only special-purpose AI accelerator we find to
be density-competitive with the GPU is Google’s TPU. Unfortunately, this is only
available as a datacenter rack-mount unit—even Waymo (Google’s self-driving car
division) uses NVIDIA GPUs instead of Google’s TPUs (Herger 2024).

This underwhelming set of non-GPU accelerator options is unlikely to change, as it
has historically been difficult to deliver on lofty goals when developing special-purpose
hardware. Consider the story of ray-tracing at NVIDIA. NVIDIA began a project in
2013 to develop a special-purpose unit within NVIDIA GPUs to accelerate ray-tracing
operations by 100×. After five years of work, this project successfully shipped as
the “ray-tracing cores” in NVIDIA’s Turing-generation GPUs. They mostly met their
goal—ray-tracing on the special-purpose unit was 96× faster than it was in software
at the time they started. As the general-purpose GPU compute cores increased in
speed concurrently with the development of the special-purpose units, the ray-tracing
cores were only 6-8× faster than software by the time they shipped (Luebke 2022b).
If a company with NVIDIA’s resources and experience succeeded at a 96× absolute
improvement that shipped as only a 6× relative improvement, the smaller companies
developing accelerators today seem likely to suffer the same fate. Since the speed of

3



general-purpose computation on the GPU is a moving target, a promise of a 10×
speedup today may be no speedup at all once shipping in volume.

3 GPU Designs Are Suitable for Real-Time Systems
Beyond their adoption, flexibility, and density, GPUs are suitable for real-time systems
in both their architectural design and native scheduling features. These features are
not unique to GPUs, but are important aids to their timing predictability.

Architecturally, GPUs have highly parallel memory subsystems. This means that
a memory request from any GPU core is likely to have an exclusive path through
the memory hierarchy (relative to any other GPU core). This reduces the chance
of memory requests contending for on-chip resources—a highly beneficial property
for a real-time system. Contention can slow computations unpredictably, making it
hard to provide response-time bounds. Quantitatively, this parallelism comes across
as memory bandwidth—3.4 TB/s on a GPU versus 614 GB/s on a CPU (for the
representative models in Table 1). We speculate that this strength stems from the
architectural underpinnings necessary to support the original use of GPUs in render-
ing, where it is essential to transfer a large amount of data (e.g., textures, frames,
models) very frequently.

The architectural benefits of the GPU extend into other areas. For example, GPUs
are capable of fine-grained preemption (since 2016)—a feature motivated to lower
latency for head-mounted displays (NVIDIA 2016). Or consider the GPU’s ability
to concurrently run multiple applications on different sets of cores, and its ability
to directly interface with peripherals (both since 2013)—both features motivated to
increase GPU utilization in high-performance computing clusters (NVIDIA 2025b,a).
NVIDIA has not always been prompt to document or provide software APIs for these
hardware features, but the capability exists (even if it is yet to be unlocked).

These strengths seem unlikely to vanish, as NVIDIA has stated that the general
architecture of their GPUs has not changed in many years (Luebke 2022a), and other
vendors appear to be designing their architectures by following NVIDIA’s footsteps.
While NVIDIA is notoriously reticent to share architectural and scheduling details
broadly with the real-time systems community (and we strongly urge them to stop
impairing their own platform in this way), we note that there have been successful
collaborations where NVIDIA has privately shared details for papers (Capodieci et al.
2018) and scheduling research done under contract.

4 Looking Forward
To enable real-time AI task-systems, we need more broadly applicable schedulers and
tighter response-time analysis. Without such work, AI designers bear an additional
burden: they must simplify their tasks to fit into the mold of primitive response-time
analysis, e.g., by merging all AI tasks into one which exclusively uses the accelerator
(Loquercio et al. 2021), or by developing AI tasks that jointly optimize response-times
and accuracy (Lee et al. 2023). This burden could be lifted, and AI task research kept
separate from scheduling research, by developing better schedulers and response-time
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analyses. This is partially predicated on accurate, less-conservative assumptions about
the accelerator to be used.

