
Pointers and Bits
Lecture 9
Feb 7th 2023 | COMP 211-002 | Joshua Bakita

1

Welcome!

Today:
➔ File I/O Recap
➔ Pointers as Arguments
➔ Bitwise operators

Logistics:
➔ All recordings up.
➔ Sample code links fixed in

slide decks.
➔ Readings updated online to

align with in-class content.
Retrospectively added
readings are bolded.

2

Fun fact…

Midterm 1 Logistics

3

Come early and bring a writing implement for
Thursday! Exam will start promptly at 2 PM.

Allowed outside materials:
➔ Double-sided sheet of letter paper with

written or printed materials of your choice.
➔ Printed copy of The C Programming

Language (1st, 2nd, or international
editions allowed).

Provided:
➔ ASCII Table & Scratch Paper

Midterm review session tonight in 014 Sitterson
Hall at 6:20 PM, hosted by the TA/LA staff.

For those with extended testing time:
➔ ARS has no space to accommodate late

scheduling requests.
➔ If you do not have a confirmed reservation

for 2 PM at ARS, please come to 314
Sitterson Hall (office hours room) to take
your extended-time exam.

Recap: File I/O

4

cat completed

5

Recap: File I/O

Indexing files

6

"[T]he file pointer [FILE*] points to a structure that contains information about
the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written…" (Sec. 7.5, K&R C)

I.e. each time you read or write to a file, your index into the bytes of the file is
changed. You can explicitly move it forward or back via fseek().

See man fseek or Sec. B1.6 in K&R C.

Recap: File I/O

Pointers as Function Arguments

7

Confused? Take your best guess;
we will step through what's
happening in a moment.

Give it a try!

8

Pointers as Func. Args.
What will this print?

https://PollEv.com/joshuabakita182

Grab these slides from the website to
see the text up close.

Try it yourself!

$ wget
https://www.cs.unc.edu/~jbakita
/teach/comp211-s23/l9/rects.c
$ gcc rects.c -o rects
$./rects

https://pollev.com/joshuabakita182
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l9/rects.c
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l9/rects.c

Pass by value vs.
by reference

9

Pointers as Func. Args.

Try it yourself!

$ wget
https://www.cs.unc.edu/~jbakita
/teach/comp211-s23/l9/rects.c
$ gcc rects.c -o rects
$./rects

Takes one 8-byte² argument, an address
representing the location where a
struct Rectangle is stored.

Colloquially, rect is passed by reference

Takes one 8-byte¹ argument, a struct
Rectangle composed of two 4-byte

integers.

Colloquially, rect is passed by value

¹ Assuming an int is 32-bits ² On a 64-bit system

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l9/rects.c
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l9/rects.c

10Stack

main

11Stack

main

rect width

height

12Stack

main

rect width

height

5

10

13Stack

main

init_area 50

rect width

height

5

10

14Stack

main

init_area 50

rect width

height

5

10

15Stack

main

init_area 50

rect width

height

5

10

resetA

rect width

height

5

10

16Stack

main

init_area 50

rect width

height

5

10

resetA

rect width

height

0

10

17Stack

main

init_area 50

rect width

height

5

10

resetA

rect width

height

0

0

18Stack

main

init_area 50

rect width

height

5

10

19Stack

main

init_area 50

rect width

height

5

10

next_area 50

20Stack

main

init_area 50

rect width

height

5

10

next_area 50

21Stack

main

init_area 50

rect width

height

5

10

next_area 50

resetB

rect

22Stack

main

init_area 50

rect width

height

0

10

next_area 50

resetB

rect

23Stack

main

init_area 50

rect width

height

0

0

next_area 50

resetB

rect

24Stack

main

init_area 50

rect width

height

0

0

next_area 50

25Stack

main

init_area 50

rect width

height

0

0

next_area 50

final_area 0

26Stack

main

init_area 50

rect width

height

0

0

next_area 50

final_area 0

27Stack

Bitwise Operators
A more complete coverage…

28

What are they?

29

Using more familiar language:
bitwise inversion

Bitwise Operators

Sec. 2.9 of The C Programming Language

Let's give them a try!

Based on the AND, OR, and XOR
logical operators you saw in

COMP 283/MATH 381.

We discussed using these to
adjust powers of 2 in Lecture 3

More on the Preprocessor
Beyond #define and #include

30

31

A few other
directives

Remember: Preprocessor
directives start with a #

More on the Preprocessor

More on the Preprocessor nvdebug.h: More Complex #define 32

Code available at
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l6/nvdebug.h

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l6/nvdebug.h

More on the Preprocessor nvdebug.h: More Complex #define 33

Code available at
https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l6/nvdebug.h

https://www.cs.unc.edu/~jbakita/teach/comp211-s23/l6/nvdebug.h

Challenge Problem

34

Adapted from Cracking the Coding Interview, 4th Edition

Challenge Problem Combine the Arrays 35

To access online:

https://www.cs.unc.edu/~jbak
ita/teach/comp211-s23/l3/ch

al.c
Want to try the original interview problem? See

https://www.cs.unc.edu/~jbakita/teach/comp211-s23
/l3/chal_takehome.c

Questions?

See office hour calendar on the
website for availability.

Contact:
Email: hacker@unc.edu
Twitter: @JJBakita
Web: https://cs.unc.edu/~jbakita

Old Well, University of North Carolina at Chapel Hill, Winter 2017 36

mailto:hacker@unc.edu
https://twitter.com/jjbakita

