Computer Organization

Lecture 15 March 7th 2023 | COMP 211-002 | Joshua Bakita

Welcome!

Today:

→ What's inside a computer, and what are the performance implications?

Logistics:

- → Assignment 4 coming soon
- → Change: Assignment 3 can be resubmitted without using a late day, up until the

Fun fact...

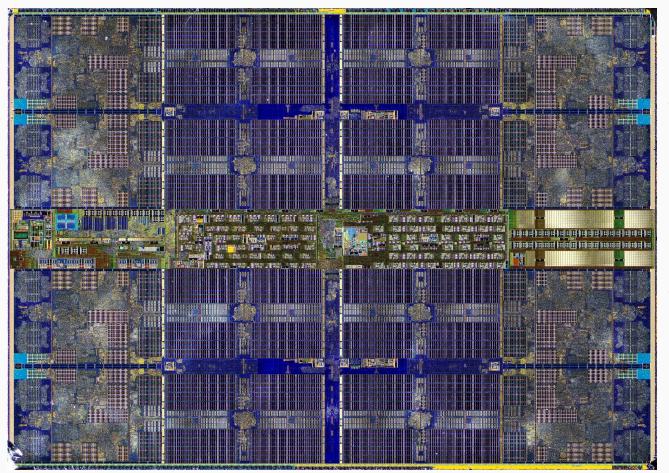
Most terminals support Ctrl+a to go to the start of the line, and Ctrl+e to go to the end

Opening the Box

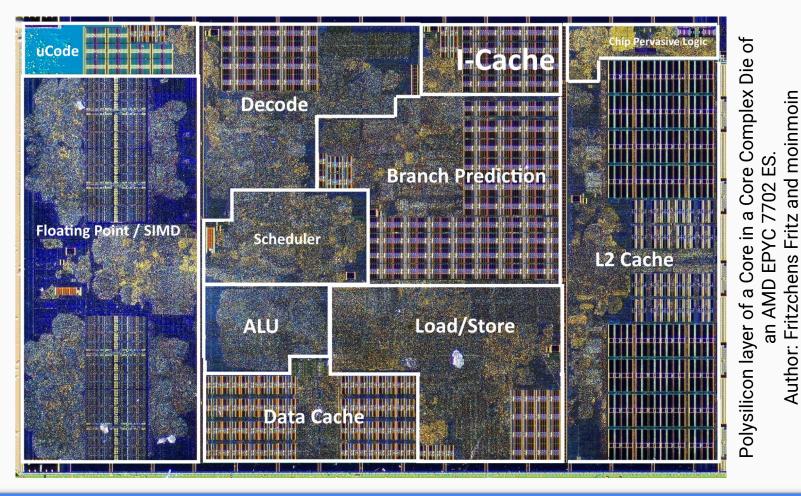
Desktop, laptop, and phone-all have the same fundamental components

Time and Distance in a Computer

How long is a nanosecond, practically?


Table 1.1 Numbers Everyone Should Know [Dean 2009]		
Action	Time	O(n)
L1 cache reference	0.5 nsec	O(1) nsec
Branch mispredict	5 nsec	0(10) nsec
L2 cache reference	7 nsec	0(10) nsec
Mutex lock/unlock	25 nsec	0(10) nsec
Main memory reference	100 nsec	0(100) nsec
Compress 1K bytes with Zippy	3,000 nsec	O(1) usec
Send 2K bytes over 1 Gbps network	20,000 nsec	0(10) usec
Read 1 MB sequentially from memory	250,000 nsec	0(100) usec
Round trip within same datacenter	500,000 nsec	O(1) msec
Disk seek	10,000,000 nsec	0(10) msec
Read 1 MB sequentially from disk	20,000,000 nsec	0(10) msec
Send packet CA->Netherlands->CA	150,000,000 nsec	0(100) msec

From Understanding Software Dynamics, Richard L. Sites


Time and Distance in a Computer

Let's look at a CPU die...

of an AMD .34 mm. \sim Complex Die size 10.32 mm × Fritz Fritzchens Core (Polysilicon layer of a EPYC 7702 ES. Die Author:

Caches

A CPU Core

9

and moinmoin

Fritz

Fritzchens

Questions?

See office hour calendar on the website for availability.

Contact: Email: <u>hacker@unc.edu</u> Twitter: <u>@JJBakita</u> Web: <u>https://cs.unc.edu/~jbakita</u>

