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Abstract—Safety-critical embedded systems are experienc-
ing increasing computational and memory demands as edge-
computing and autonomous systems gain adoption. Main memory
(DRAM) is often scarce, and existing mechanisms to support
DRAM oversubscription, such as demand paging or compile-
time transformations, either imply serious CPU capacity loss, or
put unacceptable constraints on program structure. This work
proposes an alternative: paging GPU rather than CPU memory
buffers directly to permanent storage to enable efficient and
predictable memory oversubscription. This paper focuses on why
GPU paging is useful and how it can be efficiently implemented.
Specifically, a GPU paging implementation is proposed as an
extension to NVIDIA’s embedded Linux GPU drivers. In experi-
ments reported herein, this implementation was seen to be three
times faster end-to-end than demand paging, with 81% lower
overheads. It also achieved speeds above the fastest prexisting
Linux userspace I/O APIs with low DRAM and bus interference
to CPU tasks—at most a 17% slowdown.

I. INTRODUCTION

One solution to the increasing complexity of embedded and
safety-critical systems is to make the systems composable via
the use of independently certifiable components. Robust time
or space partitioning of shared hardware between these com-
ponents is key to enabling composability. Such partitioning has
been studied in several settings including accelerators [1], [2],
shared caches [3]–[5], buses [6]–[11], and DRAMs [12]–[14].
Spatial partitioning is often used in these works to subdivide
shared caches and DRAMs.

Unfortunately, a system may have insufficient resources to
provide static partitions of caches and DRAM to all compo-
nents. Trends in hardware and application design, alongside
size, weight, power, and cost (SWAP-C) constraints particu-
larly underscore the issue of insufficient DRAM. In the context
of autonomous vehicles, industry researchers have noted “we
need to minimize the required RAM size to reduce the unit cost
of production” [15]. In other contexts, real-time researchers
have highlighted the scarcity of DRAM [16], [17] and hard-
ware researchers have repeatedly published on the fundamental
limits of DRAM density [18]–[20]. These constraints collide
with next-generation system needs, as machine-learning-based
processing tasks continue to require ever more DRAM [21].

One way to address this challenge is via DRAM over-
subscription: allowing more memory to be simultaneously
allocated than is physically present in the system. In non-
real-time systems, paging is often utilized to support this by
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moving (“paging out”) the least-recently-used (LRU) pages to
permanent storage until they are again needed. Unfortunately,
the real-time systems community often discounts such an
approach due to overheads commonly associated with ac-
cessing storage hardware, unpredictable page selection due
to imprecise LRU tracking, and analytical costs stemming
from operating system (OS) state synchronization. While other
issues exist, these specific issues need not apply.

In this work, we demonstrate how the counter-intuitive
predictability of GPUs in embedded systems from NVIDIA,
combined with advances in solid state drives (SSD), can
be applied to construct a predictable, high-throughput, and
low-overhead DRAM oversubscription scheme for real-time
systems via transparent paging of GPU buffers to SSD storage.

A) Related Work: Support for DRAM oversubscription of
any sort in the real-time community has focused on compile-
time transformations [16], [17] and small-scale systems [15].
Beyond the real-time systems community, work to support
oversubscription of GPU DRAM [22]–[26] has focused on
paging GPU memory to CPU memory—an intractable ap-
proach on embedded systems where CPU and GPU share the
same DRAM. This paper builds most closely on the concept of
“Scheduler-Assisted Prefetching” [27], which operates on the
principle that pages can be predictably loaded into memory
based on scheduler foreknowledge. Our work also draws
inspiration from the PREM memory-management model [28].

B) Contributions: In this first work supporting GPU DRAM
oversubscription via transparent paging to storage, we:

1) Demonstrate how unique properties of table-driven em-
bedded real-time systems can negate downsides typically
associated with paging DRAM.

2) Show how GPU design and SSD trends further negate
downsides often associated with paging DRAM.

3) Benchmark and profile demand paging in Linux, identify
shortfalls, and address these in our GPU paging system.

4) Integrate our GPU paging technique into a real-time
scheduling and locking model for component-driven
real-time systems with accelerators called TimeWall [1].

5) Extend the NVIDIA driver to support oversubscription
of GPU DRAM via transparent paging to SSD on the
NVIDIA Jetson Xavier, a commodity embedded system.

6) Benchmark our GPU paging implementation against
alternative approaches.

7) Experimentally measure overheads and DRAM interfer-
ence caused by our GPU paging implementation.



TABLE I
EXPERIMENTAL SYSTEM SPECIFICATIONS

Platform NVIDIA Jetson AGX Xavier
CPU NVIDIA 8-core ARMv8 @ 2.26GHz

GPU NVIDIA Volta Integrated GPU,
512 CUDA Cores @ 1.37GHz

DRAM 1x 16 GiB 256-bit LPDDR4x @ 2133MHz

SSD Sabrent Rocket 4.0 Plus 1TB,
on x4 PCIe 4.0 bus

Operating System NVIDIA L4T 32.7.2 (Linux 4.9.253)
CUDA Version 10.2

In all, our work enables flexible, transparent, and fast oversub-
scription of GPU memory on NVIDIA’s embedded platforms
in a way that can be applied to real-time or best-effort systems.

The remainder of this paper covers our contributions in
order. We provide background, assumptions, models, and
justifications in Sec. II. Sec. III applies this information, in
cohort with data from microbenchmarks, to design a GPU
DRAM oversubscription system. Sec. IV presents details on
our study of GPU function, and details our implementation
of GPU DRAM oversubscription. Sec. V benchmarks this
implementation against demand paging and direct I/O, and
measures any DRAM or bus interference. Sec. VI touches on
additional related work before we conclude in Sec. VII.

