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ABSTRACT 
We present an empirical study of the effects of active queue man-
agement (AQM) and explicit congestion notification (ECN) on the 
distribution of response times experienced by a population of users 
browsing the Web. Three prominent AQM schemes are consid-
ered: the Proportional Integral (PI) controller, the Random Expo-
nential Marking (REM) controller, and Adaptive Random Early 
Detection (ARED). The effects of these AQM schemes were stud-
ied with and without ECN. Our primary measure of performance is 
the end-to-end response time for HTTP request-response ex-
changes. For this measure, our major results are:  

• If ECN is not supported, ARED operating in byte-mode was the 
best performing AQM scheme, providing better response time 
performance than drop-tail FIFO queuing at offered loads above 
90% of link capacity. However, ARED operating in packet-
mode (with or without ECN) was the worst performing scheme, 
performing worse than drop-tail FIFO queuing. 

• ECN support is beneficial to PI and REM. With ECN, PI and 
REM were the best performing overall schemes, providing sig-
nificant response time improvement over ARED operating in 
byte-mode. In the case of REM, the benefit of ECN was dra-
matic. Without ECN, response time performance with REM was 
worse than drop-tail FIFO queuing at all loads considered. 

• ECN was not beneficial to ARED. Under current ECN imple-
mentation guidelines, ECN had no effect on ARED perform-
ance. However, ARED performance with ECN improved sig-
nificantly after reversing a guideline that was intended to police 
unresponsive flows. Nonetheless, overall, the best ARED per-
formance was achieved without ECN.  

• Whether or not the improvement in response times with AQM is 
significant (when compared to drop-tail FIFO), depends heavily 
on the range of round-trip times (RTTs) experienced by flows. 
As the variation in flows’ RTT increases, the impact of AQM 
and ECN on response-time performance is reduced.  

We conclude that AQM can improve application and network per-
formance for Web or Web-like workloads. In particular, it appears 
likely that with AQM and ECN, provider links may be operated at 
near saturation levels without significant degradation in user-
perceived performance.  

1 INTRODUCTION AND MOTIVATION 
The random early detection (RED) algorithm, first described 
over ten years ago [8], inspired a new focus for congestion 
control research on the area of active queue management 
(AQM). AQM is a router-based form of congestion control 
wherein routers notify end-systems of incipient congestion. 
The common goal of all AQM designs is to keep the aver-
age queue size in routers small. This has a number of desir-
able effects including (1) providing queue space to absorb 

bursts of packet arrivals, (2) avoiding lock-out and bias ef-
fects from a few flows dominating queue space, and (3) 
providing lower delays for interactive applications such as 
Web browsing [4].  

All AQM designs function by detecting impending queue 
buildup and notifying sources before the queue in a router 
overflows. The various designs proposed for AQM differ in 
the mechanisms used to detect congestion and in the type of 
control mechanisms used to achieve a stable operating point 
for the queue size. Another dimension that has a significant 
impact on performance is how the congestion signal is de-
livered to the sender. In today’s Internet where the dominant 
transport protocol is TCP (which reacts to segment loss as 
an indicator of congestion), the signal is usually delivered 
implicitly by dropping packets at the router when the AQM 
algorithm detects queue buildup. An IETF proposed stan-
dard adds an explicit signalling mechanism, called explicit 
congestion notification (ECN) [15], by allocating bits in the 
IP and TCP headers for this purpose. With ECN a router can 
signal congestion to an end-system by “marking” a packet 
(setting a bit in the header).  

In this work we report the results of an empirical evaluation 
of three prominent examples of AQM designs. These are the 
Proportional Integral (PI) controller [10], the Random Ex-
ponential Marking (REM) controller [3] and a contemporary 
redesign of the classic RED controller, Adaptive RED [7] 
(here called ARED). While these designs differ in many 
respects, each is an attempt to realize a control mechanism 
that achieves a stable operating point for the size of the 
router queue. Thus a user of each of these mechanisms can 
determine a desired operating point for the control mecha-
nism by simply specifying a desired mean queue size. 
Choosing the desired queue size may represent a tradeoff 
between link utilization and queuing delay — a short queue 
reduces latency at the router but setting the target queue size 
too small may reduce link utilization by limiting the router’s 
ability to buffer short bursts of arriving packets.  

Our goal in this study was first and foremost to compare the 
performance of control theoretic AQM algorithms (PI and 
REM) with the more traditional randomized dropping found 
in RED. For performance metrics we chose both user-
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centric measures of performance such as response times for 
the request-response exchanges that comprise Web brows-
ing, as well as more traditional metrics such as achievable 
link utilization and loss rates. The distribution of response 
times that would be experienced by a population of Web 
users is used to assess the user-perceived performance of the 
AQM schemes and is our primary metric for assessing over-
all AQM performance. Of particular interest was the impli-
cation of ECN on performance. ECN requires changes to 
end-system protocol stacks and hence it is important to 
quantify the performance gain to be had at the expense of a 
more complex protocol stack and migration issues for the 
end-system.  

Our experimental platform was a laboratory testbed consist-
ing of a large collection of computers arranged to emulate a 
peering point between two ISPs operated at 100 Mbps (see 
Figure 1). We emulated the Web browsing behaviour of tens 
of thousands of users whose traffic transits the link connect-
ing the ISPs and investigated the performance of each AQM 
scheme in the border-routers connecting the ISPs. Each 
scheme was investigated both with and without ECN sup-
port across a variety of AQM parameter settings that repre-
sented a range of target router-queue lengths. For each tar-
get queue length we varied the offered load on the physical 
link connecting the ISPs to determine how (or if) AQM per-
formance was affected by load.  

Our primary results were that AQM and ECN can provide 
significant benefit to application and network performance, 
however, (1) this benefit occurs only at very high levels of 
network load and (2) the degree of benefit provided by 
AQM is influenced by the round-trip times experienced by 
HTTP connections.  

Concerning network load, it was previously shown that 
AQM (with or without ECN) only improved response time 
performance (compared to drop-tail FIFO queuing) at of-
fered loads above 80% of link capacity [11]. For offered 
loads greater than or equal to 90% of link capacity, the con-
trol theoretic designs PI and REM give the best performance 
but only when deployed with ECN-capable end-systems and 
routers. However, in these environments the improvement in 
performance can be substantial. Response times for HTTP 
request-response exchanges approximate those achieved on 
an uncongested network at the cost of slightly lower achiev-
able link utilization (compared to drop-tail FIFO queue 
management). If ECN support is not present in the network, 
then ARED operated in byte-mode, gives the best perform-
ance. Moreover, for offered loads of 90% of link capacity, 
ARED byte-mode performance without ECN approximated 
that of PI and REM with ECN. At higher loads (98% of link 
capacity), ARED improved response time performance 
compared to drop-tail FIFO, however, the improvement was 
small compared to the more substantial improvements real-
ized by PI and REM with ECN.  

An additional aspect of our study was the effect of round-
trip times (RTTs) on response-time performance. Response 
time is a function of round-trip time which in turn is a func-
tion of transmission, propagation, and queuing delays. AQM 
affects only the queuing delay component of RTT and hence 
the impact of AQM on response time depends on the magni-
tude of the queuing delay’s contribution to total RTT. Ex-
periments were run with two distributions of RTTs: a uni-
form distribution of RTTs (used in [5, 11]), and a more 
variable, empirical distribution of RTTs (from data reported 
in [1]). The results for AQM experiments performed with 
uniformly distributed RTTs are those recited above. When 
the empirical RTT distribution was used, the same relative 
conclusions hold, however, the magnitude of the perform-
ance improvements achieved with AQM and ECN were less 
dramatic.  

