
Debugging and Profiling 2
Lecture 14
March 2nd 2023 | COMP 211-002 | Joshua Bakita

1

Welcome!

Today:
➔ More on I/O

◆ mmap()
◆ Performance profiling

➔ Debugging review

Logistics:
➔ 54% of the class has

started on Assignment 3
➔ Tomorrow is the last day to

drop the class with a "W"
grade.

2

Fun fact…

Most terminals support
Ctrl+w to delete the last

word you typed, and Ctrl+u
to delete the whole line.

Performance Profiling

3

time <prog> <args>

\time -v <prog> <args>

➔ Good for quickly checking a program's
runtime

➔ Low precision (millisecond-scale at best)
➔ Does not provide granular information

about what is slow

Last time… but with detail

4

perf record -F <freq> --call-graph
dwarf,2048 <prog> <args>

➔ Replace <freq> with sample frequency in HZ
➔ Creates the perf.data with profile data

Visualization:

➔ Run perf report for an interactive viewer

Performance Profiling

perf report

➔ This is a profile of the
fread() version of ./cat
from Lecture 8

5

Performance Profiling

Wouldn't it be nice if we
could visualize this?

% of samples with the function in their call stack
≈

% of time spent in this function and children

% of samples where this function was at the top
of the call stack

≈
% of time spent in this function only

Can use up/down arrow keys to browse, and "+"
(or enter in some terminals) to expand a node
and look at how much time it's children use.

time <prog> <args>

\time -v <prog> <args>

➔ Good for quickly checking a program's
runtime

➔ Low precision (millisecond-scale at best)
➔ Does not provide granular information

about what is slow

Last time… but with detail

6

perf record -F <freq> --call-graph
dwarf,2048 <prog> <args>

➔ Replace <freq> with sample frequency in HZ
➔ Creates the perf.data with profile data

Visualization:

➔ Run perf report for an interactive viewer

Performance Profiling

perf record -F <freq> --call-graph
dwarf,2048 <prog> <args>

➔ Replace <freq> with sample frequency in HZ
➔ Creates the perf.data with profile data

Visualization:

➔ Run perf report for an interactive viewer
➔ Run /playpen/FlameGraph/211gen.sh to

generate a visualization of perf.data in
graph.svg

Visualizing Performance Profiles
FlameGraphs!

7

./cat with fread() and cold page cache

8

time results:

real0m1.925s
user0m0.357s
sys 0m0.284s

View at
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l8/before_flush.svg

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l8/before_flush.svg

./cat with fread() and hot page cache

9

time results:

real0m0.273s
user0m0.181s
sys 0m0.092s

View at
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l8/after_flush.svg

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l8/after_flush.svg

./cat with mmap()

10

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l13/before_flush.svg

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l13/after_flush.svg

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l13/before_flush.svg
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l13/after_flush.svg

How Does I/O Really Work?

11

A sampling from one of my research presentations…

Debugging Revisited

12

Likely relevant to Assignment 3!

dd Delete current line

D Delete from cursor to end-of-line

>> Increase indent

<< Decrease indent

O Add line above cursor and enter
insert mode

o Add line below cursor and enter
insert mode

valgrind prog Run prog with valgrind

gdb prog Start the GNU Debugger on
prog

info thing View detailed manual for
thing

xxd file Print file as hexadecimal

wget addr Download file from addr

rm file Delete file

cd dir Move to dir

cat file Print contents of file

cp fileA fileB Copy fileA to fileB

Command Line

set cindent

set nowrap

13

Debugging Revisited Key Commands—From Lecture 7

Vim Commands (Normal Mode)

For Your ~/.vimrc Config File

Breakpoints
Da

ta

break <file>:<l>
break <function>

break <function> if
<condition>

b
Set a breakpoint with
optional condition at
a location or function

info breakpoints i b List all breakpoints

delete <breakpoint
number> d Delete a breakpoint

continue c Resume execution

backtrace bt List all stack frames

select <frame#> sel Select a stack frame
as your context

next n Execute the next line
from your context

step s Execute one line

list l Print source codeCo
nt

ro
l F

lo
w

print <expr> p
Execute expression
and print result (can
modify data)

info locals i lo
Print value of every
local variable in your
stack frame

x <addr> x Print bytes at addr in
memory

whatis <expr> wha Print type of expr

Adm
in

run <args> r Run local program
quit q Exit GDB

help <cmd> h Print quick reference
for a command

set history save Save command
history 14

Debugging Revisited Key GNU Debugger (GDB) Commands—From L7
Full command

name Shorthand Access the full GDB manual via
info gdb on the command line

Questions?

See office hour calendar on the
website for availability.

Assignment 3 due Tuesday!

Contact:
Email: hacker@unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 15

mailto:hacker@unc.edu
https://twitter.com/jjbakita