II. BACKGROUND

Here we detail notation, demand paging, our real-time
system model, our GPU platform, and SSD function. For
specificity and reproducibility, Table I lists our system setup.

A. Unit Notation

Throughout this work, we use ISO standard notation [29]
such that kB/MB/GB refers to 1000/10002/10003 bytes, and
KiB/MiB/GiB refers to 1024/10242/10243 bytes. Permanent
storage speeds and capacities generally use SI units, while
DRAM and software generally use power-of-two units.

B. Demand Paging

A common feature in today’s general-purpose operating
systems is demand paging, which allows for main memory
(DRAM) oversubscription. These implementations generally
rely on the assumption that the least-recently-used (LRU)
memory is least likely to be used next. As available memory
declines, such systems “page out” the least-recently-used
pages by copying them to a dedicated area of permanent
storage (such as a disk or SSD), marking any virtual memory
mappings non-present, and freeing the copied pages for the
use of others. Such paged-out memory generally remains on
disk until an application attempts to use it, generating a page
fault. Page faults, a hardware interrupt, occur when software
attempts to access virtual memory addresses that are marked
non-present. Upon receipt of a page fault, the OS first checks
if the associated page is paged out, and if so, executes a
“page in” operation. Paging in is the reverse of paging out,
and involves copying that page from storage into memory,
remapping the virtual address, and deleting the now-unused
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Fig. 1. Example component schedule with TimeWall. Boxes are components.

copy from storage. This process of paging in data on receipt
of a page fault is called demand paging.

Demand paging in, and LRU paging out, can be rife
with overheads and unpredictabilities. Most processor de-
signs, including x86-64 and ARM64, allow for only highly
approximate forms of LRU page tracking, which results in
unpredictable decisions as to which page is least-recently
used. This non-determinism makes paging-out decisions, and
the associated eventual page faults, hard to predict. Some
work [16], [17] has addressed this page-selection problem by
using intra-application static analysis rather than LRU, but the
shortcomings of static analysis limit generalizability. We will
experimentally return to the issue of overheads in Sec. III-A.

C. Real-Time Model

As covered in Sec. 1, composable systems are crucial to
enabling the certifiability of increasingly complex embedded
systems. The composable system model considered in this
work is called TimeWall [1], and was developed to enable
composability in multicore platforms with accelerators. The
system is composed of components, where each component
can be independently certified and co-run with an arbitrary set
of competing components. The framework ensures temporal
isolation between components on CPUs and GPUs, is designed
to use spatial partitioning of caches and DRAM between com-
ponents, and assumes that all non-isolated hardware resources
are put under maximum contention during the certification
process. This allows for components to internally use arbitrary
schedulers and run arbitrary tasks without affecting other
components in the system. Each component is defined by a
number of cores, number of GPUs, computation budget, and
period. We extend this model to include the amount of DRAM
required by each component on each computing resource.

A diagram of such a system is shown in Fig. 1. This
figure illustrates the schedule of a quad core system with
two GPUs shared across four components (numbered A to D).
Component A, for example, has a budget of 2 time units, a
period of 3 time units, and requires three CPUs and one GPU.
An important property of this system is that the component
schedule is fully deterministic, and can be executed by a table
scheduler. See Amert et al. [1] for further discussion.

D. GPU Platform

This work uses NVIDIA’s Jetson AGX Xavier development
board as an exemplar of an embedded platform containing an
advanced GPU. This system is based on NVIDIA’s Xavier
system-on-a-chip (SoC), and is designed for applications in
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Fig. 2. History of write speeds of high-end SSD available from Samsung,
Kingston, and Western Digital/SanDisk over the past 10 years.

safety-critical real-time systems including robotics and au-
tonomous vehicles. This SoC includes eight ARMv8 cores
and 512 CUDA cores in its CPU and GPU respectively.
NVIDIA’s GPUs are often preferred by autonomous system
developers not only for their industry-leading performance and
capabilities, but also due to NVIDIA’s easy-to-use and capable
CUDA API. We consider such a system in this work for the
above reasons, but also because (contrary to popular belief)
NVIDIA’s GPU drivers for their embedded SoCs are fully open
sourced under the MIT license [30], [31].

The GPU included in the Xavier SoC is based on
NVIDIA’s Volta GPU architecture (2017), which includes
several memory-management features relevant to this work.
All NVIDIA GPUs since at least their Tesla GPU architecture
(2006) support per-application GPU virtual address spaces
and multiple page sizes. (Note that context switching between
these address spaces is costly on GPUs due to the high amount
of state present across the hundreds of parallel processors.)
Inside each address space, up until at least the Hopper GPU
architecture (2022), the default page size is 4 KiB with an
option for 64 KiB or larger pages on newer architectures. On
NVIDIA’s embedded SoC’s, these pages are allocated from
the same pool used by the CPU, rather than from a dedicated
DRAM carveout as in some other SoCs. This implies that
using less GPU memory frees up pages for the CPU and vice-
versa. We further investigate this mechanism in Sec. IV-A1.

E. Developments in Solid State Drives

SSD speeds have increased geometrically over the past
ten years. To illustrate this, we conducted a survey of the
advertised read and write speeds for high-end commodity
consumer SSDs from three top manufacturers for the past
ten years. The surveyed write speeds are plotted in Fig. 2.
(SSD read speeds are always in excess of write speeds, so read
speeds are omitted for clarity.) Commodity SSD write speeds
have gone from 400MB/s to 7GB/s, a 17.5x improvement—
putting SSD speeds above the DRAM speeds of just a few
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years ago (64-bit DDR3-800, shown as green dashed line in
Fig. 2). Yet costs have declined, from over $1/GB to less than
20¢/GB for the high-end SSDs plotted in Fig. 2.

