
Processes & IPC Applied
Lecture 25
Class 27 of 28 | April 25th 2023 | COMP 211-002 | Joshua Bakita

1

Welcome!

Today:
➔ Processes & IPC,

Resumed
➔ Exam Review Information

Logistics:
➔ For regrade rqs., prefer

Gradescope or Pizza
➔ Research opportunity if

you get an A/A-

2

Fun fact…

Sherly is currently the #1 leader on
the Assignment 5 hacked save

leaderboard.

Front Matter

Inter-Process Communication
(IPC) and Process
Very relevant to Assignment 5!

3

Building off the code from last time:
https://cs.unc.edu/~jbakita/teach/comp211-s23/l24/class_demo.c

https://cs.unc.edu/~jbakita/teach/comp211-s23/l24/class_demo.c

We:

● Used fork() to duplicate
our process

● Used execv() to replace
the new (child) process
with an instance of
modify

Last time…

4

fork()

execv()exit()

exit()

Parent Process Child Process

IPC & Processes

Which exec function to use?

Which one to use?

execv(char* pathname, char* argv[])

See man execve for details. execv() simply automatically passes the environment:

"All other exec() functions (which do not include 'e' in the suffix) take the environment
for the new process image from the external variable environ in the calling process."
(man execv)

5

IPC & Processes

What arguments does exec take?

pathname

"All exec() functions (which do not include
'p' in the suffix) take as their first argument
a (relative or absolute) pathname that
identifies the program to be executed."
(man execv)

argv

"The char *const argv[] argument is an
array of pointers to null-terminated strings
that represent the argument list available
to the new program. The first argument, by
convention, should point to the filename
associated with the file being executed.
The array of pointers must be terminated
by a null pointer." (man execv)

6

IPC & Processes

execv(char* pathname, char* argv[])

We can wait for the child process
to complete using wait()

Waiting for children

7

fork()

execv()wait() called

wait() returns

exit()

Parent Process Child Process

IPC & Processes

IPC & Processes 8

fork()

execv()wait() called

wait() returns

exit()

Parent Process Child Process

IPC & Processes Creating pipes 9

fork()

execv()wait() called

wait() returns

exit()

Parent Process Child Process

pipe()

Creates a disconnected unidirectional
pipe, and provides a file descriptor to the

"in" side, and one from the "out" side

IPC & Processes Configuration of standard in/out 10

fork()

execv()wait() called

wait() returns

exit()

Parent Process Child Process

pipe()

FD # FILE* name
0 stdin
1 stdout
2 stderr

FD # FILE* name
0 stdin
1 stdout
2 stderr

Terminal Pipes

For use with UNIX
read()/write()/close()

For use with C standard
fread()/fwrite()/fclose()

Reconfiguring the FD # also
reconfigures the FILE* variable

IPC & Processes Reconfiguring standard in 11

fork()

execv()wait() called

wait() returns

exit()

Parent Process Child Process

pipe()

FD # FILE* name
0 stdin
1 stdout
2 stderr

FD # FILE* name
0 stdin
1 stdout
2 stderr

Terminal Pipes

dup2(..., 0)

Reconfigures the FD# passed as the second
argument to connect to the "out" side of the pipe (as
represented by another FD# returned from pipe())

The exec() family of functions
do not reconfigure
stdin/stdout/stderr

IPC & Processes 12

fork()

execv()wait() called

wait() returns

exit()

Parent Process Child Process

pipe()

FD # FILE* name
0 stdin
1 stdout
2 stderr

FD # FILE* name
0 stdin
1 stdout
2 stderr

Terminal Pipes

dup2(..., 0)

IPC & Processes Controlling standard in 13

fork()

execv()

wait() called

wait() returns

exit()

Parent Process Child Process

pipe()

FD # FILE* name
0 stdin
1 stdout
2 stderr

FD # FILE* name
0 stdin
1 stdout
2 stderr

Terminal Pipes

dup2(..., 0)

write()

Now writing to the pipe's "in" file
descriptor will send data to

stdin in the child

Demo resumed
IPC & Processes

14

Final matters

popen() can do the fork(), exec(), and configure one pipe automatically.

➔ But, to control both stdin and stdout in the child, do the steps manually
➔ Final will expect knowledge of fork(), exec(), and pipes

One may find strtok() useful for argument tokenization (breaking the string into
individual pieces to send in argv). See the manpage.

15

IPC & Processes

Studying for the Final

16

Logistics & Suggestions

Final review session 1:30 PM to 4:00 PM
on Saturday, April 29th.

17

➔ Check start and end of assigned
chapters, and go from there
◆ Don't miss readings assigned as

part of assignments
➔ Review your assignment

implementations, and try improving
them by applying our style and
performance feedback

Studying for the Final

Questions?

Contact:
Email: hacker@unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 18

mailto:hacker@unc.edu
https://twitter.com/jjbakita

