
Enabling GPU Memory
Oversubscription via
Transparent Paging to an
NVMe SSD
Joshua Bakita and James H. Anderson

Department of Computer Science
University of North Carolina, Chapel Hill

1

How can we do
more, with less?

2

3

➔ More efficient scheduling
and provisioning

➔ More efficient scheduling
and provisioning

How can we do more, with less?

Processor Cores Memory Caches and
Interconnects Main Memory (DRAM)

L2

L2

L2

L2

L3

L1D CacheL1I Cache

➔ Memory oversubscription via
paging to permanent storage

Core 3

DRAM 0

DRAM 1

CPU

Extensively
explored in prior

work

Core 2

Core 1

Core 0
Extensively

explored in prior
work

GPU

Focus of this work

Assumption: DRAM is plentiful Assumption: Storage is too slow

Why memory oversubscription?

4

Some assumptions worth revisiting…

Reality:
Not as real-time
tasks need ever
more memory

Reality:
Not modern
solid-state

drives (SSDs)

Key Goals

Memory oversubscription for a real-time system that is:

Fast

5

Easily ApplicablePredictable

Prior work
[15-17, 44-45] limited

to this scope

With key insights drawn from technology trends, real-time scheduling, and GPU
architecture, we achieve all three for real-time CPU+GPU+SSD systems.

Enabling Predictable Memory
Oversubscription

6

Goal 1 of 3

Dangers to avoid

7

Demand paging combined with
least-recently-used (LRU) eviction

Predictable Oversubscription

Four-Page
DRAM:

…Many-Page
Storage:

1 2 3 4

Page of
Task 1

Page of
Task 2

Dangers to avoid

8

Demand paging combined with
least-recently-used (LRU) eviction

Predictable Oversubscription

Four-Page
DRAM:

…Many-Page
Storage:

1 2 3 4

Page of
Task 1

Page of
Task 2

2. Task 2 runs a job, needing two pages of DRAM. The
OS selects the LRU page of Task 1 and moves it to
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2

Dangers to avoid

9

Demand paging combined with
least-recently-used (LRU) eviction

Predictable Oversubscription

Four-Page
DRAM:

Case 1:
Page 2

…Many-Page
Storage:

1 2 3 4

Page of
Task 1

Page of
Task 2

2. Task 2 runs a job, needing two pages of DRAM. The
OS selects the LRU page of Task 1 and moves it to
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2

Dangers to avoid

10

Demand paging combined with
least-recently-used (LRU) eviction

Predictable Oversubscription

Four-Page
DRAM:

Case 1:
Page 2

…Many-Page
Storage:

1 2 3 4

Page of
Task 1

Page of
Task 2

Case 2:
Page 4

2. Task 2 runs a job, needing two pages of DRAM. The
OS selects the LRU page of Task 1 and moves it to
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2

Dangers to avoid

11

Demand paging combined with
least-recently-used (LRU) eviction

Predictable Oversubscription

2. Task 2 runs a job, needing two pages of DRAM. The
OS selects the LRU page of Task 1 and moves it to
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2

Four-Page
DRAM:

Case 1:
Page 2

…Many-Page
Storage:

1 2 3 4

Page of
Task 1

Page of
Task 2

Case 2:
Page 4

3. Task 2 runs its job to completion.

Dangers to avoid

12

Demand paging combined with
least-recently-used (LRU) eviction

Predictable Oversubscription

2. Task 2 runs a job, needing two pages of DRAM. The
OS selects the LRU page of Task 1 and moves it to
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2

Four-Page
DRAM:

Case 1:
Page 2

…Many-Page
Storage:

1 2 3 4

Page of
Task 1

Page of
Task 2

Case 2:
Page 4

3. Task 2 runs its job to completion.

4. Task 1 runs its next job, accessing pages 3 and 4. It's
execution time will vary greatly depending on what
was moved to storage.

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Predictable Oversubscript.

Using schedule
foreknowledge

13

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

Works fine, given 6 GiB of DRAM.

What if we only have 4 GiB?

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

14

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

15

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

16

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

17

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

18

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

19

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

20

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

21

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

After a job completes in a
real-time system, we know the
minimum amount of time before
the next job arrives.

