
Debugging and Profiling
Lecture 13
Feb 28th 2023 | COMP 211-002 | Joshua Bakita

1

Welcome!

Today:
➔ More on I/O

◆ mmap()
◆ Performance profiling

➔ Debugging review

Logistics:
➔ 54% of the class has

started on Assignment 3
➔ The bottom 6% of the class

got an email warning last
week—please do come
meet with me before Friday

2

Fun fact…

Most terminals support
Ctrl+w to delete the last

word you typed, and Ctrl+u
to delete the whole line.

File I/O… Differently
Is there something less clunky than fread()?

3

File I/O… Differently

Demo: Revisiting cat

4

Memory Mapping

5

Configure memory such that you can directly read/write to a file, as though it
were already completely read in, and is automatically written out.

void *mmap(void *addr,
 size_t length,
 int prot,
 int flags,
 int fd,
 off_t offset);

Starting at what location would you like the file to
appear in memory?

How much of the file do you want mapped?

File descriptor from open() (not fopen()!)

At what offset in the file do you want to begin
mapping?

See man mmap

 Bitwise OR of PROT_READ and/or PROT_WRITE

Where is the
mapped data
accessible at?
(or -1 on error)

File I/O… Differently

File I/O… Differently

Writing cat with mmap()

6

Performance Profiling

7

A key aspect in architectural decisions!

time and perf
Performance Profiling

8

Debugging Revisited

9

Likely relevant to Assignment 3!

dd Delete current line

D Delete from cursor to end-of-line

>> Increase indent

<< Decrease indent

O Add line above cursor and enter
insert mode

o Add line below cursor and enter
insert mode

valgrind prog Run prog with valgrind

gdb prog Start the GNU Debugger on
prog

info thing View detailed manual for
thing

xxd file Print file as hexadecimal

wget addr Download file from addr

rm file Delete file

cd dir Move to dir

cat file Print contents of file

cp fileA fileB Copy fileA to fileB

Command Line

set cindent

set nowrap

10

Debugging Revisited Key Commands—From Lecture 7

Vim Commands (Normal Mode)

For Your ~/.vimrc Config File

Breakpoints
Da

ta

break <file>:<l>
break <function>

break <function> if
<condition>

b
Set a breakpoint with
optional condition at
a location or function

info breakpoints i b List all breakpoints

delete <breakpoint
number> d Delete a breakpoint

continue c Resume execution

backtrace bt List all stack frames

select <frame#> sel Select a stack frame
as your context

next n Execute the next line
from your context

step s Execute one line

list l Print source codeCo
nt

ro
l F

lo
w

print <expr> p
Execute expression
and print result (can
modify data)

info locals i lo
Print value of every
local variable in your
stack frame

x <addr> x Print bytes at addr in
memory

whatis <expr> wha Print type of expr

Adm
in

run <args> r Run local program
quit q Exit GDB

help <cmd> h Print quick reference
for a command

set history save Save command
history 11

Debugging Revisited Key GNU Debugger (GDB) Commands—From L7
Full command

name Shorthand Access the full GDB manual via
info gdb on the command line

How Does I/O Really Work?

12

A sampling from one of my research presentations…

Questions?

See office hour calendar on the
website for availability.

Assignment 3 due Tuesday!

Contact:
Email: hacker@unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 13

mailto:hacker@unc.edu
https://twitter.com/jjbakita