In total, our results suggest that with the appropriate choice 
and configuration of AQM, providers may be able to oper-
ate links dominated by Web traffic at load levels as high as 
90% of link capacity without significant degradation in ap-
plication or network performance. Thus unlike a similar 
earlier study [5] which was negative on the use of a specific 
form of AQM (RED), we view the present results as a sig-
nificant indicator that the stated goals of AQM can be real-
ized in practice.  

Our results also demonstrate some shortcomings in the de-
sign of AQM algorithms. Specifically we show that ARED 
performance is critically a function of whether the router’s 
queue length is measured in units of bytes or packets. We 
also show that the current guidelines for forwarding ECN-
marked packets are counter-productive. When ARED meas-
ures queue length in packets it consistently resulted in re-
sponse time performance that was worse than that achieved 
with simple drop-tail FIFO queuing. Moreover, unlike PI 
and REM whose performance was significantly improved 
by the addition of ECN, ARED performance in “packet-
mode” was unaffected by ECN. However, by reversing an 
implementation guideline for ECN, specifically by allowing 
ECN-marked packets to be forwarded and not dropped 
when the average queue length is in the “gentle region,” 
ARED performance with ECN was substantially improved 
(resulting in better performance than drop-tail). However, 
overall, the best ARED performance was always obtained 
when queue length was measured in bytes rather than pack-
ets.  

While the results of this study are intriguing, the study was 
nonetheless limited. The design space of AQM schemes is 
large with each algorithm typically characterized by a num-
ber of independent parameters. We limited our considera-
tion of AQM algorithms to a comparison between two 
classes of algorithms: those based on control theoretic prin-
ciples and those based on the original randomized dropping 
paradigm of RED. Moreover, we studied a link carrying 
only Web-like traffic. More realistic mixes of HTTP and 
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other TCP traffic as well as traffic from UDP-based applica-
tions need to be examined. However, unfortunately, at pre-
sent, good source-level models of general TCP and UDP 
traffic suitable for synthetic traffic generation do not exist. 

The following section reviews the salient design principles 
of current AQM schemes and reviews the major algorithms 
that have been proposed. Section 3 presents our experimen-
tal methodology and discusses the generation of synthetic 
Web traffic. Section 4 presents our results for AQM with 
packet drops and Section 5 presents our results for AQM 
with ECN. Section 6 presents additional experiments that 
show the sensitivity of performance results to round-trip 
times. The results are discussed in Section 7. We conclude 
in Section 8 with a summary of our major results.  

2 BACKGROUND AND RELATED WORK 
The original RED design uses a weighted-average queue 
size as a measure of congestion. When this weighted aver-
age is smaller than a minimum threshold (minth), no packets 
are marked or dropped. When the average queue length is 
between the minimum threshold and the maximum thresh-
old (maxth), the probability of marking or dropping packets 
varies linearly between 0 and a maximum drop probability 
(maxp, typically 0.10). If the average queue length exceeds 
maxth, all packets are marked or dropped. (The actual size of 
the queue must be greater than maxth to absorb transient 
bursts of packet arrivals.) A modification to the original 
design introduced a “gentle mode” in which the mark or 
drop probability increases linearly between maxp and 1 as 
the average queue length varies between maxth and 2  maxth. 
This fixed a problem in the original RED design caused by 
the non-linearity in drop probability (increasing from maxp 
to 1.0 immediately when maxth is reached).  

An alleged weakness of RED is that it does not take into 
consideration the number of flows sharing a bottleneck link 
[6]. Given TCP’s congestion control mechanism, a packet 
mark or drop reduces the offered load by a factor of (1 – 
0.5n-1) where n is the number of flows sharing the bottle-
neck link. Thus, RED is not effective in controlling the 
queue length when n is large. On the other hand, RED can 
be too aggressive and can cause under-utilization of the link 
when n is small. Feng et al. concluded that RED needs to be 
tuned for the dynamic characteristics of the aggregate traffic 
on a given link [6]. They proposed a self-configuring algo-
rithm for RED by adjusting maxp every time the average 
queue length falls out of the target range between minth and 
maxth. When the average queue length is smaller than minth, 
maxp is decreased multiplicatively to reduce RED’s aggres-
siveness in marking or dropping packets; when the queue 
length is larger than maxth, maxp is increased multiplica-
tively. Floyd et al. improved upon this original adaptive 
RED proposal by replacing the MIMD (multiplicative in-
crease multiplicative decrease) approach with an AIMD 

(additive increase multiplicative decrease) approach [7]. 
They also provided guidelines for choosing minth, maxth, and 
the weight for computing a target average queue length. The 
RED version that we implemented and studied in our work 
(referred to herein as “ARED”) includes both the adaptive 
and gentle refinements to the original design. It is based on 
the description in [7].  

Misra et al. applied control theory to develop a model for 
TCP and AQM dynamics and used this model to analyze 
RED [14]. They asserted two limitations in the original 
RED design: (1) RED is either unstable or has slow re-
sponses to changes in network traffic, and (2) RED’s use of 
a weighted-average queue length to detect congestion and 
its use of loss probability as a feedback signal to the senders 
were flawed. Because of this, in overload situations, flows 
can suffer both high delay and a high packet loss rate. Hol-
lot et al. simplified the TCP/AQM model to a linear system 
and designed a Proportional Integrator (PI) controller that 
regulates the queue length to a target value called the 
“queue reference,” qref [10]. The PI controller uses instanta-
neous samples of the queue length taken at a constant sam-
pling frequency as its input. The drop probability is com-
puted as 

p(kT) = a  (q(kT) – qref) – b  (q((k–1)T) – qref) + p((k–1)T) 

where p(kT) is the drop probability at the kth sampling inter-
val, q(kT) is the queue length sample, and T is the sampling 
period. A close examination of this equation shows that the 
drop probability increases in sampling intervals when the 
queue length is higher than its target value. Furthermore, the 
drop probability also increases if the queue has grown since 
the last sample (reflecting an increase in network traffic). 
Conversely, the drop probability in a PI controller is re-
duced when the queue length is lower than its target value or 
the queue length has decreased since its last sample. The 
sampling interval and the coefficients in the equation de-
pend on the link capacity, the expected number of active 
flows using the link, and the maximum RTT among those 
flows.  

Athuraliya et al. proposed the Random Exponential Mark-
ing (REM) AQM scheme [3]. REM periodically updates a 
congestion measure called “price” that reflects any mis-
match between packet arrival and departure rates at the link 
(i.e., the difference between the demand and the service 
rate) and any queue size mismatch (i.e., the difference be-
tween the actual queue length and its target value). The 
price measure p at time t is computed by: 

p(t) = max(0, p(t–1) +   (   (q(t) – qref) + x(t) – c) ) 

where c is the link capacity (in packet departures per unit 
time), q(t) is the queue length, and x(t) is the packet arrival 
rate, all determined at time t. As with ARED and PI, the 
control target is only expressed by the queue size. 



4 

The mark/drop probability in REM at time t is 1 – –p(t), 
where  > 1 is a constant. In overload situations, the conges-
tion price increases due to the rate mismatch and the queue 
mismatch. Thus, more packets are dropped or marked to 
signal TCP senders to reduce their transmission rate. When 
congestion abates, the congestion price is reduced because 
the mismatches are now negative. This causes REM to drop 
or mark fewer packets and allows the senders to potentially 
increase their transmission rate. It is easy to see that a posi-
tive rate mismatch over a time interval will cause the queue 
size to increase. Conversely, a negative rate mismatch over 
a time interval will cause the queue to drain. Thus, REM is 
similar to PI because the rate mismatch can be detected by 
comparing the instantaneous queue length with its previous 
sampled value. Furthermore, when the drop or mark prob-
ability is small, the exponential function can be approxi-
mated by a linear function [2]. 

