
A3 Review & IPC
Lecture 23
Class 25 of 28 | April 18th 2023 | COMP 211-002 | Joshua Bakita

1

Welcome!

Today:
➔ A3 Review

Logistics:
➔ A5 fully posted
➔ A4 late due date Thurs
➔ A3 grades tonight
➔ Final exam exceptions:

https://eef.oasis.unc.edu/
➔ For regrade rqs., prefer

Gradescope or Pizza
➔ Research opportunity if

you get an A/A- 2

Fun fact…

You can include any sort of shell
command in the commands section

for a target in a Makefile.

Want to force people to specify a
target rather than using the default?
You could add a dummy target like:
dummy:

aafire
at the top.

https://eef.oasis.unc.edu/

Assignment 3 Review

3

We plan to release style and functionality grades late tonight.

1. Underflow in comparison functions
2. Insufficiently large path buffers
3. Missing error checking on fopen(), fread(), malloc(), strdup(), and realloc(), etc.
4. No support for input from the console, rather than a redirected file
5. Allocating a temporary input-line buffer of size strlen(), leaving insufficient space for

the terminating null-character
6. Count lines via # of '\n's, but this will skip last line if there's no trailing newline

◆ Or count on the trailing '\n' to exist at location length - 1
7. Missing cleanup, particularly in cases of early termination
8. Uses int rather than unsigned int in internal struct

Style Feedback: Common Functional Issues

4

Assignment 3 Review

9. Missing error or help messages to guide the user
10. Errors printed to stdout, rather than stderr
11. Only prints a generic error message, rather than checking errno or using perror()
12. Duplicate comparator functions. (Can eliminate via a primary and secondary metric

field in your tracking struct.)
13. Duplicate code or outdated comments

Style Feedback: Common Niceness Issues

5

Assignment 3 Review

14. Excessive number of allocations and copies (almost everyone)
15. fgets() into a temporary buffer, then copied to the permanent one

◆ Why not read directly into the permanent buffer?
16. Growing arrays via realloc() only one entry at a time

◆ realloc() may require copying the whole array every time
17. Read character-by-character via fgetc(), incurring significant syscall overhead
18. Duplicate string traversals (taking strlen()/strcspn() rather than using length from an

API that provides it, like getline())

Style Feedback: Common Efficiency Issues

6

Assignment 3 Review

Looking closer at memory
efficiency

7

ex_game_list.txt =

jonas_the_unbeatable.bin

alex_the_best.bin

bob_the_novice.bin

./rank score 2 < ex_game_list.txt

My Solution

8

Assignment 2 Review
Let the contents of ex_game_list.txt be

jonas_the_unbeatable.bin

alex_the_best.bin

bob_the_novice.bin

./rank score 2 < ex_game_list.txt

9

Stack HeapON LINE 1

10

Stack HeapON LINE 35

11

Stack HeapON LINE 35

Remember that function definitions and
static variables defined outside of main are
stored in static memory which is why stack
and heap are still empty before main.

12

Stack HeapON LINE 36

argc

main

argv

3

0
1
2

./rank

score

2

13

Stack HeapON LINE 52

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

14

Stack HeapON LINE 55

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

0

0

0

in

15

Stack HeapON LINE 55

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

0

0

0

in

16

Stack HeapON LINE 68

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

4096

4096

4096

jonas_the_
unbeatable
.bin\n

in

17

Stack HeapON LINE 68

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

4096

8192

8192

jonas_the_
unbeatable
.bin\nalex_t
he_best.bi
n

in

18

Stack HeapON LINE 68

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

4096

12288

16384

jonas_the_
unbeatable
.bin\nalex_t
he_best.bi
n\nbob_the
_novice.bin

in

19

Stack HeapON LINE 75

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

4096

12288

16384

jonas_the_
unbeatable
.bin\nalex_t
he_best.bi
n\nbob_the
_novice.bin

in

num_lines 2

20

ON LINE 83 Stack Heap

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

4096

12288

16384

jonas_the_
unbeatable
.bin\nalex_t
he_best.bi
n\nbob_the
_novice.bin

in

num_lines 3

21

ON LINE 91 Stack Heap

argc

main

argv

3

0
1
2

./rank

score

2i 0

err 0

metric 0

num_read

total_read

last_alloc

4096

12288

16384

jonas_the_
unbeatable
.bin\nalex_t
he_best.bi
n\nbob_the
_novice.bin

in

num_lines 3
saves

“See heap
on next
slide for in
depth look”

22

ON LINE 99 Stack Heap

jonas_the_unbeatable.bin\0alex_th
e_best.bin\0bob_the_novice.bin\0

filename

pri_metric

jonas_the_unbeatable.bin

0

sec_metric

filename

pri_metric

alex_the_best.bin

sec_metric

filename

pri_metric

bob_the_novice.bin

sec_metric

1

2

saves

in

23

ON LINE 100 Stack Heap

jonas_the_unbeatable.bin\0alex_th
e_best.bin\0bob_the_novice.bin\0

filename

pri_metric

jonas_the_unbeatable.bin

0

sec_metric

filename

pri_metric

alex_the_best.bin

sec_metric

filename

pri_metric

bob_the_novice.bin

sec_metric

1

2

saves

in

24

ON LINE 129 Stack Heap

jonas_the_unbeatable.bin\0alex_th
e_best.bin\0bob_the_novice.bin\0

filename

pri_metric

jonas_the_unbeatable.bin

0

sec_metric 200

filename

pri_metric

alex_the_best.bin

5

sec_metric 10

filename

pri_metric

bob_the_novice.bin

15

sec_metric 300

1

2

saves

10

in

25

ON LINE 133 Stack Heap

jonas_the_unbeatable.bin\0alex_th
e_best.bin\0bob_the_novice.bin\0

filename

pri_metric

jonas_the_unbeatable.bin

0

sec_metric 200

filename

pri_metric

alex_the_best.bin

5

sec_metric 10

1

2

saves 10

filename

pri_metric

bob_the_novice.bin

15

sec_metric 300

in

26

ON LINE 139 Stack Heap

jonas_the_unbeatable.bin\0alex_th
e_best.bin\0bob_the_novice.bin\0

filename

pri_metric

jonas_the_unbeatable.bin

0

sec_metric 200

filename

pri_metric

alex_the_best.bin

5

sec_metric 10

1

2

saves 10

filename

pri_metric

bob_the_novice.bin

15

sec_metric 300

in

27

ON LINE 141 Stack Heap

Inter-Process Communication
(IPC)
Beyond Signals

28

➔ Signals are often not
enough

➔ What if we want to
communicate data, but
want to avoid the (slow)
process of creating a
file on disk?

What and why?

29

Inter-Process
Communication Pipes

Shared Memory

Message Passing

Process 1 Process 2

Process 1 Process 2

Process 1 Process 2

Shared Physical
Memory Mapping

Msg
Msg

Msg
Msg

Just a unidirectional sequence
of bytes

Typed messages, can be sent
bi-directionally (not shown)

➔ Signals are often not
enough

➔ What if we want to
communicate data, but
want to avoid the (slow)
process of creating a
file on disk?

What and why?

30

Inter-Process
Communication

Shared Memory

Message Passing

Process 1 Process 2

Process 1 Process 2

Shared Physical
Memory Mapping

Msg
Msg

Msg
MsgTyped messages, can be sent

bi-directionally (not shown)

Pipes

Process 1 Process 2

Just a unidirectional sequence
of bytes

We'll focus on pipes today

Questions?

Contact:
Email: hacker@unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 31

mailto:hacker@unc.edu
https://twitter.com/jjbakita