Whatever the choice, upcoming problems loom for large compute accelerators of
any sort. Ever-larger dies are making the presence of manufacturing defects a near-
certainty, and such defects can make different cores in an accelerator effectively operate
at different speeds. This complicates scheduling and response-time analysis. To con-
front such problems, we need foundational response-time analyses to build on. For
these analyses to be practical and useful, they must be built on accurate assumptions
about accelerators; we argue that GPU behavior should be the basis of these refined
assumptions. No other accelerator can provide the same combination of ubiquity,
density, flexibility, and architectural suitability for real-time systems.

References
AMD: 5th Gen AMD EPYC Processor Architecture. Whitepaper (2025).

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/
white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf Accessed
2025-07-04

Baidu: Apollo Open Source Autonomous Driving Platform README. GitHub
(2024). https://github.com/ApolloAuto/apollo/blob/c48541b4/README.md
Accessed 2025-02-27

Capodieci, N., Cavicchioli, R., Bertogna, M., Paramakuru, A.: Deadline-based
scheduling for GPU with preemption support. In: Proceedings of the 39th IEEE
Real-Time Systems Symposium, pp. 119–130 (2018)

green: @greentheonly Post on X (2023). https://x.com/greentheonly/status/
1691905611452084635 Accessed 2025-07-04

Herger, M.: Waymo’s $5.6 Billion Round and Details of the AI Used (2024).
https://thelastdriverlicenseholder.com/2024/10/27/waymos-5-6-billion-round-
and-details-of-the-ai-used/ Accessed 2025-02-27

Lie, S.: Cerebras architecture deep dive: First look inside the hardware/software co-
design for deep learning. IEEE Micro 43(3), 18–30 (2023) https://doi.org/10.1109/
MM.2023.3256384

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., Scaramuzza, D.:
Learning high-speed flight in the wild. Science Robotics 6(59), 5810 (2021)

Luebke, D.: The Evolution of the GPU. Presentation at the Pixel-Planes@40 Collo-
quium, UNC Chapel Hill, 29 August (2022). https://youtu.be/iBTbUF7zVQw?t=
8943 Accessed 2025-03-09

Luebke, D.: The Story of Ray Tracing at NVIDIA. Presentation at the Pixel-
Planes@40 Colloquium, UNC Chapel Hill, 29 August (2022). https://youtu.be/

5

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf
https://github.com/ApolloAuto/apollo/blob/c48541b4/README.md
https://x.com/greentheonly/status/1691905611452084635
https://x.com/greentheonly/status/1691905611452084635
https://thelastdriverlicenseholder.com/2024/10/27/waymos-5-6-billion-round-and-details-of-the-ai-used/
https://thelastdriverlicenseholder.com/2024/10/27/waymos-5-6-billion-round-and-details-of-the-ai-used/
https://doi.org/10.1109/MM.2023.3256384
https://doi.org/10.1109/MM.2023.3256384
https://youtu.be/iBTbUF7zVQw?t=8943
https://youtu.be/iBTbUF7zVQw?t=8943
https://youtu.be/iBTbUF7zVQw?t=20438
https://youtu.be/iBTbUF7zVQw?t=20438


iBTbUF7zVQw?t=20438 Accessed 2025-02-27

Lee, J., Wang, P., Xu, R., Jain, S., Dasari, V., Weston, N., Li, Y., Bagchi, S., Chaterji,
S.: Virtuoso: Energy- and latency-aware streamlining of streaming videos on
systems-on-chips. ACM Transactions on Design Automation of Electronic Systems
28(3) (2023)

NVIDIA: VRWorks - Context Priority (2016). https://developer.nvidia.com/vrworks/
headset/contextpriority Accessed 2025-05-04

NVIDIA: AutoX Unveils Full Self-Driving System Powered by NVIDIA DRIVE.
NVIDIA Blog (2021). https://blogs.nvidia.com/blog/autox-full-self-driving-nvidia-
drive/ Accessed 2025-02-27