For the purposes of this work, it is important to understand
how SSDs interface with the OS to execute I/O operations.
The steps and components involved in a single sequential write
are shown in Fig. 3. This figure assumes a standard NVMe
SSD. The first step 1 , typically occurs during system startup.
In this step, the OS allocates protected memory in DRAM
for an SSD control queue and configures the SSD with the
location of this queue via a register write. In step 2 , the OS
creates and queues a sequential write command into the queue
from 1 . This write command essentially consists of a list of
physical pages to write, and the starting sector of the write.
Note that the listed pages need not be contiguous, even though
they will be written to the SSD sequentially as a contiguous
block. When the pages are discontiguous (as in Fig. 3), the
write is called a gather operation. (Scatter-gather support is
required of NVMe SSDs.) In 3 , the SSD directly reads the
queued command from DRAM, and executes it by copying
page 7 into sector 55, page 8 into sector 56, and page 5 into
sector 57. This concludes the write operation.

Support for scatter-gather is crucial to achieving high-
throughput. Pages needing I/O are generally scattered across
DRAM, and the time to create, queue, and start an I/O
command can exceed the time to copy a single page (< 1µs).

SSDs include microcontrollers for command processing and
flash management. Not all designs have desirable real-time
worst-case performance, but a rich body of literature seeks to
address this [32]–[35], and so we do not consider it further.

To enable high write speeds, some SSDs will temporarily
treat their TLC (Triple-Level Cell) NAND as pseudo-SLC
(Single-Level Cell) NAND. This is referred to as Dynamic
SLC Caching, and can result in substantially reduced I/O
performance when more than one-third of a TLC SDD’s
capacity is in use. Our platform includes an SSD with this
feature, so we avoid filling more than one-third of the drive.
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III. DESIGNING GPU PAGING

Given the constraints of real-time systems, GPUs, and
SSDs, how can we enable useful OS-level memory oversub-
scription support on our platform? What carries over from
traditional demand paging? What aspects of real-time systems
can we leverage? How can we design a system that’s applica-
ble to as many task systems as possible?

A. To Demand Page, or Not to Demand Page?

In Sec. II-B, we commented on the unsuitability of LRU
page selection for paging-out decisions in a real-time system,
but what of demand paging in?

To evaluate demand paging, we created and ran a mi-
crobenchmark test on our system to measure how quickly it
can load 1 GiB of data from an NVMe SSD. To emulate de-
mand paging, we memory-mapped (via mmap) our SSD block
device, and sequentially walked the buffer at a 4 KiB stride to
page fault in all 1 GiB. For overhead comparison, we run the
same test with direct I/O (via read() on the device opened
with O_DIRECT) substituted for demand paging.1 Both sets
of measurements include allocation and sequential walk times.
We ran each experiment 1,000 times, clearing Linux’s page,
dentry, and inode caches between each experiment, and plot
the results in Fig. 4 as a box plot.

Fig. 4 shows that demand paging is, on average, 3.2x
slower than direct I/O, with a standard deviation 3.8x higher.
This clearly indicates that, from a throughput perspective, for
moving program data to or from storage, bulk, direct I/O is
preferable over a demand paging system similar to Linux’s.

Given the unsuitability of LRU eviction and demand paging,
what can we substitute in a real-time system?

B. Leveraging Real-Time Foreknowledge

Real-time systems both require and exhibit determinism.
This determinism is often present as a foreknown schedule
(such as with our model), which can be leveraged to enable
paging without the need for inaccurate LRU tracking or high-
overhead demand paging. We illustrate this in Figs. 5-8.

1Find our experimental code at http://cs.unc.edu/%7Ejbakita/rtss22-ae.html.
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Our example system contains five components, A, B, C,
D, and E, all with a target period of 1500 ms. Components
A, B, and C require 500 ms of computation, while D and E
need 750 ms. All components require 1 GiB of DRAM. The
ideal schedule is shown in Fig. 5, and is easily achievable for
systems with at least 5 GiB of DRAM—but what if the system
only has 4 GiB? For the following discussion, we assume SSD
read or write rates of 1.33 GiB/s when demand paging, and
4 GiB/s when using direct I/O. These rates match those found
in Fig. 4. The schedule with demand paging and LRU eviction
is shown in Fig. 6. Observe the long gaps between shaded
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areas—those represent times when components A, B, or C
are suspended to process page fault-in operations. As LRU
eviction ensures that each of these components has no resident
pages at the start of their executions, they must save 1 GiB
and load 1 GiB each time at 1.33 GiB/s, adding 1500 ms.
Such a system requires 6000 ms periods on A, B, and C—4×
longer than the 1500 ms target.

One way to reduce this capacity loss is shown in Fig. 7. In
this diagram, demand paging and LRU eviction are disabled.
A “paging component” is added before component A and C
that does direct I/O to swap out A’s memory for C’s memory
and vice-versa.2 Starting with this figure, we include timelines
of SSD controller and storage status. Note how most of the
read and write work is done by the SSD controller. The
paging component allows A, B, and C to support a period
of 2500 ms—better, but still nearly 2× the target.

But we can do better! Consider how NVMe SSD I/O
works (as detailed in Sec. II-E): I/O commands are put in a
queue that is asynchronously executed by the SSD. The CPU
need only create and queue commands—a highly optimizable
process. This leads to the approach proposed by this paper and
shown in Fig. 8. Our table-driven component schedule gives
us full information about what will run next, so we queue up
asynchronous paging I/O operations for the SSD controller to
execute concurrently with component executions. This allows
all needed pages for each component to be paged-in by the
start of their time slice, resulting in support for 25% DRAM
oversubscription and the target 1500 ms period.

For this approach to widely apply, paging must be as fast
and as asynchronous as possible to allow for paging small-
period tasks. In Fig. 8, we assume minimal blocking or other
CPU overheads. How can we design our system to approach
no overheads?