An additional aspect of each AQM scheme is whether the 
algorithm measures the length of the router’s queue (and 
specifies target queue length, thresholds, etc.) in units of 
bytes or packets. When measuring queue length in bytes, the 
AQM algorithms bias the initial drop probability p by the 
size of the arriving packet according to the following for-
mula: 

pb = p
arriving packet size

average packet size
 

Thus all other factors being equal, AQM algorithms oper-
ated in “byte-mode” assign lower drop probabilities to small 
packets (e.g., SYNs, FINs, pure ACKs, etc.) than to large 
packets. For PI and REM it is recommended that queue 
length be measured in bytes while for ARED the recom-
mendation is to measure queue length in packets. However, 
to better compare ARED to PI and REM we will evaluate 
ARED performance in both byte- and packet-mode.  

3 EXPERIMENTAL METHODOLOGY 
For our experiments we constructed a laboratory network 
that emulates the interconnection between two Internet serv-
ice provider (ISP) networks. Specifically, we emulate one 
peering link that carries Web traffic between sources and 
destinations on both sides of the peering link and where the 
traffic carried between the two ISP networks is evenly bal-
anced in both directions.  

The laboratory network used to emulate this configuration is 
shown in Figure 1. All systems shown in this figure are In-
tel-based machines running FreeBSD 4.5. At each edge of 
this network are a set of machines that run instances of a 
Web request generator (described below) each of which 
emulates the browsing behavior of thousands of human us-
ers. Also at each edge of the network is another set of ma-
chines that run instances of a Web response generator (also 
described below) that creates the traffic flowing in response 

to the browsing requests. A total of 44 traffic-generating 
machines are in the testbed. In the remainder of this paper 
we refer to the machines running the Web request generator 
simply as the “browser machines” (or “browsers”) and the 
machines running the Web response generator as the “server 
machines” (or “servers”).  

At the core of this network are two router machines running 
the ALTQ extensions to FreeBSD. ALTQ extends IP-output 
queuing at the network interfaces to include alternative 
queue-management disciplines [13]. The ALTQ infrastruc-
ture was used to implement PI, REM, and ARED. The 
routers are interconnected via three point-to-point Ethernet 
segments (two 100 Mbps Fast Ethernet segments and one 
fiber Gigabit Ethernet segment) as illustrated in Figure 1. 
The gigabit interconnection is used to perform experiments 
in an uncongested environment while the 100 Mbps connec-
tions are used to perform experiments in a congested envi-
ronment. When conducting experiments on the uncongested 
network, static routes are configured on the routers so that 
all traffic uses the full-duplex Gigabit Ethernet segment. 
When we need to create a bottleneck between the two 
routers, the static routes are reconfigured so that all traffic 
flowing in one direction uses one 100 Mbps Ethernet seg-
ment and all traffic flowing in the opposite direction uses 
the other 100 Mbps Ethernet segment. These configurations 
allow us to emulate the full-duplex behavior of the typical 
wide-area network link.  

Another important factor in emulating this network is the 
effect of end-to-end latency. We use a locally modified ver-
sion of the dummynet [12] component of FreeBSD to con-
figure out-bound packet delays on browser machines to 
emulate different round-trip times on each TCP connection 
(giving per-flow delays). This is accomplished by extending 
the dummynet mechanisms for regulating per-flow band-
width to include a mode for adding a randomly chosen 
minimum delay to all packets from each flow. The same 
minimum delay is applied to all packets in a given flow 
(identified by IP addressing 5-tuple). The minimum delay in 
milliseconds assigned to each flow is randomly sampled 
from an RTT distribution that is provided for each experi-
ment. Two RTT distributions are used. The first is a discrete 
uniform distribution. For the experiments reported in Sec-
tions 4 and 5, a uniform distribution of minimum RTTs on 
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Figure 1: Experimental network setup. 
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the range [10, 150] (a mean of 80 milliseconds) was used. 
The minimum and maximum values for this distribution 
were chosen using the method described in [5] to approxi-
mate a typical range of Internet round-trip times within the 
continental U.S. and the uniform distribution ensures a large 
variance in the values selected over this range.  

The second minimum RTT distribution is a more general 
distribution that comes from a recent measurement study of 
the RTTs experienced by the TCP connections transiting a 
university campus-to-Internet gateway [1]. Figures 2-3 
show the cumulative distribution function (CDF) and com-
plementary CDF (CCDF) of the general RTT distribution. 
(Note that the uniform distribution of minimum RTTs used 
in Sections 4-5 is a good approximation for the body of the 
more general distribution (e.g., the 5th to 80th percentile).) 
Figure 2 shows both the general distribution used as an in-
put to the traffic generation program and the range of mini-
mum RTTs actually achieved in our experiments. The gen-
eral RTT distribution is used for the experiments reported in 
Section 6.  

In all experiments the actual round-trip times experienced 
by the TCP senders (servers) will be the combination of the 
flow’s minimum RTT (dummynet delay) plus the queuing 
delays at the routers. (End systems are configured to ensure 
no resource constraints were present, hence delays there are 
insignificant.) A TCP window size of 16K bytes was used 
on all the end systems because widely used OS platforms, 
e.g., most versions of Windows, typically have default win-
dows this small or smaller. 

3.1 Web-Like Traffic Generation 
The traffic that drives our experiments is based on a recent 
large-scale analysis of Web traffic [16]. The resulting model 
is an application-level description of the critical elements 
that characterize how HTTP/1.0 and HTTP/1.1 protocols are 
used in practice. It is based on empirical data and is in-
tended for use in generating synthetic Web workloads. An 

important property of the model is that it reflects the use of 
persistent HTTP connections as implemented in many con-
temporary browsers and servers. Further, the analysis pre-
sented in [16] distinguishes between Web objects that are 
“top-level” (typically an HTML file) and those that are em-
bedded objects (e.g., an image file). At the time these data 
were gathered, approximately 15% of all TCP connections 
carrying HTTP protocols were effectively persistent (were 
used to request two or more objects) but more than 50% of 
all objects (40% of bytes) were transferred over these per-
sistent connections.  

The model is expressed as empirical distributions describing 
the elements necessary to generate synthetic HTTP work-
loads. The elements of the model that have the most pro-
nounced effects on generated traffic are summarized in Ta-
ble 1. Most of the behavioral elements of Web browsing are 
emulated in the client-side request-generating program (the 
“browser”). Its primary parameter is the number of emulated 
browsing users (typically several hundred to a few thou-
sand). For each user to be emulated, the program imple-
ments a simple state machine that represents the user’s state 
as either “thinking” or requesting a Web page. If requesting 
a Web page, a request is made to the server-side portion of 
the program (executing on a remote machine) for the pri-
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Figure 2: CDF of the generalized minimum RTT distribu-
tion, measured versus experimentally reproduced values. 

Figure 3: CCDF of generalized minimum RTT distribution 
measured versus experimentally reproduced values.  

Table 1: Elements of the HTTP traffic model. 

