
Motion Planning Templates:
A Motion Planning Framework for Robots with Low-power CPUs

Jeffrey Ichnowski∗ and Ron Alterovitz∗

Abstract— Motion Planning Templates (MPT) is a C++
template-based library that uses compile-time polymorphism
to generate robot-specific motion planning code and is geared
towards eking out as much performance as possible when
running on the low-power CPU of a battery-powered small
robot. To use MPT, developers of robot software write or
leverage code specific to their robot platform and motion
planning problem, and then have MPT generate a robot-specific
motion planner and its associated data-structures. The resulting
motion planner implementation is faster and uses less memory
than general motion planning implementations based upon
runtime polymorphism. While MPT loses runtime flexibility, it
gains advantages associated with compile-time polymorphism—
including the ability to change scalar precision, generate tightly-
packed data structures, and store robot-specific data in the
motion planning graph. MPT also uses compile-time algorithms
to resolve the algorithm implementation, and select the best
nearest neighbor algorithm to integrate into it. We demonstrate
MPT’s performance, lower memory footprint, and ability to
adapt to varying robots in motion planning scenarios on a
small humanoid robot and on 3D rigid-body motions.

I. INTRODUCTION

Planning motions for battery-powered robots with many
degrees of freedom using their on-board computers is of-
ten a difficult proposition. It is first made difficult by the
computationally demanding nature of the general motion
planning problem [1], which involves computing a sequence
of robot actions that take the robot to a goal state while
avoiding obstacles and satisfying task-specific constraints.
The difficulty is then compounded when the robot’s size
is measured in the tens of centimeters, as its form factor
and battery-life constraints only allow for low-power CPUs.
While a wealth of planning algorithms aim to address the
first problem [2], the latter problem is typically left as
an implementation detail requiring developers to write fast
robot-specific code. To address this issue, we introduce
Motion Planning Templates (MPT)1, a system that generates
robot-specific code from set of motion planning algorithms.

The key philosophy behind MPT is that it generates robot-
specific motion planning code. This means that a software
developer writes code specific to the robot and the scenario,
and then MPT generates the code and data structures for a
custom implementation of a motion planning algorithm. The
resulting implementation will have performance competitive
with hand-written implementations of the same motion-
planning algorithm that use robot-specific data structures.

∗Jeffrey Ichnowski and Ron Alterovitz are with the Department of
Computer Science, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599, U.S.A. {jeffi,ron}@cs.unc.edu

1MPT is available at https://robotics.cs.unc.edu/mpt

Scenario

Algorithm
Setup

planner
resolver

algorithm
templates

Motion Planning Templates

nearest
neighbor

sampler
selector

graph

Custom
Motion
Planner

composable
spaces

parallel
work pool

compile-time
type resolvers

RRT

RRT*

PRM

Fig. 1. The process flow of Motion Planning Templates (MPT) starts
with a developer supplying a robot’s motion planning problem scenario and
selecting an algorithm setup. At compile time, the template system of MPT
generates code for a robot-specific implementation of a motion planning
algorithm. This system trades off runtime flexibility (algorithms and their
data structures cannot be changed without recompiling) in favor of improved
performance and reduced memory utilization, both of which are critical to
battery-powered small robots that use their on-board low-power CPU to
perform motion planning.

The system behind MPT’s code generation is C++ templates
which is a Turing-complete [3] compile-time polymorphic
system—which is a fancy way of saying that C++ templates
are programs that write code.

In order to eke out as much performance as possible
from low-power embedded processors, MPT is also multi-
core ready. Low-power processors have supported hardware-
level concurrency for many years. This parallelism can be
exploited in a complete robot system to allow robots to take
on multiple computational tasks simultaneously (e.g., sen-
sor processing, actuation, etc.) or to tackle computationally
demanding tasks such as motion planning. As available par-
allelism and demands on computation can vary from robot to
robot, MPT can be set to use as little or as much parallelism
as desired. When parallelism is enabled, MPT’s parallelized
motion planning algorithms make use of concurrent data
structures for nearest neighbors searching [4] and motion
planning graphs. But concurrent data structures do not come
for free—in order to ensure correct operation, they must
use locks and ordered memory operations [5] that can result
in decreased per-thread performance and increased memory
usage. When parallelism is disabled, MPT generates code
without locks or ordered memory operations, to maximize
single-threaded performance.

This paper presents MPT, the design principles behind it,
background on its compile-time polymorphic system, how
to use it, and examples from applications in our own lab
using low-powered processors that one finds, or might find,
in small battery-powered robots.

https://robotics.cs.unc.edu/mpt


A. Design Principles

The design principles behind MPT help differentiate it
from related and complementary libraries. This section de-
scribes those principles.