2This variety of synchronous paging is very similar to the swapping of
time-sliced systems from the early days of computing [36].

C. Managing Overheads

Unfortunately, merely discarding demand paging and LRU
eviction does not save us from all CPU overheads. State must
still by synchronized across cores, pages must still be allocated
and freed, and virtual memory mappings must still be redone.
None of this can be offloaded to the SSD controller.

One way to avoid these unpredictabilities and overheads
is to page GPU memory rather than CPU memory. At first
glance, this may sound counterintuitive—GPUs are gener-
ally treated as less predictable than CPUs. However, from
a memory-management perspective, GPUs are more pre-
dictable.3 Additionally, as mentioned in Sec. II-D, GPU and
CPU often share DRAM, so saving GPU memory can indi-
rectly free memory for CPU tasks.

This section first justifies our emphasis on overheads with
a case study considering demand paging on Linux before
addressing how synchronization, page mapping, and allocation
overheads can be minimized through paging GPU memory.

1) Demand Paging: A Case Study in Runaway Overheads:
Overheads can dominate the I/O cost in a poorly designed
paging system, and we use demand paging in Linux as a case
study of this. Fig. 9 is a performance profile4 of the page fault
handler as triggered by our microbenchmark from Sec. III-A.

In this flame graph [37], each box represents a single func-
tion, the box width represents the frequency of function oc-
currence in the profiling trace, and the boxes are arranged top
down according to callee/caller relationships; i.e., the graph is
hierarchically ordered such that the box below each function
is its immediate caller. For example, do_page_fault is
called5 by seq_walk. x-axis ordering is meaningless.

Note that uncontended lock acquisition, lock release, and
retry-based commit functions (blue) collectively consume 40%
of the profile, page mapping (green) consumes 19% of the
profile, and page allocation (gray) consumes 14% of the
profile. In our best-case and uncontended system, I/O time
is not even visibly discernible due to the runaway overheads.

2) Avoiding Multicore Synchronization: The significant
synchronization overheads of the prior section stem largely
from Linux’s need to share state across cores to support
dynamic workloads on multicore systems.

GPU paging can avoid most multicore synchronization
overheads, as only a single application and virtual address
space pair execute on the GPU at any given time.6 CPU
tasks may queue work or request changes to GPU state while
another task is running on the GPU, but these operations only
take effect after a GPU context switch and can be deferred.

3) Accelerating Page Mapping: On most platforms, the
cost of updating virtual address spaces—page mapping—is
largely a function of the number of page table walks required.
Theoretically, only one full page-table walk is required per

3Note that we are referring to the fundamentals of GPU hardware, not
CUDA. Some aspects of CUDA’s memory management are unpredictable.

4Using Linux’s perf user- and kernel-space profiler, sampling at 1kHz.
5Implicitly, as this is the page-fault handler.
6Except with NVIDIA’s Multi-Process Service (MPS) or Multi-Instance

GPU (MIG), but these are unavailable on NVIDIA’s embedded platforms.
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remapping of a virtually contiguous address range. On CPU,
this cost can become inflated if pages are shared across
applications (requiring per-application page-table walks), or
if paged buffers are small and virtually discontiguous. Both
situations are common in modern CPU applications. On a
GPU, shared pages are mostly unsupported, and large, vir-
tually contiguous buffers are common (such as with machine-
learning model weights).

4) Addressing Allocation: On a CPU, the widespread ex-
pectation that commodity operating systems support memory
overcommit has made it extremely difficult to predetermine
which application will need which pages at which times. This
dynamism requires the use of complicated allocators (such as
Linux’s buddy allocator), and precludes the use of a “memory
schedule.” GPUs do not generally support memory overcom-
mit, and memory preallocation is common. This allows for
the use of GPU pages to be simply scheduled out, and for
interactions with the complex Linux allocators to be avoided.

D. Additional Design Considerations

As with conventional CPU paging systems, we build our
system to be completely transparent to userspace applications.
From CUDA to YOLO, applications should require no changes
to be usable with GPU paging. During nominal operation, the
fact that an application’s GPU memory was paged out and
back in between periods should be logically undetectable.

Unfortunately, nearly any operation in a modern system im-
putes some interfering side-effect on tasks which is temporally
detectable. Reading and writing from DRAM to the SSD adds
bus and memory controller interference for all components
in our system. We address this by assuming that during the
component certification process, “evil tasks” are run on other
cores and on the SSD to emulate maximum interference. We
estimate the amount of this interference in Sec. V-C.

The remainder of this work implements and evaluates the
transparent GPU paging system that we have now described.

IV. IMPLEMENTING GPU PAGING

We have now discussed how paging GPU memory with
real-time foreknowledge can obviate many of the issues tradi-
tionally associated with paging in a real-time system. In this
section, we investigate how to implement it.
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Fig. 10. Steps for GPU memory allocation with NVIDIA’s embedded drivers.

A. Existing GPU Capabilities and Design

NVIDIA GPUs have been much lambasted for their poorly
documented and often closed-source software, with much
work dedicated to merely understanding the fundamentals of
GPU memory [38], [39] and scheduling [40]–[42]. In accord
with those works, we investigate how GPU page allocation
and mapping work for NVIDIA’s embedded, integrated GPUs
in order to enable paging of GPU memory.

1) Creating GPU Memory Buffers: In Sec. II-D, we high-
lighted that both GPU and CPU pages are allocated from
the same pool on NVIDIA’s embedded platforms. NVIDIA’s
documentation notes this, but gives no details on how it works.

To discern such details, we created a simple application
using NVIDIA’s CUDA API that allocates and accesses
GPU memory. We ran and profiled its syscalls with Linux’s
strace tool, finding several IOCTL syscalls closely associ-
ated with memory allocation via cudaMalloc.