Element Description 

Request size HTTP request length in bytes 

Response size HTTP reply length in bytes (top-level & embedded) 

Page size Number of embedded (file) references per page 

Think time Time between retrieval of two successive pages 

Persistent con-
nection use Number of requests per persistent connection 

Servers per page Number of unique servers used for all objects in a 
page 

Consecutive page
retrievals 

Number of consecutive top-level pages requested 
from a given server 
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mary page. Then requests for each embedded reference are 
sent to some number of servers (the number of servers and 
number of embedded references are drawn as random sam-
ples from the appropriate distributions). The browser also 
determines the appropriate usage of persistent and non-
persistent connections; 15% of all new connections are ran-
domly selected to be persistent. Another random selection 
from the distribution of requests per persistent connection is 
used to determine how many requests will use each persis-
tent connection. One other parameter of the program is the 
number of parallel TCP connections allowed on behalf of 
each browsing user to make embedded requests within a 
page. This parameter is used to mimic the parallel connec-
tions used in Netscape (typically 4) and Internet Explorer 
(typically 2). 

For each request, a message of random size sampled from 
the request size distribution is sent over the network to an 
instance of the server program. This message specifies the 
number of bytes the server is to return as a response (a ran-
dom sample from the distribution of response sizes depend-
ing on whether it is a top-level or embedded request). The 
server transmits this number of bytes back to the browser. 
For each request/response exchange, the browser logs its 
response time. Response time is defined as the elapsed time 
between either the time of the socket connect() operation 
(for a non-persistent connection) or the initial request (on a 
persistent connection) or the socket write() operation (for 
subsequent requests on a persistent connection) and the time 
the last byte of the response is returned. Note that this re-
sponse time is for each object of a page, not the total time to 
load all objects of a page. 

When all the request/response exchanges for a page have 
been completed, the emulated browsing user enters the 
thinking state and makes no more requests for a random 
period of time sampled from the think-time distribution. The 
number of page requests the user makes in succession to a 
given server machine is sampled from the distribution of 
consecutive page requests. When that number of page re-
quests has been completed, the next server to handle the 
next top-level request is selected randomly and uniformly 
from the set of active servers. The number of emulated users 
is constant throughout the execution of each experiment.  

3.2 Experiment Calibrations 
Offered load for our experiments is defined as the network 
traffic resulting from emulating the browsing behavior of a 
fixed-size population of Web users. It is expressed as the 
long-term average throughput (bits/second) on an un-
congested link that would be generated by that user popula-
tion. There are three critical elements of our experimental 
procedures that had to be calibrated before performing ex-
periments:  

1. Ensuring that no element on the end-to-end path repre-
sented a primary bottleneck other than the links connect-
ing the two routers when they are limited to 100 Mbps,  

2. The offered load on the network can be predictably con-
trolled using the number of emulated users as a parame-
ter to the traffic generators, and  

3. Ensuring that the resulting packet arrival time-series 
(e.g., packet counts per millisecond) is long-range de-
pendent as expected because the distribution of response 
sizes is a heavy-tailed distribution [16].  

To perform these calibrations, we first configured the net-
work connecting the routers to eliminate congestion by run-
ning at 1 Gbps. All calibration experiments were run with 
drop-tail queues with length equal to 2,400 packets (the rea-
sons for this choice are discussed in Section 4). We ran one 
instance of the browser program on each of the browser 
machines and one instance of the server program on all the 
server machines. Each browser was configured to emulate 
the same number of active users and the total active users 
varied from 7,000 to 35,000.  

Two sets of calibration experiments were performed: one 
with the uniform minimum RTT distribution, and one with 
the more general minimum RTT distribution. Figure 4 
shows the aggregate traffic on one direction of the 1 Gbps 
link as a function of the number of emulated users for both 
RTT distributions. The load in the opposite direction was 
measured to be essentially the same and is not plotted in this 
figure. The offered load expressed as link throughput is a 
linear function of the number of emulated users indicating 
there are no fundamental resource limitations in the system 
and generated loads can easily exceed the capacity of a 100 
Mbps link. 

For each of our minimum RTT distributions, these data can 
be used to determine the number of emulated users that 
would generate a specific offered load in the absence of a 
bottleneck link. This capability is used in subsequent ex-
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distribution.  
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periments to control the offered loads on the network. For 
example, if we want to generate an offered load equal to the 
capacity of a 100 Mbps link, we would need to emulate a 
user population in ISP1 and a user population in ISP2 (see 
Figure 1), such that the aggregate requests flowing from the 
population of emulated users in ISP1 to servers in ISP2, 
plus the aggregate responses flowing from servers in ISP1 
to the population of emulated users in ISP2, equals 100 
Mbps on average. The analogous situation would also have 
to hold for the traffic flowing from ISP2 to ISP1. To gener-
ate an offered load of 100 Mbps, Figure 4 is used to deter-
mine that with uniformly distributed minimum RTTs, ap-
proximately 9,520 users must be emulated on each side of 
the 1 Gbps link (i.e., 9,520 users in ISP1 and 9,520 users in 
ISP2 for a total of 19,040 emulated users). Note that as ex-
pected, more users must be emulated to realize a given tar-
get load with the more general minimum RTT distribution. 
To generate an offered load of 100 Mbps with the more 
general RTT distribution, approximately 10,570 users must 
be emulated in ISP1 and ISP2. Note further that for offered 
loads approaching saturation of the 100 Mbps link, the ac-
tual link utilization will, in general, be less than the intended 
offered load. This is because as response times become 
longer, users have to wait longer before they can generate 
new requests and hence generate fewer requests per unit 
time.  

A motivation for using Web-like traffic in our experiments 
was the assumption that properly generated traffic would 
exhibit demands on the laboratory network consistent with 
those found in empirical studies of real networks, specifi-
cally, a long-range dependent (LRD) packet arrival process. 
The empirical data used to generate our Web traffic showed 
heavy-tailed distributions for both user “think” times and 
response sizes [16]. For example, while the median response 
size generated in experiments is approximately 1,000 bytes, 
responses as large as 109 bytes are also generated. We ana-
lytically verified that the number of packets and bytes arriv-
ing to the router interfaces on the 1 Gbps link indeed consti-
tuted an LRD arrival process [11]. Thus, although our study 
considers only web traffic, the dynamics of the arrival proc-
ess seen at router queues is indicative of arrival processes 
observed on real networks.  

3.3 Experimental Procedures 
Each experiment was run using a fixed population of emu-
lated users chosen, as described above, to place a nominal 
offered load on an unconstrained network. Each browser 
program emulated an equal number of users. The offered 
loads used in experiments were chosen to represent user 
populations that could consume 90% or 98% of the capacity 
of the 100 Mbps link connecting the two router machines 
(i.e., consume 90 or 98 Mbps, respectively). In [11] we 
demonstrated that at offered loads up to 80% of link capac-
ity, the distribution of response times achieved with AQM 

was virtually identical to that achieved with conventional 
drop-tail FIFO queuing. Because these distributions were 
also quite similar to the response-time distribution on the 
uncongested network, we concluded that AQM offered no 
advantage over drop-tail at or below 80% load. For this rea-
son we begin our study here at 90% load. ([11] also reports 
the results of additional experiments, identical to those per-
formed here, for offered loads of 105% of link capacity.) It 
is important to emphasize again that terms like “98% load” 
are used as a shorthand notation for “a population of Web 
users that would generate a long-term average load of 98 
Mbps on a 1 Gbps link.”  

Each experiment was run for 120 minutes to ensure very 
large samples (over 10,000,000 request/response exchanges 
in each experiment) but data were collected only during a 
90-minute interval to eliminate startup effects at the begin-
ning and termination synchronization anomalies at the end. 
Each experiment for a given AQM scheme was repeated 
three times with a different set of random number seeds for 
each repetition. To facilitate comparisons among different 
AQM schemes, experiments for different schemes were run 
with the same sets of initial seeds for each random number 
generator.  