NVIDIA: Electric Dreams Charged Up at Auto Shanghai with NVIDIA DRIVE.
NVIDIA Blog (2023). https://blogs.nvidia.com/blog/auto-shanghai-nvidia-drive/
Accessed 2025-02-27

NVIDIA: Nuro to License Its Autonomous Driving System. NVIDIA Blog (2024).
https://blogs.nvidia.com/blog/nuro-driver/ Accessed 2025-02-27

NVIDIA: NVIDIA and Zoox Pave the Way for Autonomous Ride-Hailing. NVIDIA
Blog (2024). https://blogs.nvidia.com/blog/nvidia-zoox-autonomous-ride-hailing/
Accessed 2025-02-27

NVIDIA: GPUDirect RDMA. Release 12.8 (2025). https://docs.nvidia.com/cuda/
pdf/GPUDirect_RDMA.pdf

NVIDIA: Multi-Process Service. Release R570 (2025). https://docs.nvidia.com/
deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

Patel, D., Kostovic, A.: Tesla AI Capacity Expansion – H100, Dojo D1, D2, HW
4.0, X.AI, Cloud Service Provider. SemiAnalysis (2023). https://semianalysis.com/
2023/06/27/tesla-ai-capacity-expansion-h100/ Accessed 2025-07-04

Vengineer: Google TPU v5p was also a chiplet (2024). https://
vengineer.hatenablog.com/entry/2024/04/18/080000 Accessed 2025-07-04

WeRide.ai: WeRide builds its next-gen autonomous driving solutions with
NVIDIA DRIVE Orin-Powered Hyperion compute platform. Medium (2022).
https://werideai.medium.com/weride-builds-its-next-gen-autonomous-driving-
solutions-with-nvidia-drive-orin-powered-hyperion-35a9e843ec4 Accessed
2025-02-27

Yee, A.J.: Zen5’s AVX512 Teardown + More... (2024). http://www.numberworld.org/
blogs/2024_8_7_zen5_avx512_teardown/ Accessed 2025-07-04

6

https://youtu.be/iBTbUF7zVQw?t=20438
https://youtu.be/iBTbUF7zVQw?t=20438
https://developer.nvidia.com/vrworks/headset/contextpriority
https://developer.nvidia.com/vrworks/headset/contextpriority
https://blogs.nvidia.com/blog/autox-full-self-driving-nvidia-drive/
https://blogs.nvidia.com/blog/autox-full-self-driving-nvidia-drive/
https://blogs.nvidia.com/blog/auto-shanghai-nvidia-drive/
https://blogs.nvidia.com/blog/nuro-driver/
https://blogs.nvidia.com/blog/nvidia-zoox-autonomous-ride-hailing/
https://docs.nvidia.com/cuda/pdf/GPUDirect_RDMA.pdf
https://docs.nvidia.com/cuda/pdf/GPUDirect_RDMA.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://semianalysis.com/2023/06/27/tesla-ai-capacity-expansion-h100/
https://semianalysis.com/2023/06/27/tesla-ai-capacity-expansion-h100/
https://vengineer.hatenablog.com/entry/2024/04/18/080000
https://vengineer.hatenablog.com/entry/2024/04/18/080000
https://werideai.medium.com/weride-builds-its-next-gen-autonomous-driving-solutions-with-nvidia-drive-orin-powered-hyperion-35a9e843ec4
https://werideai.medium.com/weride-builds-its-next-gen-autonomous-driving-solutions-with-nvidia-drive-orin-powered-hyperion-35a9e843ec4
http://www.numberworld.org/blogs/2024_8_7_zen5_avx512_teardown/
http://www.numberworld.org/blogs/2024_8_7_zen5_avx512_teardown/

	Introduction
	GPUs are the AI Accelerator
	GPU Designs Are Suitable for Real-Time Systems
	Looking Forward