1) Performance over runtime flexibility: MPT started with
the design decision that performance of robot-specific motion
planners in small battery-powered robots is more important
than runtime flexibility. For example, an articulated robot
does not need the flexibility to compute motion plans for a
wheeled robot or aerial drone. Thus MPT uses compile-time
algorithms to generate robot-specific motion planners instead
of using a flexible runtime system.

2) Floating-point precision selection: Robots with low-
power CPUs may have performance and memory require-
ments that benefit from using single-precision (32-bit)
floating-point arithmetic. Conversely, some robots must plan
motions with accuracy and thus require double-precision (64-
bit) arithmetic or better. MPT allows the selection of floating
point precision at compile-time.

3) Custom state and trajectory data types: Motion plan-
ners must inter-operate with other robot software compo-
nents, and thus MPT should generate and operate on graph
structures with robot-specific data types that do not require
runtime translation. For example, when using a robot’s built-
in software to send motion commands to the actuators,
MPT can directly use the robot’s built-in data types when
computing its motion planning graphs and storing the plan,
creating added efficiency.

4) (De-)Composable Metric Spaces: Some motion plan-
ners (e.g., KPIECE [6]) and nearest neighbor data struc-
tures (e.g., kd-trees [7], [8]) benefit from the ability to
decompose the state space into its constituent components.
Complex metric state spaces in MPT can be composed from
simpler metric spaces and decomposed at compile-time to
select and construct state-space specific implementations of
motion planners and data structures.

5) Multi-core Ready: CPUs are trending towards in-
creased multi-core parallelism. However, many low-power
CPUs are still single-core, and robots with multi-core CPUs
may only wish to use a single-core for motion planning.
Since multi-core parallelism requires additional overhead and
is not always necessary, MPT can switch between generating
multi-core parallel and single-core planners.

6) C++ 17 Header-only Library: The latest C++ stan-
dard [9] provides a wealth of capabilities that eases develop-
ment of template-based programs while remaining compat-
ible with existing C and C++ software libraries. A header-
only library means that none of the code is compiled until
an application makes use of it, which can ease deployment.

B. Related Work

The Open Motion Planning Library (OMPL) [10] is an
actively developed, well-maintained, and popular motion
planning library. It implements a wide variety of motion
planning algorithms using an architecture that allows for
maximum flexibility at runtime. The architecture is based
upon virtual classes and methods which are popular and

well-studied, thus OMPL provides many with a familiar
development environment and a relatively gentle learning
curve. MPT does not use virtual classes and methods and
is thus less flexible at runtime and instead uses templates
to generate robot-specific motion planners. MPT’s reliance
on templates likely introduces a steeper learning curve since
template-based programming is less thoroughly covered in
many university courses. OMPL provides mostly single-
core motion planners, with some notable multi-core ready
exceptions (e.g., C-FOREST [11]). In contrast MPT supports
selectable concurrency, and provides planners and frame-
works for parallel multi-core motion planning. OMPL will
likely be the first choice of anyone learning motion planning
or exploring a specific motion problem, whereas MPT aims
to replace hand-writing custom motion planners once the
planning problem is understood and needs to eke out as much
performance as possible on small battery-powered robots.

OpenRAVE [12] integrates motion planning, perception,
and control algorithms into a runtime-configurable system.
The architecture allows developers to add functionality using
plugins and uses virtual classes for maximum runtime flex-
ibility, but as a result may not perform motion planning as
fast as a robot-specific planner. MPT could generate motion
planners that run as OpenRAVE plugins, allowing robots to
benefit from the best of both systems.

Robotics Library (RL) [13] provides a large collection of
robot planning and control software in one coherent whole.
This library includes a collection of sampling-based planners,
including RRT [14] and PRM [15]. RL makes some use of
templates but largely depends on virtual classes and methods
to adapt different robot systems.

MoveIt! [16], [17] is an open-source tool for mobile
manipulation built on top of ROS and OMPL. It aims
to automate the setup of motion planning integrated with
perception and control. MPT automates less of the motion
planning setup process, but instead aims to provide greater
efficiency for battery-powered small robots.

Robot Operating System (ROS) [18] is a popular software
framework that aims to provide a complete system to operate
a robot. It includes modules (e.g., OMPL and MoveIt!) for
motion planning. MPT could similarly integrate with ROS,
providing motion planners specific to the robot on which it
runs and operating directly on ROS data types.