To understand the nature of these syscalls, we obtained
the headers for NVIDIA’s nvmap and nvgpu drivers, and
extended strace7 to decode them. The result is illustrated
in Fig. 10, and the following explanation is informed by our
close reading of the source codes [30], [31].

GPU memory allocation begins with the IOCTL syscall
NVMAP_IOC_CREATE. This syscall takes a single size
parameter and returns a newly created dmabuf FD (file de-
scriptor) handle, but does not allocate any backing pages. The
following NVMAP_IOC_ALLOC syscall allocates the pages,

7Code linked to from http://cs.unc.edu/%7Ejbakita/rtss22-ae.html.

https://www.cs.unc.edu/~jbakita/rtss22-ae.html
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Fig. 11. Timeline of NVIDIA GPU page table versions.

as parameterized by the FD handle, a heap mask, flags, and
alignment. The heap mask controls the source of the pages, by
default Linux’s buddy allocator. The resulting allocation is not
physically contiguous, and is internally tracked as a scatterlist.
At this point, the pages are allocated, but not mapped into GPU
virtual memory.

Mapping is more complicated, and first requires address-
space creation with the NVGPU_GPU_IOCTL_ALLOC_AS
syscall (not shown; normally done during CUDA library
initialization). The NVGPU_AS_IOCTL_MAP_BUFFER_EX
syscall can then be called on the address-space handle to map
pages into the GPU virtual address space (shown). This syscall
is parameterized by the type of page mapping, the offset in
virtual memory, and the dmabuf FD obtained from the earlier
nvmap call. This syscall will be covered further in Sec. IV-A2.
Once allocated and mapped, buffers persist until unmapped via
an NVGPU_AS_IOCTL_UNMAP_BUFFER syscall and freed
with an NVMAP_IOC_FREE syscall.

To our understanding, NVIDIA’s embedded GPUs have all
handled page allocations this way since the Tegra K1 in 2014,
and NVIDIA’s QNX and Horizon OS8 drivers work similarly.

2) Inside GPU Virtual Memory Management: In Sec. II-D,
we mentioned that NVIDIA GPUs have long supported per-
application virtual address spaces. However, little public in-
formation is available regarding how they map pages or are
activated—necessary background for GPU paging. We provide
historical framing first, then dive into the relevant specifics.

NVIDIA’s GPU page-table layouts (and consequent map-
pings) have changed over the years, and only one generation—
Pascal (2016)—is somewhat documented [43]. We disam-
biguated this history by cross-referencing the nvgpu and
nouveau driver sources, alongside NVIDIA’s limited doc-
umentation [43]. Our findings are shown in Fig. 11.

Fig. 11 shows that the Volta-based GPU in our platform
supports the second generation of NVIDIA’s page tables.
These five-level page tables support 4 KiB, 64 KiB, or 2 MiB
pages. Each page table is bound to a “channel,” and context
switches between channels are controlled by NVIDIA’s time
slice group (TSG) runlist scheduler [41]. Details on the runlist
scheduler are a topic for another work, but it suffices to say that
no channel is active unless it has pending work. As the real-
time system model we use (TimeWall [1]) strictly enforces that
no GPU work is pending at the conclusion of a component’s
time slice, we know that the page table for a component’s
GPU work is only active during its time slice. This allows for
an important simplification in Sec. IV-B3. Additionally, GPU
context switches can be very expensive [41], so longer GPU
time slices are preferred for performance.

8Also known as the Nintendo Switch System Software.

Algorithm 1 GPU Page Mapping

1: procedure MAPCONTIGUOUS(pages, offset, f lags)
2: pte← FINDPTE(offset) ▷ Walk page table
3: for all page ∈ pages do
4: WRITEPTE(pte, page, flags) ▷ Overwrite PTE
5: pte← NEXTPTE(pte) ▷ Increment
6: end for
7: end procedure

Map a set of discontiguous page sets.
8: procedure MAPSCATTERLIST(sgl, offset, f lags)
9: SETUPIOMMU(sgl) ▷ Grant GPU physical access

10: for all page set ∈ sgl do
11: MAPCONTIGUOUS(page set, offset, flags)
12: offset += LENGTH(entry)
13: end for
14: end procedure

The nvgpu driver creates page-table mappings when re-
quested by internal functions or userspace syscalls. Alg. 1
shows the steps to create a new mapping in the nvgpu driver.

Problems with this algorithm to improve upon include that,
to map n pages contiguously, it may perform up to n page-
table walks. This problem stems from Lines 10 and 11. Each
scatterlist entry points to one or more pages, with the number
being inversely correlated to the memory fragmentation of the
system. MAPCONTIGUOUS walks the page tables on each call,
and is called for each scatterlist entry. This results in the num-
ber of page-table walks, and overall mapping speed, implicitly
becoming a function of system memory fragmentation—a
highly unpredictable design.

An additional relevant aspect of Alg. 1 is the SETUPI-
OMMU call at Line 9. Devices such as the GPU and SSD
on our platform are prevented from freely accessing physical
memory by an I/O MMU. This protects main memory from
malfunctioning or malicious devices, but adds non-negligible
overheads to paging (visible in Fig. 9 as the left green stack).

The development of our implementation involved under-
standing many more platform and GPU mechanisms, but we
omit the non-essential digression.

B. Assembling Transparent GPU Paging

Given our high-level design goals for GPU paging and
an understanding of the technical limitations of NVIDIA’s
hardware and drivers, we now present our assemblage of these
components into a system supporting GPU paging.

GPU paging in (resp., out) involves three major steps:
allocating (resp. freeing) backing pages, reading (resp., writ-
ing) saved state from (resp. to) the SSD, and updating (resp.
invalidating) virtual memory mappings. We cover these steps
in order, and then present our control API for GPU paging.