The key indicator of performance we use in reporting our 
results is the end-to-end response time for each HTTP re-
quest/response exchange. We report these as plots of the cu-
mulative distributions of response times up to 2 seconds. In 
these plots we show the combined results from three inde-
pendent repetitions for each experiment. We also show the 
results obtained on an uncongested 1 Gbps link to provide a 
baseline for comparison. On all plots, the “uncongested 
network” line represents the best possible response time 
distribution. We also report the fraction of IP datagrams 
dropped at the link queues, the link utilization on the bottle-
neck link, and the number of request/response exchanges 
completed in the experiment. The values we report for these 
measures are means over the three repetitions of an experi-
ment.  

4 AQM EXPERIMENTS WITH PACKET DROPS 
For PI and REM, target queue lengths of 24 and 240 packets 
were evaluated. These values were chosen to represent two 
operating points: one that potentially yields minimum la-
tency (24) and one that potentially provides high link utili-
zation (240). The values used for the coefficients in the con-
trol equations above are those recommended in [2, 10] and 
confirmed by the algorithm designers. For ARED the same 
two target queue lengths were evaluated. The calculations 
for all the ARED parameter settings follow the guidelines 
given in [7] for achieving the desired target delay (queue 
size). For all three algorithms we set the maximum queue 
size to a number of packets sufficient to ensure tail drops do 
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not occur. All experiments in this section use the uniform 
minimum RTT distribution. 

4.1 Results for PI with Packet Drops 
Figure 5 gives the results for PI at target queue lengths of 24 
and 240 packets, and offered loads of 90% and 98%. At 
90% load, a target queue size of 24 results in lower response 
times for all but the largest 10% of request/response ex-
changes, those requiring more than approximately 500 mil-
liseconds to complete. For these largest exchanges, the 
longer target size of 240 is slightly better. At 98% load, the 
tradeoff between optimizing the response time of “shorter” 
exchanges, those requiring less than approximately 400 mil-
liseconds to complete in this case, versus “longer” ex-
changes, those requiring more than 400 milliseconds to 
complete, is more clear. At 98% load, a target queue size of 
24 packets results in lower response times for only the 
shortest 70% of request/response exchanges. At both loads, 
both target queue lengths result in equivalent performance 
for the very largest exchanges (those requiring more than 2 
seconds to complete). Overall, we conclude PI provides the 

best response time performance when used with a target 
queue reference of 24 packets. Table 2 summarizes the loss 
rates, link utilization, and number of completed requests for 
the PI experiments.  

Note that in Figure 5 we see a feature that is found in all our 
results at high loads where a significant number of packets 
are dropped (see Table 2). The flat area in the curves be-
tween approximately 500 milliseconds and 1 second shows 
the impact of RTO granularity in TCP — request/response 
exchanges that experience a timeout take at least 1 second to 
complete on FreeBSD.  

4.2 Results for REM with Packet Drops 
Figure 6 gives the results for REM at target queue lengths of 
24 and 240 packets, and offered loads of 90% and 98%. At 
90% load, a queue reference of 24 performs significantly 
better than a target queue of 240. At 98% load, a queue ref-
erence of 24 continues to perform slightly better than 240. 
Overall, like PI, REM provides the best response time per-
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Figure 5: Response time distribution for PI with packet drops. Figure 6: Response time distribution for REM with  
packet drops. 
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Figure 7: Response time distribution for ARED in  
packet-mode with drops. 

Figure 8: Response time distribution for ARED in  
byte-mode with drops. 
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formance when used with a target queue reference of 24 
packets.  

4.3 Results for ARED with Packet Drops 
ARED experiments were performed in both packet-mode 
and byte-mode (i.e., with ARED computing the average 
queue length in terms of either packets or bytes). Previous 
results for ARED operating in packet-mode with packet 
drops were negative. ARED was shown to increase response 
time for HTTP transfers when compared to drop-tail FIFO 
queuing at all load levels considered [11]. These results are 
confirmed here. For ARED operating in packet-mode, Fig-
ure 7 shows a significant shift in the response time distribu-
tion compared to PI and REM for both target queue lengths 
and both load levels. However, as shown in Figure 8, ARED 
operating in byte-mode provides significantly better re-
sponse times. Interestingly, as shown in Table 3, at 98% 
load, ARED in byte-mode results in a (slightly) higher loss 
rate than in packet-mode, however, more responses com-
plete (are delivered) during the experiment and a higher 
network utilization is observed. Similar to PI and REM, the 
best performance is obtained with queue thresholds corre-
sponding to a target queue length of 24 (thmin = 12, thmax = 
36).  

4.4 Comparing all Schemes with Packet Drops 
We use the results from a conventional drop-tail queue of 
size equal to either 24 or 240 packets as a baseline for 
evaluating the performance of the AQM designs. In addi-
tion, we also attempted to find a queue size for drop-tail that 
would represent a “best practice” choice. Guidelines (or 
“rules of thumb”) for determining the “best” allocations of 
queue size have been widely debated in various venues in-
cluding the IRTF end2end-interest mailing list. One guide-
line that appears to have attracted a rough consensus is to 
provide buffering approximately equal to 2-4 times the 
bandwidth-delay product of the link. Bandwidth in this ex-
pression is that of the link and the delay is the mean round-

trip time for all connections sharing the link — a value that 
is, in general, difficult to determine. Other mailing list con-
tributors have recently tended to favor buffering equivalent 
to 100 milliseconds at the link’s transmission speed. In our 
experimental environment where the link bandwidth is 100 
Mbps and mean frame size is a little over 500 bytes, 100 
milliseconds of buffering implies a queue length of ap-
proximately 2,400 packets.  

In [11] we evaluated the response-time performance of a 
drop-tail queue with length equal to 24, 240 and 2,400 
packets for offered loads of 80%, 90%, and 98%. Here, we 
use a drop-tail queue of 240 packets as a baseline for com-
paring with AQM mechanisms because it corresponds to 
one of the targets selected for AQM and provides reasonable 
performance for drop-tail even though it provides only 
about 10 milliseconds of buffering at 100 Mbps.  

Figures 9 and 10 compare the response time performance of 
PI, REM, and ARED under the best settings for each algo-
rithm at offered loads of 90% and 98%. To calibrate these 
curves, the response time performance under drop-tail on 
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Figure 9: Comparison of all schemes at 90% load. Figure 10: Comparison of all schemes at 98% load. 

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06  1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y 
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=24
REM - qref=24
ARED byte - min=12 max=36

 

Figure 11: Response time CCDF of all schemes with packet 
drops, 98% load. 



10 

the congested 100 Mbps network and the uncongested 1 
Gbps network is also shown. The uncongested network 
curve represents the best possible response time distribution 
and provides a basis for an absolute comparison of AQM 
schemes. The drop-tail curve on the 100 Mbps network (the 
curve labeled “drop-tail” on all plots) represents the baseline 
performance that ideally all AQM schemes should beat. 
Thus in evaluating a AQM algorithm, its performance will 
be considered acceptable in the absolute if the response time 
CDF is better (above) drop-tail’s. In comparing results for 
two AQM schemes, we claim that the response time 
performance is better for one of them if its CDF is clearly 
above the other’s (closer to that of the uncongested network) 
in some substantial range of response times, and comparable 
in the remaining range.  

Comparing AQM schemes at 90% load, ARED operating in 
byte-mode is the best performing algorithm, providing bet-

ter response times for virtually all request/response ex-
changes. PI, REM, and drop-tail provide equivalent per-
formance for approximately the 40% of exchanges that can 
be completed in approximately 125 milliseconds or less. For 
the remainder of the distribution out to 2 seconds, PI outper-
forms REM and drop-tail while REM either underperforms 
or performs the same as drop-tail.  