Murray et al. show that another route for low-power
and fast motion plan computation is through the use of
programmable circuitry [19]. But these methods require
specialized hardware that is not always available on robot
systems. The software-based approach of MPT aims to be
compatible with readily available low-power CPUs.

II. BACKGROUND

This section formally defines the motion planning prob-
lem, and provides background on tools MPT uses: compile-
time polymorphism and C++ template metaprogramming.

A. Motion Planning Problem
Robot motion planning algorithms compute a sequence of

states that takes a robot from an initial state to a goal state



while (!cond->done()) {
Sample* s = sampler->uniform();
...

TimeLimit

endTime

vtable
done()

...

RnSampler

dim

min
max

vtable
uniform()

norm(µ, σ2)
...

[0]

[1]
...

[0]

[1]
...

Fig. 2. In runtime polymorphism, calls to virtual method require a lookup
into a virtual table (vtable). The vtable introduces a level of indirection that
provides the flexibility to swap in different object types to get different
behaviors. In this example, the time-limit termination condition can be
changed by passing in a condition object with a different type. The sampler
object is set at runtime to match the state space of the planner. In this
example loop of a sampling-based motion planner, the termination condition
and sampler, once set, rarely change. Thus the vtable lookup provides
flexibility at runtime, but also introduces a repeated delay.

while avoiding obstacles and staying within task-specific
constraints. The set of robot states is the state-space X .
Within the subset Xfree ⊆ X , the robot does not collide
with any obstacle and does not violate any constraint. Thus
the input to the motion planning problem is: the initial state
x0 ∈ Xfree, the set of goal states Xgoal ⊆ Xfree, and
Xfree. The output is a path τ = (x0,x1, . . . ,xn), where
∀i : xi ∈ Xfree, and xn ∈ Xgoal. When X is continuous,
the output path τ must also satisfy the condition

∀i ∈ {1, 2, . . . , n}, t ∈ [0, 1] : L(t;xi−1,xi) ∈ Xfree,

where L(t;xa,xb) : [0, 1] → X is a problem-specific local
planner that continuously interpolates the robot’s state as
parameterized by two states, with L(0;xa,xb) = xa and
L(1;xa,xb) = xb. For sampling-based motion planners, it
is sometimes sufficient to define Lfree(xa,xb) = ¬∃t ∈
[0, 1] : L(t;xa,xb) /∈ Xfree. Some motion planners require
a distance function d : X × X → R in order to operate
efficiently and/or to minimize the resulting path length∑n
i=1 d(xi−1,xi). Some motion planners produce a motion

graph G = (V,E), with vertices V ⊆ Xfree, and each edge’s
vertex pair (xi,xj) ∈ E satisfying Lfree(xi,xj).

B. Compile-time Polymorphism

Polymorphism, from the Greek meaning “many forms”,
refers to the ability of a single code interface to provide
many different implementations [20]. In practice this means
that the data and code behind a name can be changed
without changing the code that refers to that name. When
the executed code can be changed while the program is run-
ning, it uses runtime polymorphism, a concept that is likely
familiar to people with experience with class-based object
oriented programming in languages such as Java, Python, and
C++. In runtime polymorphism, when code invokes a virtual
method, it finds the the concrete implementation through a
virtual table (vtable) lookup. Fig. 2 shows an example of a
sampling-based motion planner’s outer loop using runtime

while (! DONE ()) {
Sample* s = SAMPLE ();
...

compile-time substitution

ONE→ timeLeft
SAMPLE→ uniformRnSampler

while (!timeLeft()) {
Sample* s = uniformRnSampler();
...

Fig. 3. With template-based compile-time polymorphism, the compiler
substitutes placeholders with direct function calls. In contrast to runtime
polymorphism, flexibility to change the termination condition at runtime is
lost, but execution time is sped up. The speedup comes from saving a level
of indirection, and giving the compiler the ability to perform additional
optimizations since it knows which code will be called—e.g., it can move
simple code inline and remove the call altogether.

polymorphism to change its behavior. The loop continues
until the done() method returns true—the exact meaning
of done() is dependent on the cond object’s concrete type.
Similarly, the loop can work in any state space using sampler

object of the appropriate concrete type.
Compile-time polymorphism, also called static polymor-

phism, operates on a similar principle, but instead resolves
implementations when the code is compiled, so it does not
need a virtual table. Fig. 3 shows a compile-type polymor-
phic equivalent of Fig. 2. In this case, the behavior cannot be
changed at runtime, and as a result, can run faster than the
vtable-based approach. Virtual calls are an important enough
performance consideration that researchers have put effort
into devirtualizing calls at runtime [21]. The loss of runtime
flexibility in this example is likely to be acceptable for the
performance gained by the robot-specific motion planner.

