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How can we do 
more, with less?
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➔ More efficient scheduling 
and provisioning

➔ More efficient scheduling 
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Assumption: DRAM is plentiful Assumption: Storage is too slow

Why memory oversubscription?
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Some assumptions worth revisiting…

Reality:
Not as real-time 
tasks need ever 
more memory

Reality:
Not modern 
solid-state 

drives (SSDs)



Key Goals

Memory oversubscription for a real-time system that is:

Fast
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Easily ApplicablePredictable

Prior work
[15-17, 44-45] limited 

to this scope

With key insights drawn from technology trends, real-time scheduling, and GPU 
architecture, we achieve all three for real-time CPU+GPU+SSD systems.



Enabling Predictable Memory 
Oversubscription
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Goal 1 of 3



Dangers to avoid
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Demand paging combined with 
least-recently-used (LRU) eviction

Predictable Oversubscription

Four-Page 
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…Many-Page
Storage:

1 2 3 4

Page of 
Task 1

Page of 
Task 2
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Demand paging combined with 
least-recently-used (LRU) eviction

Predictable Oversubscription
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DRAM:

…Many-Page
Storage:
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Task 1

Page of 
Task 2

2. Task 2 runs a job, needing two pages of DRAM. The 
OS selects the LRU page of Task 1 and moves it to 
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2
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Dangers to avoid
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Demand paging combined with 
least-recently-used (LRU) eviction

Predictable Oversubscription

2. Task 2 runs a job, needing two pages of DRAM. The 
OS selects the LRU page of Task 1 and moves it to 
storage.
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Page 4

3. Task 2 runs its job to completion.



Dangers to avoid
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Demand paging combined with 
least-recently-used (LRU) eviction

Predictable Oversubscription

2. Task 2 runs a job, needing two pages of DRAM. The 
OS selects the LRU page of Task 1 and moves it to 
storage.

1. Task 1 runs a job, accessing pages 3 -> 4 -> 2

Four-Page 
DRAM:

Case 1:
Page 2

…Many-Page
Storage:

1 2 3 4

Page of 
Task 1

Page of 
Task 2

Case 2:
Page 4

3. Task 2 runs its job to completion.

4. Task 1 runs its next job, accessing pages 3 and 4. It's 
execution time will vary greatly depending on what 
was moved to storage.



After a job completes in a 
real-time system, we know the 
minimum amount of time before 
the next job arrives.

With a table-driven scheduler, we 
know exactly.

Consider an example…

Predictable Oversubscript.

Using schedule 
foreknowledge
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Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

Works fine, given 6 GiB of DRAM.

What if we only have 4 GiB?
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Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

Must be very fast 
(8 GiB/s in this 

example)

Key Insight:
By using period 

information to schedule 
paging operations, we 

can make them 
predictable.



Enabling Fast Memory 
Oversubscription
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Goal 2 of 3



➔ But demand paging 
can only provide less 
than 2 GiB/s 

Demand paging for loading data 
from storage.

Fast Oversubscription

What's already 
available?

Platform: NVIDIA Jetson AGX Xavier 24

Three Components: A, B, C
500ms budget, 1500ms period, 2GiB memory each

➔ Need 8 GiB/s to 
meet needs of 
example

Unacceptable



Overheads?

What slows demand paging?

25

Fast Oversubscription

On Jetson Xavier AGX running Linux 4.9 with our Sabrenet Rocket 4 Plus SSD.

Key Insight:
Synchronization costs 
make paging multicore 

CPU memory unacceptable 
in a real-time Linux system

14%
Page 

allocation

19%
Page mapping

27%
Bookkeeping 

and actual I/O

40%
Locking and 
retry commit

Profiling results



Paging GPU memory
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Fast Oversubscription

Key Insight:
GPU APIs do not allow for 
cross-application shared 

pages

Key Insight:
Pages can be moved 

directly from GPU virtual 
memory to and from an 

SSD without a mapping on 
the CPU

Key Insight:
GPU memory is most 

commonly used to store 
read-only weights



Our GPU paging 
method is 3 
times faster 

than demand 
paging
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But we can do 
even better!

Our method



Allows for:
➔ 30% asynchronous page-in
➔ 80% asynchronous 

page-out

SSDs support command 
offloading. Can we use this 
instead of the CPU?

Fast Oversubscription

Utilizing the SSD 
controller

Scatter-gather write operation on an NVMe SSD

Timeline for GPU page-in operation
28

Key Insight:
SSD controllers can 

process much of a paging 
operation asynchronously



Enabling Easily Applicable 
Memory Oversubscription
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Goal 3 of 3
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A simple API

On Linux:
0. Use strace to identify address space (AS_ID) and allocation ID (BUF_ID)
1. ioctl(AS_ID, NVGPU_AS_IOCTL_WRITE_SWAP_BUFFER, {BUF_ID});
2. ioctl(AS_ID, NVGPU_AS_IOCTL_READ_SWAP_BUFFER, {BUF_ID});

Asynchronous variants available.

Code is open source and documented. See 
https://www.cs.unc.edu/~jbakita/rtss22-ae.html to get started.

Easily Applicable Oversubscription

https://www.cs.unc.edu/~jbakita/rtss22-ae.html


Conclusions
We can make memory oversubscription in a real-time system:

Fast
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Predictable Easily Applicable

How can we know what 
and when to page?

Can we make GPU paging 
easy to use?

How can synchronization 
overheads be avoided?

How fast can we go?

Page GPU mem

>6GB/s read, 
>5GB/s write

Use foreknowledge 
present in schedule

Yes, via our 2-line  
Linux API



What you have to read the paper for…
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Evaluation:
● Comparison to direct I/O, and how we 

manage to be faster
● Benchmarks which demonstrate our minimal 

impact on memory bandwidth
● Exact distributions for all benchmark results
● Full details on our supported API calls

Regarding SSDs:
● Details on how we offload paging operations 

onto the SSD controller
● How we ensure SSD caches don't bottleneck
● How we utilize real-time GPU scheduling 

invariants to speed up page-out operations

Regarding GPUs:
● Details on how memory allocations work on 

NVIDIA's embedded boards
● Details on NVIDIA GPU virtual memory 

capabilities
● History of NVIDIA page table formats
● How to determine GPU address space and 

buffer IDs
● A version of strace supporting detailed 

tracing of all NVIDIA driver syscalls on 
Jetson boards

+ More details and background on everything 
covered in this presentation



Thanks! 
Questions?

Future work:
➔ OS scheduler integration
➔ Application to mode 

changes, DNN layers, etc.
➔ Increase performance, 

portability, and SSD space 
allocation algorithm

Contact:
Email: jbakita@cs.unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita
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