At 98% load, PI, REM, and ARED in byte-mode, result in 
nearly identical performance for the approximately 65% of 
request/response exchanges that can be completed in 300 
milliseconds or less. In addition, all three schemes outper-
form drop-tail. For the remaining 35% of exchanges, ARED 
and PI provide similar or slightly better response times than 
drop-tail while REM provides similar or slightly worse re-
sponse times. However, overall, no AQM scheme can offset 
the performance degradation at this extreme load.  

Tables 2 and 3 show that at 90% and 98% offered loads, 
drop-tail with a queue of 240 packets gives slightly better 
link utilization than any of the AQM schemes. It also com-
pletes slightly more request-response exchanges than the 
other schemes. However, drop-tail has higher loss ratios 
than the other schemes. ARED in byte-mode has slightly 
better loss ratios than PI and REM at all loads. ARED and 
PI complete more requests, and have better link utilization 
than REM at all loads.  

Figures 9 and 10 show that at least 90% of all re-
quest/response exchanges complete in under 2 seconds for 
the best AQM parameter settings at 98% load. Figure 11 
shows the remainder of the distribution for this load level. 
The conclusions drawn from Figures 9 and 10 also hold for 
exchanges that experience response times up to approxi-
mately 50 seconds (~99.95% of all request/ response ex-
changes). The remaining exchanges perform best under 
drop-tail. For the 0.05% of request/response exchanges in 
the tail of the distribution, ARED in byte-mode outperforms 
PI and REM.  

The major conclusion from the experiments 
with packet drops is that AQM, specifically, PI 
and ARED in byte-mode, can improve response 
times of Web request/response exchanges when 
compared to drop-tail FIFO queue management. 
This improvement comes at the cost of a very 
slight decrease in link utilization.  

5 AQM EXPERIMENTS WITH ECN 
AQM schemes drop packets as an indirect 
means of signaling congestion to end-systems. 
The explicit congestion notification (ECN) 
packet-marking scheme was developed as a 
means of explicitly signaling congestion to end-
systems [15]. To signal congestion a router can 
“mark” a packet by setting a specified bit in the 

Table 2: Loss, completed requests, and link utilizations  
for PI and REM. 

  
Offered 

Load 

 
Loss ratio 

(%) 

Completed 
requests 

(millions) 

Link  
utilization/ 
throughput 

(Mbps) 

  No 
ECN 

ECN No 
ECN 

ECN No 
ECN 

ECN 

90% 0  15.0  91.3  1 Gbps  
network  98% 0  16.2  98.2  

90% 1.9  14.7  90.0  drop-tail 
q = 240 98% 5.8  15.1  91.9  

90% 1.1 0.2 14.5 14.7 88.1 88.1 PI 
qref = 24 98% 4.1 1.7 14.9 14.9 89.4 89.5 

90% 0.4 0.04 14.6 14.7 88.3 88.2 PI 
qref = 240 98% 3.7 1.5 15.0 15.1 90.0 90.4 

90% 1.6 0.1 14.3 14.6 86.4 88.2 REM 
qref = 24 98% 4.9 1.7 14.6 14.9 87.5 89.5 

90% 3.2 0.1 13.7 14.7 83.3 88.5 REM 
qref = 240 98% 5.4 1.6 14.4 15.0 86.2 90.4 

Table 3: Loss, completed requests, and link utilizations for ARED.  

 Offered 
Load 

Loss ratio 
(%) 

Completed requests 
(millions) 

Link utilization/ 
throughput (Mbps) 

  No 
ECN 

ECN Gentle No 
ECN 

ECN Gentle No 
ECN 

ECN Gentle 

90% 0.9 0.7 0.7 13.8 13.8 14.4 85.2 84.7 87.2 ARED  
min = 12 
max = 36 98% 2.1 2.1 1.8 13.9 14.0 14.4 86.2 86.0 88.0 

90% 0.8 1.1 1.1 14.6 14.5 14.6 88.0 87.8 87.5 ARED byte 
min = 12  
max = 36 98% 3.6 4.0 3.1 14.8 14.6 14.6 89.4 88.0 88.0 

90% 1.1 1.2 1.0 13.9 13.9 14.6 84.9 85.0 88.4 ARED  
min = 120 
max = 360 98% 3.3 3.9 3.1 14.0 13.9 14.6 86.1 85.9 88.7 

90% 0.9 1.8 1.0 14.6 14.2 14.2 87.6 85.7 86.0 ARED byte 
min = 120 
max = 360 98% 4.2 4.5 3.9 14.6 14.4 14.4 87.8 86.4 87.1 
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TCP/IP header of the packet. This marking is not modified 
by subsequent routers. Upon receipt of a marked packet, a 
TCP receiver will mark the TCP header of its next outbound 
packet (typically an ACK) destined for the sender of the 
original marked packet. Upon receipt of this marked packet, 
the original sender will react as if a single packet had been 
lost within a send window. In addition, the sender will mark 
its next outbound packet (with a different marking) to con-
firm that it has reacted to the congestion. 

We repeated each of the above experiments with PI, REM, 
and ARED using packet marking and ECN instead of packet 
drops for offered loads of 90% and 98%. The uniform dis-
tribution of minimum RTTs is again used throughout.  

5.1 Results for PI and REM with ECN 
Figures 12-15 show the results for PI and REM with ECN. 
At 90% load, PI with ECN performs best with a target 
queue length of 24 packets. However, with a target queue 
length of 240, there is little change in performance. At 98% 
load, ECN significantly improves performance for PI at 
both target queue lengths.  

REM shows significant improvement in performance with 
ECN at both loads. Whereas without ECN, PI and drop-tail 
outperformed REM at both 90% and 98% load, with ECN, 
REM outperforms drop-tail and gives performance similar 
to PI.  

Table 2 again presents the link utilization, loss ratios, and 
the number of completed requests for each ECN experiment. 
PI with ECN clearly seems to have better loss ratios, al-
though there is little difference in link utilization and num-
ber of requests completed. REM’s improvement when ECN 
is used derives from lowered loss ratios, increases in link 
utilization, and increases in number of completed requests.  

5.2 Results for ARED with ECN 
Figures 16-19 show the results for ARED with ECN. Con-
trary to the PI and REM results, for ARED in both packet-
mode and byte-mode, ECN has very little effect on response 
times. In particular, at all tested target queue lengths, ARED 
packet-mode performance with ECN is worse than drop-tail 
at all loads. In byte-mode, only ARED with ECN and queue 
thresholds of (12, 36) outperforms drop-tail. However, even 
in this case, performance is slightly worse than ARED byte-
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Figure 12: Response time distribution for PI with and  
without ECN, 90% load. 

Figure 13: Response time distribution for PI with and  
without ECN, 98% load. 
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Figure 14: Response time distribution for REM with and 
without ECN, 90% load. 

Figure 15: Response time distribution for REM with and 
without ECN, 98% load. 
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mode without ECN with the same thresholds. Moreover, as 
shown in Table 3, in almost all the ARED experiments, the 
loss rate is higher with ECN than without ECN.  

Additional analysis of these experiments indicates that the 
performance anomalies observed with ECN are due to a 
subtle aspect of ARED’s design. In ARED’s “gentle re-
gion,” when the average queue size is between maxth and 2 x 
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Figure 16: ARED packet-mode response time distribution 
with/without ECN, 90% load. 

Figure 17: ARED packet-mode response time distribution 
with/without ECN, 98% load. 
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Figure 18: ARED byte-mode response time distribution 
with/without ECN, 90% load.  

Figure 19: ARED byte-mode response time distribution 
with/without ECN, 98% load.  
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Figure 20: ARED response time comparison with/without 
ECN forwarding in the gentle region, 90% load.  