1) Handling Buffer Allocations: To allow for freeing and
reallocating backing pages as part of a page out/in cycle, we
extend the nvmap module. By default, this module provides
no means to free a buffer’s backing pages without also freeing
the FD handle. As these handles are held by userspace, and



we aim for a transparent paging system, the FD handles must
be preserved. Recreating an nvmap buffer with an identical
FD is somewhat difficult, so we instead add an API to roll
back an nvmap buffer to a pre-NVMAP_IOC_ALLOC state.
We call this API NVMAP_IOC_DEALLOC and pair it with an
NVMAP_IOC_REALLOC API which does the reverse.

To select the pages freed or allocated by these APIs,
it is possible to use a memory schedule as mentioned in
Sec. III-C4. However, for simplicity in our initial implemen-
tation, we instead rely on nvmap’s default allocator.

2) I/O: We rely on Linux’s preexisting in-kernel framework
for asynchronous block I/O. In particular, to reduce overheads,
we chain our block I/O commands to join the buffer scatterlists
into a single, large scatter-gather I/O command. This command
encompasses the full region to be paged in/out and can be
passed as a single command to the NVMe SSD controller.

Prior to page-out writes, we flush the GPU Level-2 (L2)
cache, as DRAM accesses from PCIe devices (such as our
NVMe SSD) are not coherent with the GPU cache.

3) Handling Page Mappings: As part of paging, normally
virtual memory mapping invalidation is part of paging out,
and mapping recreation is part of paging in. The invalidation
step prevents applications from mistakenly or maliciously
attempting to access pages no longer allocated to them upon
page-out completion. We forgo this step, as our model ensures
that memory is paged in prior to the start of a GPU time slice,
and that GPU work runs strictly within its allocated time slice
(as discussed in Sec. IV-A2).

Conversely, remapping is necessary, as during buffer real-
location we may receive a different set of backing pages (see
Fig. 8 for example). This is performed similarly to NVIDIA’s
page mapping code (outlined in Alg. 1), but with three key
differences. First, we skip logic for PDE (Page Directory
Entry) or PTE (Page Table Entry) creation (not shown in
Alg. 1). Our transparent GPU paging approach maintains the
same GPU virtual addresses before and after paging, so we can
safely assume that all needed PDEs and PTEs already exist.

Second, rather than fully overwriting a PTE as in Line 4 in
Alg. 1, we update only the pointer to the DRAM page. This
avoids duplicate tracking of metadata already present in the
page table, as necessary with NVIDIA’s algorithm.

Third, to aid in predictability, we perform a page-table
walk for every page mapping. This matches the worst-case
algorithmic efficiency of NVIDIA’s algorithm, but avoids
linking execution time with memory fragmentation. A single-
page-walk approach in the worst case is possible and greatly
desirable. Unfortunately, it requires immensely complex code
to handle the mix of page sizes allowed for by NVIDIA’s page
tables, and so we leave this for future work.

On our platform, CPU DRAM accesses are not always cache
coherent with the GPU. To work around this, we flush the GPU
L2 and Translation Lookaside Buffer (TLB) caches after GPU
page table mapping updates.

4) Kernel and Userspace API: We extend the nvgpu driver
with an API allowing either a specific buffer, or all buffers

in a specified GPU virtual address space to be paged.9 Our
API supports either synchronous or asynchronous modes (as in
Fig. 7 and Fig. 8 respectively). This API can be accessed from
user- or kernel-space via the following new IOCTL syscalls
on a GPU-virtual-address-space handle:

1) NVGPU_AS_IOCTL_WRITE_SWAP_BUFFER
2) NVGPU_AS_IOCTL_READ_SWAP_BUFFER
3) NVGPU_AS_IOCTL_WRITE_SWAP_BUFFER_ASYNC
4) NVGPU_AS_IOCTL_WRITE_SWAP_BUFFER_

ASYNC_FINISH
5) NVGPU_AS_IOCTL_READ_SWAP_BUFFER_ASYNC
6) NVGPU_AS_IOCTL_READ_SWAP_BUFFER_ASYNC_

FINISH

These syscalls all take one integer parameter, the FD handle
of the buffer to be paged, or NVGPU_SWAP_ALL to indicate
a paging of all buffers.

The *_ASYNC calls initiate a paging operation, up
through the dispatching of an I/O command to the SSD.
These calls must be followed by a call to the respective
*_ASYNC_FINISH call, which checks that the I/O is com-
pleted (or waits if it is not) before finishing the paging
operation with a free or mapping. The non-postfixed calls
combine the two *_ASYNC_* calls into a single blocking
operation to save a lock acquisition and some internal lookups.

Our API is thread safe, and uses a per-GPU-virtual-address-
space lock internally to prevent race conditions. This lock
is fully private to an application and cannot be obtained
otherwise. For global state such as SSD sector assignments
for paged data, we use atomic variables.

Not all GPU buffers are pageable. Specifically, any pinned
host (“zero-copy”) memory is unpagable. This is because zero-
copy memory buffers are simultaneously mapped into GPU
and CPU virtual address spaces. Updating CPU virtual address
mappings raises a bevy of predictability issues, as covered in
Sec. III-C, so we do not attempt to support it. Our API includes
robust internal error checking, and will return a descriptive
error code upon this, or any other, misuse.

When an entire buffer is marked as read-only in GPU
memory, we can execute the copy step of paging out only once.
This allows the same, saved buffer to be reused during each
subsequent page-in operation. As SSDs have a limited number
of write cycles,10 this not only increases performance, but
extends the lifetime of the SSD. Machine learning algorithms
often fill the majority of GPU memory with read-only weight
files, so this is commonly useful.