C. C++ Template Metaprogramming

MPT uses compile-time polymorphism based on C++
templates. Templates are like functions that run in the
compiler that take data types and constants as parameters
and generate code that will be executed. Template data
type parameters can be arbitrarily complex structures, which
allows seemingly simple template substitutions to transitively
lead to complex results—e.g. robot-specific motion planners.

C++ templates can also be specialized to allow for specific
substitutions based upon a template parameter matching
a condition. As an example, specialization can select an
appropriate nearest neighbor data structure depending on
whether or not the distance function is symmetric.

Templates are defined using a template keyword, followed
by parameter declaration within < angle > brackets, followed
by the class or method template. Template substitution occurs
when the compiler encounters the template name followed
by parameters within angle brackets.

III. APPROACH

This section describes MPT’s design from the users’ per-
spective. All motion planners in MPT are available through
a single mpt::Planner template, which takes two type pa-
rameters: the Scenario and the Algorithm. The user provides
the Scenario and selects the algorithm, and MPT provides



1 template <typename Scalar = double>
2 struct ExampleScenario {
3 using Space = mpt::SE3Space<Scalar>;
4 using State = typename Space::State;
5 using Goal = mpt::GoalState<State>;
6 using Bounds = mpt::BoxBounds<Scalar, 3>;
7
8 Space space();
9 Bounds bounds();

10 Goal goal();
11
12 bool validState(State q);
13 bool validMotion(State a, State b);
14 };

Listing 1. Minimal definition of a scenario

the algorithm’s implementations and the building blocks to
make a scenario.

A. Scenario Specification

In MPT, a Scenario is a user-provided C++ class whose
member types and methods define a robot-specific motion
planning problem (i.e., X , Xfree, Lfree, etc.). To give a high-
level overview of how this is done and to show some of
the capabilities of MPT, we will walk through the example
scenario shown in listing 1. For brevity, the listing does not
include const and reference modifiers, nor does it include
implementation code.

A scenario definition starts with the declaration of a
(template) class, as shown in lines 1 and 2. There is no
base class from which to inherit members, instead Scenario
classes must conform to a few of MPT’s requirements. The
scenario defines the state space (X ) as a type alias called
Space (line 3). In the example, it will plan for a robot that can
translate and rotate in 3D space, and thus it uses the SE(3)
state space. The Scalar type parameter allows the scenario
to switch between single-precision and double-precision (the
latter being the default). The Space defines both the metric
and the C++ data type (more details in Sec. III-B). For SE(3),
the state type is a class with a quaternion for rotation and
a 3-element vector for translation (see Fig. 4 (b)). Line 4
creates an alias for the state data type used later. Since some
spaces carry data members to implement their metric (e.g., a
weighting components in a Cartesian space), MPT requires
a space() method (line 8) to return a Space object.

Sampling-based motion planners require a mechanism to
generate random states from X . Were this class to define a
sample() method, MPT would use it to generate samples.
This scenario instead has MPT use uniform sampling by
defining the sampling bounds (lines 6 and 9).

The scenario defines the problem’s goal set (Xgoal) as
a type (line 5) and method (line 10) pair. The goal type
provides an indicator function that checks if a state is in
Xgoal. Motion planners and goal types that support goal-
biased sampling make use of template specialization to
obtain biased samples from Xgoal.

The scenario defines Xfree and Lfree using the indicator
functions validState() (line 12) and validMotion() (line
13) respectively. For some robots, testing Lfree(xa,xb) may
require complex and time-consuming forward-kinematics

Composite

vtable

count [0]

[1]

SO3State

vtable

θ

i

j

k
RnState

vtable

count

x

y

z

(a) Runtime construction

SO
3S

ta
te

R
nS

ta
te
〈3
〉

θ

i

j

k

SE3State

x

y

z

(b) Compile-time

Fig. 4. An SE(3) state is constructed by combining and reusing state
definitions for SO(3) and Rn. Using run-time polymorphism (a) requires
the composite state to carry an array of sub-states, each of which is
dynamically allocated and addressed through pointers—this allows for
maximum flexibility as composite states can vary in number of sub-states,
and Rn state can vary in number of components. In contrast, compile-time
polymorphism (b) defines a single composite state type at compile-time,
reducing the amount of memory and objects required at runtime. In this
example system, the runtime polymorphic system requires 2× the memory
and 5× the objects of the compile-time polymorphic system.

computation of L(·;xa,xb). As such, it may be desirable
to save the result of the computation to avoid regenerating it
later. MPT detects when validMotion() returns something
other than a boolean, and changes the motion graph definition
to store the result for later retrieval. For example, given the
method declaration
std::optional<Trajectory> validMotion(...);

MPT stores a Trajectory value in each graph edge. Similar
graph-altering and planning behavior capabilities apply to
changing the return type of validState.