Figure 21: ARED response time comparison with/without 
ECN forwarding in the gentle region, 98% load. 
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maxth, ARED drops packets even if the packets carry ECN-
markings. This is keeping with ECN guidelines that state 
packets should be dropped when the AQM scheme’s maxth 
queue length threshold is exceeded. The stated motivation 
for this rule is to more effectively deal with potential non-
responsive flows that are ignoring congestion indications 
and thereby increasing the average queue length [15]. We 
believe this rule to be counter-productive in environments 
such as ours where there are no non-responsive flows.  

To test this hypothesis we allow ARED to forward all pack-
ets with ECN-markings in the gentle region. Figures 20-21 
compare the performance of ARED with ECN in both 
packet-mode and byte-mode with and without our “new 
gentle” ECN forwarding behavior.1 With the new gentle 
ECN behavior, performance in packet-mode at both load 
levels is substantially improved, outperforming drop-tail for 
the vast majority of request/response exchanges.  

The results are less dramatic for ARED in byte-mode. At 
90% load, new gentle ECN forwarding in byte-mode im-
proves performance over original gentle ECN forwarding in 
byte-mode. However, overall, new gentle ECN forwarding 
in byte-mode does not improve performance over original 
ARED in byte-mode without ECN. Moreover, at 98% load, 
new gentle ECN forwarding in byte-mode neither improves 
response time performance over original gentle ECN for-
warding in byte-mode, nor gives better performance then 
original ARED in byte-mode without ECN. 

In summary, ECN provides no benefit to ARED in byte-
mode. However, with ECN forwarding in the gentle region, 
ECN significantly ameliorates the otherwise poor perform-

                                                                            
1 For clarity, Figures 20-21 show only the results for ARED with thresholds 
of (12, 36). Experiments were performed with the new gentle ECN for-
warding behavior at thresholds of (120, 360) and the results were similar to 
those shown here.  

ance of ARED operating in packet-mode. Nonetheless, 
overall, we conclude that the best ARED response time per-
formance is achieved in byte-mode without ECN.  

With respect to loss rate and link utilization, Table 3 shows 
that ARED in packet-mode (queue thresholds (12, 36)) with 
new gentle ECN forwarding has loss rates lower than 
ARED with or without (original) ECN, and comparable to 
PI and REM with ECN. ARED in byte-mode without ECN 
(queue thresholds (12, 36)) experiences a comparable loss 
rate at 90% load but a higher loss rate at 98% load. None-
theless, ARED in byte-mode without ECN results in slightly 
more completed requests per experiments and higher link 
utilization.  

5.3 Comparisons of PI, REM, & ARED  
Recall that at 80% load, previous work showed no AQM 
scheme provides better response time performance than a 
simple drop-tail queue. This result was not changed by the 
addition of ECN [11]. Here we compare the performance 
obtained for PI, REM, and ARED with best parameter set-
tings for loads of 90% and 98%. Figures 22-23 show these 
results.  

At 90% load, both PI and REM perform best with ECN 
while ARED performs best in byte-mode without ECN. All 
provide response time performance that is close to that on 
an uncongested link for the shortest 85% of re-
quest/response exchanges. For the remaining 15% of ex-
changes, PI and REM perform somewhat better than ARED. 
In addition, all the AQM schemes perform better than drop-
tail for well over 95% of all exchanges.  

At 98% load there is noticeable response time degradation 
with both PI and REM, however, the results are far superior 
to those obtained with drop-tail and ARED. Further, both PI 
and REM with ECN have substantially lower packet loss 
rates than drop-tail and link utilizations that are only mod-
estly lower. For the best performing ARED, byte-mode 
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Figure 22: Comparison of the best of all schemes, 90% load. Figure 23: Comparison of the best of all schemes, 98% load. 
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without ECN, response time performance at 98% load is 
somewhat better than drop-tail but significantly worse than 
PI and REM (except for the shortest 45% of re-
quest/response exchanges where performance is compara-
ble). 

Figure 24 shows the tails of the response time distribution at 
98% load. For the best AQM settings, drop-tail again even-
tually provides better response time performance, however, 
the crossover point occurs earlier than in the non-ECN case, 
at approximately 5 seconds. The 1% of request/response 
exchanges experiencing response times longer than 5 sec-
onds complete sooner under drop-tail. ARED performance 
in byte-mode again eventually beats PI and REM for a 
handful of exchanges.  

The major conclusion from the experiments with ECN, is 
that with the addition of ECN support in routers and end-
systems, the control theoretic AQM designs PI and REM, 
can provide significantly improved response time perform-
ance over drop-tail FIFO queuing. This is especially true at 
loads approaching link saturation. However, as was the case 
with packet drops, these response time improvements come 
at the cost of slightly decreased link utilizations.  

6 THE EFFECTS OF ROUND-TRIP TIME ON 
AQM PERFORMANCE 
To study the sensitivity of response time to round trip time 
(RTT), we reran several experiments applying a more gen-
eral distribution of minimum RTTs to our method of source-
level generation of Web traffic (see Section 3). We repeated 
the experiments of Sections 4 and 5 to test the effects of 
AQM with and without ECN. As described in Section 3, the 
use of the general minimum RTT distribution required a 
recalibration of the network. Experiments were still per-
formed with offered loads of 90% and 98% of the capacity 
of the bottleneck 100 Mbps link, however, different (larger) 
populations of emulated users were required to realize these 
loads (see Figure 4).  

Figures 25-28 show the major results for the settings of al-
gorithm parameters that previously resulted in the best per-
formance. Without ECN, at 90% load, PI, REM, and ARED 
byte-mode provide response time performance indistin-
guishable from drop-tail and surprisingly close to the per-
formance achieved on the uncongested network. ARED 
packet-mode significantly underperforms drop-tail and all 
other algorithms. At 98% load, overall performance de-
creases and slightly more differentiation is visible between 
PI, REM, ARED byte-mode, and drop-tail. However, again, 
all give near identical performance and ARED packet-mode 
still gives poor performance.  

With ECN, at 90% load, all queue management paradigms 
give identical performance that is nearly the best possible 
performance. At 98% load, PI, REM, ARED byte-mode 
with new gentle ECN forwarding, and drop-tail provide 
identical performance for the first 50% of request/response 
exchanges (those completing in approximately 250 milli-
seconds or less). For the remainder of the distribution out to 
2 seconds, PI and REM perform best and ARED byte-mode 
with new gentle forwarding performs better than drop-tail. 
ARED packet-mode with new gentle forwarding very 
slightly underperforms drop-tail initially and then approxi-
mates drop-tail performance. 

Table 4 gives the summary statistics for the experiments 
with the generalized minimum RTT distribution. Note that 
as expected, loss-rates decrease with the addition of ECN.  

Overall we conclude that with the general round-trip time 
distribution, AQM adds no value without ECN. Only the 
control theoretic AQM schemes can improve performance, 
but only when used with ECN and only at extreme network 
loads (loads approaching network saturation). A possible 
explanation for these results is that the characteristics of the 
arrival process at router queues under the general RTT dis-
tribution are such that AQM has less opportunity to effect 
response time (e.g., the arrival process is less bursty). This 
conjecture is supported by the fact simple drop-tail queuing 
performs surprisingly well in this environment. 