In totality, our API allows for any or all GPU buffers to be
paged upon request, synchronously or asynchronously. This
enables both our TimeWall-extending model, and any other,
yet to be devised applications. For additional details on any
aspect of our implementation, we refer readers to our well-
documented source code.11

9An application may simultaneously manage multiple GPU address spaces.
10Around 1,000 TLC writes per cell.
11Get our kernel code at http://cs.unc.edu/%7Ejbakita/rtss22-ae.html.

https://www.cs.unc.edu/~jbakita/rtss22-ae.html
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V. EVALUATION

We now evaluate the performance and utility of our paging
system via various performance and overhead benchmarks.

A. Throughput

We benchmark the throughput of our GPU paging system
against both direct I/O and demand paging. We test the time
to write out and free, or allocate, read in, and map, a buffer.
With demand paging, where page-out operations are implicit,
we cannot test the time to write out a buffer. All operations
are performed on a randomly filled, 1 GiB buffer with a one-
second pause between a read-in and write-out operation. We
use O_SYNC with direct I/O to insure that writes are flushed to
disk. We emulate demand paging as in Sec. III-A, but subtract
out sequential walk times.12 For GPU paging, we use our
synchronous APIs in this experiment.

The experimental results are shown in Fig. 12 as a box plot.
All benchmarks are run uncontended and for 1,000 samples.

Obs. 1. GPU paging is three times faster than demand paging.

GPU paging is faster than demand paging, but its speed even
slightly exceeds direct I/O—a laudable reduction of overheads.
Loading data on average takes 161 ms, 192 ms, and 615 ms
for GPU paging, direct I/O, and demand paging respectively.
Writing data on average takes 186 ms and 189 ms for GPU
paging and direct I/O respectively.

Our choice of paging GPU buffers to avoid the overheads
of CPU paging appears to have worked well. We aimed to
approach the speeds of direct I/O, but in fact exceeded them!
We suspect this is the case because direct I/O is controlled
and parameterized by userspace—a design that requires more
internal checks and memsets to prevent malicious use.

An implication of these results is that our approach is faster
than any application could implement on its own. One may
have thought that good design would be to have an application

12Emulating demand paging requires a sequential walk, so we separately
measure the time of this and subtract it from the demand paging times.
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Fig. 13. Box plot of time to initiate or finish a 1 GiB GPU paging operation.

reduce its memory consumption internally by moving unused
buffers to and from storage as necessary. However, as there
are no general-purpose userspace I/O APIs faster than direct
I/O, this appears to not be the case.

Obs. 2. GPU paging is more predictable than direct I/O or
demand paging.

Even in the uncontended environment of Fig. 12, which
is favorable for direct I/O and demand paging, our GPU
paging system exhibits slightly more timing determinism.
While difficult to see in Fig. 12, GPU paging times have a
slightly slower standard deviation than direct I/O or demand
paging. The standard deviations for loading data are 0.97, 6.39,
and 6.48 for GPU paging, direct I/O, and demand paging,
respectively. The write standard deviations are 3.70 and 3.77
for GPU paging and direct I/O, respectively.

B. Synchronous Overheads

As discussed in Sec. III-C, a major goal of our system
design is to avoid the levels of overhead that afflict demand
paging in Linux. Our throughput results show that this goal
was largely achieved, but how much room is left for im-
provement? To test this, we created a benchmark using our
asynchronous GPU paging APIs. This benchmark calls each
API on a 1 GiB GPU buffer, waiting at least one second before
making the *_FINISH calls to allow for all I/O to complete
asynchronously. How long each API call takes is measured,
and we repeat this cycle for 1,000 iterations. Fig. 13 shows
the results as a box plot.

Obs. 3. GPU page-in operations achieve overheads 81%
lower than demand paging.

Fig. 13 shows that our approach requires 70 ms to start and
43 ms to finish a GPU-page-in operation on average. This sums
to synchronous overheads of 113 ms—81% less than the fully-
synchronous 592 ms required by demand paging. Our method
could be better, as 113 ms is still most of the total 161 ms
GPU-page-in time, and omits interrupt processing time.



As mentioned in Sec. IV-B2, we use Linux’s built-in mech-
anisms to dispatch our block I/O commands. While Linux
can theoretically pass our entire command at once to the
SSD controller, we found this not to be the case. Instead,
the command is split, copied and remarshaled at least once
by other parts of the kernel. This meaningfully inflates both
page-in and page-out operation start overheads. Further, while
our implementation does not require interrupts to register
completion, Linux forces them by default. Future work, or a
production implementation, could directly dispatch commands
to a dedicated SSD control queue and disable interrupts to
avoid these overheads.

Additionally, we incur meaningful overheads from our
simplifying choices to re-purpose nvmap’s backing page
allocator and to use an inefficent page-mapping algorithm. See
Sec. IV-B1 and Sec. IV-B3 for further discussion.

Obs. 4. GPU page-out operations are 80% asynchronous.

Fig. 13 shows that our approach requires 35 ms to start
and 3 ms to finish a GPU-page-out operation on average. This
sums to synchronous overheads of 38 ms—only 20% of the
total 186 ms GPU-page-out time.

When paging out, we avoid nvmap’s allocator and our in-
efficient page mapping logic, but we still incur some penalties
for Linux’s non-optimal block I/O dispatch logic.

In all, we successfully reduce overheads to a fraction of
those typical for paging, and see opportunities to further cut
overheads by half or more using the improvements we outline.

C. Bus and DRAM Interference

As mentioned in Sec. III-D, our GPU paging system is
expected to cause DRAM and bus interference when the SSD
performs I/O operations. This will be observable as a slow-
down in CPU tasks.13 The relationship is symmetric, in that
heavy CPU loads should also slow our GPU paging system.
This section measures the magnitudes of these slowdowns.