With a table-driven scheduler, we
know exactly.

Consider an example…

Creating a memory schedule.

Predictable Oversubscript.

Using schedule
foreknowledge

22

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

Must be very fast
(8 GiB/s in this

example)

Key Insight:
By using period

information to schedule
paging operations, we

can make them
predictable.

Enabling Fast Memory
Oversubscription

23

Goal 2 of 3

➔ But demand paging
can only provide less
than 2 GiB/s

Demand paging for loading data
from storage.

Fast Oversubscription

What's already
available?

Platform: NVIDIA Jetson AGX Xavier 24

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

➔ Need 8 GiB/s to
meet needs of
example

Unacceptable

Overheads?

What slows demand paging?

25

Fast Oversubscription

On Jetson Xavier AGX running Linux 4.9 with our Sabrenet Rocket 4 Plus SSD.

Key Insight:
Synchronization costs
make paging multicore

CPU memory unacceptable
in a real-time Linux system

14%
Page

allocation

19%
Page mapping

27%
Bookkeeping

and actual I/O

40%
Locking and
retry commit

Profiling results

Paging GPU memory

26

Fast Oversubscription

Key Insight:
GPU APIs do not allow for
cross-application shared

pages

Key Insight:
Pages can be moved

directly from GPU virtual
memory to and from an

SSD without a mapping on
the CPU

Key Insight:
GPU memory is most

commonly used to store
read-only weights

Our GPU paging
method is 3
times faster

than demand
paging

27

But we can do
even better!

Our method

Allows for:
➔ 30% asynchronous page-in
➔ 80% asynchronous

page-out

SSDs support command
offloading. Can we use this
instead of the CPU?

Fast Oversubscription

Utilizing the SSD
controller

Scatter-gather write operation on an NVMe SSD

Timeline for GPU page-in operation
28

Key Insight:
SSD controllers can

process much of a paging
operation asynchronously

Enabling Easily Applicable
Memory Oversubscription

29

Goal 3 of 3

30

A simple API

On Linux:
0. Use strace to identify address space (AS_ID) and allocation ID (BUF_ID)
1. ioctl(AS_ID, NVGPU_AS_IOCTL_WRITE_SWAP_BUFFER, {BUF_ID});
2. ioctl(AS_ID, NVGPU_AS_IOCTL_READ_SWAP_BUFFER, {BUF_ID});

Asynchronous variants available.

Code is open source and documented. See
https://www.cs.unc.edu/~jbakita/rtss22-ae.html to get started.

Easily Applicable Oversubscription

https://www.cs.unc.edu/~jbakita/rtss22-ae.html

Conclusions
We can make memory oversubscription in a real-time system:

Fast

31

Predictable Easily Applicable

How can we know what
and when to page?

Can we make GPU paging
easy to use?

How can synchronization
overheads be avoided?

How fast can we go?

Page GPU mem

>6GB/s read,
>5GB/s write

Use foreknowledge
present in schedule

Yes, via our 2-line
Linux API

What you have to read the paper for…

32

Evaluation:
● Comparison to direct I/O, and how we

manage to be faster
● Benchmarks which demonstrate our minimal

impact on memory bandwidth
● Exact distributions for all benchmark results
● Full details on our supported API calls

Regarding SSDs:
● Details on how we offload paging operations

onto the SSD controller
● How we ensure SSD caches don't bottleneck
● How we utilize real-time GPU scheduling

invariants to speed up page-out operations

Regarding GPUs:
● Details on how memory allocations work on

NVIDIA's embedded boards
● Details on NVIDIA GPU virtual memory

capabilities
● History of NVIDIA page table formats
● How to determine GPU address space and

buffer IDs
● A version of strace supporting detailed

tracing of all NVIDIA driver syscalls on
Jetson boards

+ More details and background on everything
covered in this presentation

Thanks!
Questions?

Future work:
➔ OS scheduler integration
➔ Application to mode

changes, DNN layers, etc.
➔ Increase performance,

portability, and SSD space
allocation algorithm

Contact:
Email: jbakita@cs.unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 33

mailto:jbakita@cs.unc.edu
https://twitter.com/jjbakita