7 DISCUSSION 
Our experiments have demonstrated several interesting dif-
ferences in the performance of Web traffic under the differ-
ent operating modes of AQM schemes as well as interesting 
differences between control theoretic and pure randomized-
dropping AQM. Our most striking result is the improvement 
in ARED performance in byte-mode over packet-mode. 
ARED in packet-mode (the recommended mode of opera-
tion for ARED) consistently gave worse response time per-
formance than drop-tail and all other AQM schemes. How-
ever, if ECN was not used, ARED operating in byte-mode 
resulted in the best performance at 90% load and, along 
with PI, resulted in the best performance at 98% load. We 
conjecture that the positive effects of byte-mode are primar-
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Figure 24: CCDF of the best of all schemes, 98% load. 
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ily due to its lowering of the drop probability for small data 
segments, SYNs, FINs, and pure ACKs.  

A second striking result is that once ARED is operating in 
byte-mode, the addition of ECN provides little benefit. This 
is sharp contrast to PI and REM which both provide better 
response times with ECN. ECN similarly had little effect on 
ARED performance in packet-mode. 

In addition to the ARED byte-mode results, the performance 
of the new gentle forwarding behavior suggests that the de-
sign decision to drop ECN-marked packets in ARED’s gen-
tle region deserves reconsideration. Although we did not 
evaluate the effectiveness of ARED (or any scheme) in con-
trolling unresponsive flows, such control cannot come at the 
expense of decreasing the performance of responsive flows 
(such as the ones in our experiments).  

Regarding the differences in the performance of Web traffic 
under control theoretic and pure random-dropping AQM, 
for offered loads up to 90%, comparable good performance 
is possible under all schemes. Of note is the fact that ECN is 
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Figure 25: Response time distribution with measured RTT 
distribution without ECN, 90% load. 

Figure 26: Response time distribution with measured RTT 
distribution without ECN, 98% load. 
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Figure 27: Response time distribution with measured RTT 
distribution with ECN, 90% load. 

Figure 28: Response time distribution with measured RTT 
distribution with ECN, 98% load. 

Table 4: Summary statistics for all queue management 
schemes with the generalized minimum RTT distribution. 

  
Offered 

Load 

 
Loss ratio 

(%) 

Completed 
requests 

(millions) 

Link  
utilization/ 
throughput 

(Mbps) 

  No 
ECN 

ECN No 
ECN 

ECN No 
ECN 

ECN 

90% 0  14.7  89.7   Uncongested 
 network  98% 0  16.0  97.8  

90% 0.3  14.4  86.9  drop-tail 
q = 240 98% 1.5  15.0  89.9  

90% 0.1 0.02 14.5 14.6 87.3 87.4 PI 
qref = 24 98% 1.0 0.2 15.0 15.1 88.6 88.8 

90% 0.2 0.02 14.5 14.6 87.1 87.4 REM 
qref = 24 98% 1.4 0.2 14.7 15.1 87.1 89.1 

90% 0.2 0.07 14.5 14.4 86.7 86.7 ARED-byte 
min = 12 
max = 36 98% 1.0 0.8 14.9 15.0 89.0 88.9 

90% 0.2 0.05 13.5 14.4 84.4 86.5 ARED 
min = 120 
max = 360 98% 2.1 1.3 13.7 15.0 85.9 89.7 
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required for the best performance with PI and REM while 
ECN is not required for the best performance with ARED. 
However, at 98% load the control theoretic schemes signifi-
cantly outperform ARED. It remains an open question to see 
if ECN can be effectively combined with an ARED design 
to bridge this performance gap.  

Considering only control theoretic AQM, an interesting re-
sult is that performance varied substantially between PI and 
REM with packet dropping and this performance gap was 
closed through the addition of ECN. A preliminary analysis 
of REM’s behavior suggests that ECN is not so much im-
proving REM’s behavior as it is ameliorating a fundamental 
design problem. Without ECN, REM consistently causes 
flows to experience multiple drops within a source’s con-
gestion window, forcing flows more frequently to recover 
the loss through TCP’s timeout mechanism rather than its 
fast recovery mechanism. When ECN is used, REM simply 
marks packets and hence even if multiple packets from a 
flow are marked within a window the timeout will be 
avoided. Thus ECN appears to improve REM’s performance 
by mitigating the effects of its otherwise poor (compared to 
PI) marking/dropping decisions.  

Finally, the experiments with the general minimum RTT 
distribution show that AQM performance is clearly sensitive 
to round-trip time. Further experimentation is required to 
understand this result. In particular, we need to understand 
how longer RTTs effect measures of traffic such as the 
burstiness of the packet-arrival process at the router in our 
experiments.  

Our study of AQM performance concerned only its effect on 
Web traffic. Ideally we would like to study the effect of 
AQM on more general models of TCP traffic, however, at 
present, good source-level models of general TCP traffic 
suitable for synthetic traffic generation do not exist. Reme-
dying this problem is the subject of our future work [9].  

8 CONCLUSIONS  
From the results reported above we draw the following con-
clusions. These conclusions are based on a premise that 
user-perceived response times are the primary yardstick of 
performance and that link utilization and packet loss rates 
are important but secondary measures.  

To begin, it is useful to recall one of the primary conclu-
sions from our initial AQM study [11]: 

For offered loads up to 80% of bottleneck link capacity, 
no AQM scheme provides better response time per-
formance than simple drop-tail FIFO queue manage-
ment. Further, the response times achieved on a 
100Mbps link are not substantially different from the 
response times on a 1 Gbps link with the same number 
of active users that generate this load. This result is not 
changed by combining any of the AQM schemes with 
ECN. 

Thus for Web or Web-like traffic, any benefit AQM can 
provide to application and network performance is limited 
to occurring only at very high loads. For loads of 90% and 
98% of the bottleneck link’s capacity, we conclude: 

• ARED in byte-mode significantly outperforms ARED in 
packet-mode. Moreover, ARED in packet-mode, the cur-
rent recommended mode of ARED usage, was the worst 
performing AQM design while ARED in byte-mode was 
the best performing AQM design when ECN is not used. 
When ECN is not used, ARED in byte-mode outper-
formed both PI and REM and provided a modest response 
time improvement over drop-tail.  

• ECN does not improve the performance of ARED in ei-
ther byte- or packet-mode and in cases actually degrades 
performance. However, allowing ARED to forward ECN 
marked packets when the weighted average queue length 
is in the “gentle region” significantly improves the per-
formance of ARED in packet-mode. This improvement, 
however, results in absolute performance that is still 
lower than that achieved by ARED in byte-mode without 
ECN.  

• With ECN, both PI and REM provide significant response 
time improvement at offered loads at or above 90% of 
link capacity. In particular, at a load of 90%, PI and REM 
with ECN provide performance on a 100 Mbps link com-
petitive with that achieved with a 1 Gbps link with the 
same number of active users. While PI and REM with 
ECN are the best overall performers, it is noteworthy that 
at 90% load, ARED in byte-mode without ECN matches 
PI and REM’s performance with ECN for the shortest 
85% of all request/response exchanges.  

• Without ECN, REM and ARED in packet-mode under-
perform drop-tail (i.e., degrade application and network 
performance).  

Overall we conclude that AQM can improve application and 
network performance for Web or Web-like workloads. If 
arbitrarily high loads on a network are possible then the 
control theoretic designs PI and REM give the best perform-
ance but only when deployed with ECN-capable end-
systems and routers. In this case the performance improve-
ment at high loads may be substantial. Whether or not the 
improvement in response times with AQM is significant 
(when compared to drop-tail FIFO), depends heavily on the 
range of round-trip times (RTTs) experienced by flows. As 
the variation in flows’ RTT increases, the impact of AQM 
and ECN on response-time performance is reduced. If net-
work saturation is not a concern then ARED in byte-mode, 
without ECN, gives the best performance. Combined, these 
results suggest that with the appropriate choice of AQM, 
providers may be able to operate links dominated by Web 
traffic at load levels as high as 90% of link capacity without 
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significant degradation in application or network perform-
ance.  
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