In order to test worst-case interference, we create DRAM-
thrashing “evil tasks.” Our DRAM-thrashing tasks work by
allocating a buffer several times larger than the CPU caches,
then walking each cache line in these buffers in either sequen-
tial, or random-dependent, order. In both modes, every cache
line is touched in the buffer before the process repeats. This
ensures that every access must be fetched from DRAM.

We configure between one and seven (cores minus one)
sequential-DRAM-thrashing tasks, and run them both with
and without interference from a tightly looped GPU paging
task. We plot the minimum bandwidth observed within these
thrashing task sets in Fig. 14 (left axis, higher is better)
alongside the mean time taken by the co-running GPU paging
task (right axis, lower is better).

Obs. 5. GPU paging cuts CPU DRAM bandwidth by < 5%.

The gap between the two thrashing-task-bandwidth lines
in Fig. 14 shows how much our thrashing CPU tasks are

13SSD reads and writes are not coherent with CPU caches, so we do not
analyze cache interference.
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slowed by the addition of GPU paging. This gap is at most 5%
(0.8 GiB/s). The impact to the speed of GPU paging (dotted
line in Fig. 14) is greater, particularly against six or seven
DRAM-thrashing tasks. In these cases it is 5% and 19% slower
respectively. These mild results are not particularly surprising,
as our GPU paging system has a maximum throughput of
approximately 5 GiB/s—minor compared to the advertised
throughput of 137 GiB/s in the DRAM and bus subsystem.

But what of the DRAM latency impact? To measure this, we
repeat the same experiment, but with our random-dependent-
DRAM-thrashing tasks. These tasks defeat the latency-hiding
and prefetching capabilities of modern out-of-order CPUs and
caches by making the address of each load unavailable until
the prior load fully completes. This is done via a randomly
shuffled linked list. The results are shown in Fig. 15.

Obs. 6. Random-dependent-DRAM-thrashing tasks slow GPU
paging by < 6%.

Conversely to our sequential-DRAM-thrashing experiments,



random-dependent-DRAM-thrashing tasks barely slow GPU
paging (dotted line in Fig. 15), but not the reverse. Adding
GPU paging slows our random-dependent-DRAM-thrashing
tasks by as much as 17% (65 MiB/s). This may indicate that
sequential-DRAM-thrashing tasks bottleneck on internal bus
limits before saturating DRAM cycles, whereas DRAM-cycle
limits bottleneck random-dependent-DRAM-thrashing tasks.

In all, our paging approach typically has negligible DRAM
interference impact, slowing other applications at most 17%,
while being slowed at most 19%.

D. Maintainability and Robustness

Through careful engineering effort, our implementation
adds only 586 lines to the nvgpu driver, and only 118 lines
to the nvmap driver. Many of these lines are comments.
This compactness allows for easier analysis, improvement,
and maintenance, resulting in less-buggy code. This benefit
was evident throughout our experiments, with no crashes, data
corruption, or other errors arising from our implementation.

VI. RELATED WORK

Some early papers addressing paging in real-time systems
include the work of Puaut and Hardy [16], [17]. These works
use compile-time static analysis to determine when to evict or
load specific pages to or from storage for a specific program.
This general approach has more recently been advanced by the
RT-PLRU family of work [15], [44], [45] to not just reduce,
but minimize the DRAM necessary in an embedded system.
These works are particularly relevant, as they page to and from
NAND flash (which SSDs are composed of).

Other works dealing with SSDs in real-time systems gen-
erally focus on how to meet real-time guarantees, or merely
performance goals, in the SSD controller’s flash translation
layer (FTL) [32]–[35]. We assume that a production version
of our system would apply such a real-time SSD controller.

As far as we are aware, prior work on memory oversubscrip-
tion with GPUs has dealt with SSDs in a purely theoretical
sense [46], or entirely focused on paging from GPU DRAM
to CPU DRAM [22]–[25]. NVIDIA supports a variant of
this latter sort of GPU memory oversubscription via “CUDA
Unified Memory,” [26], [47] but does not provide any means
for paging to permanent storage such as an SSD.

Prior efforts to understand the behavior of NVIDIA GPUs
and CUDA from a real-time systems perspective include
a broad set of works directed at queuing [40], [48], [49],
synchronization [50], and memory [38] behaviors, as well as
further GPU scheduling details [41], [42].

Finally, the body of work considering the impacts of
memory interference in real-time embedded systems is vast,
so we focus our discussion on works merely considering
memory interference in NVIDIA’s embedded platforms. The
comprehensive performance analysis of Capodieci et al. [39]
is particularly notable, but other works have studied interfer-
ence [51] and proposed mitigations [52] for these platforms.

VII. CONCLUSION

In this work, we studied the capabilities and constraints
of modern, real-time embedded systems with GPUs and
SDDs, finding a novel opportunity to implement DRAM
oversubscription via GPU paging. We design our system
to work symbiotically with preexisting real-time component-
driven scheduling systems, and explain how GPU paging can
be, counter-intuitively, more predictable than CPU paging.

We implement our GPU paging system in NVIDIA’s embed-
ded Linux drivers, extending our design to permit for use by
best-effort tasks as well. We benchmark this implementation,
finding it to be three times faster than demand paging, and
faster than even direct I/O. We benchmark our overheads,
finding GPU paging to reduce synchronous overheads 81%
from demand paging—all while causing no more than a 17%
slowdown from interference.

In future work, we hope to implement our GPU paging
system in a real-time, table driven scheduler, as the modified
nature of NVIDIA’s kernel made it infeasible to do so here.
In the future, we also hope to reduce GPU paging overheads,
support paging memory from discrete GPUs, and test the ap-
plicability of our technique to graphical applications. Further,
we aim to explore how our method could enable fast mode
changes or state snapshots for GPU-using applications.
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