B. (De-)Composable Metric Spaces

While MPT supports arbitrary data-types and metric com-
binations, it provides special handling for metric spaces
commonly found in motion planning, including Lp (with p ≥
1), SO(2), SO(3), and weighted Cartesian products thereof.
A mathematical metric space is an ordered combination of a
set X and metric d. In MPT a metric space is expressed as
an ordered pair of state data type (e.g., a vector of floats),
and a metric tag type (e.g. L2). Using specialization, MPT
provides support for a variety of common C++ data types
available in the standard library and in the popular Eigen [22]
linear algebra library. Using the built-in spaces allows MPT
to inspect the space in order to make an informed selection
of data structures and planning algorithm behaviors.

MPT allows easy setup of supported metric space to match
the data types in the rest of the robot’s system. For example,
to use a Euclidean metric on R3 using a custom vector
type Vec3d, the syntax is: MetricSpace<Vec3d, LP<2>>. It is
also possible to create weighted Cartesian metric spaces. For
example, to create an SE(3) space that combines translations
in R3 with rotations in SO(3), the syntax is:
using R = MetricSpace<Quaternion, SO3>;
using T = MetricSpace<Vec3d, LP<2>>;
using SE3 = CartesianSpace<R, T>;

Assuming Quaternion and Vec3d are appropriately defined,
the above code is equivalent to:
using SE3 = MetricSpace<



is parallel
planner?

is supported
metric space?

is supported
metric space?

is anytime
planner?

is distance a
metric?

concurrent
kd-tree

lock-free
linear

dynamic
kd-tree

balanced
kd-tree GNAT linear

yes

no

yes

no

yes

no

yes
no

yes

no

Fig. 5. Using a compile-time algorithm, MPT automatically selects and
generates the planner’s nearest neighbor data structure based upon the
requirements of the scenario and planning algorithm.

Fig. 6. The Nao robot uses a low-power Intel Atom CPU to solve a 10
DOF motion planning problem (from [26]) that avoids obstacles in order to
drop an effervescent tablet into a glass while not spilling in the process.

std::tuple<Quaternion, Vec3d>,
Cartesian<SO3, L2>>;

The result of this construction is that the Cartesian state space
is flexibly defined at compile-time and its state data type is
compact at runtime. Fig. 4 (b) shows the resulting state type
as it will be stored in memory. A similar flexibility is possible
in a runtime-polymorphic system and is shown in Fig. 4 (a),
but requires significantly more overhead since the states must
be assembled as object graphs at runtime. While it is possible
to avoid this overhead with a custom implementation, such
an approach would lose the benefit of code reuse.

C. Nearest Neighbors

Nearest neighbor searching is a fundamental building
block for many motion planning algorithms. The perfor-
mance of nearest neighbor searching can dramatically affect
the performance of a planning algorithm [7], [23]. MPT thus
uses a compile-time algorithm to select and define a nearest
neighbor data structure that best matches the needs of the
scenario and planner. This algorithm is shown in Fig. 5.

The nearest neighbor searching data structures in MPT
are: kd-tree that supports concurrent inserts and queries [4]
(ideal for parallelized motion planners) and a non-concurrent
variant of it, a (non-concurrent) kd-tree that maintains near
optimal balance [24] at the expense of periodic rebalanc-
ing (ideal for non-parallel, long running motion planners),
GNAT [25], and linear searching for custom metric and non-
metric spaces. When the scenario uses an MPT-supported
metric space, MPT can decompose it at compile-time to
generate a custom implementation of a kd-tree.

D. Planner Algorithm Selection

In a compile-time algorithm that is similar to, though
more involved than Fig. 5, MPT uses a template ar-
gument to determine the motion planner implementa-
tion to generate. The process starts with the creation of

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

so
lv

ed
(%

)

time (seconds)

MPT kd-tree float
MPT kd-tree double

MPT GNAT float
MPT GNAT double
OMPL (GNAT double)

Fig. 7. RRT probability vs. compute time. An Intel Atom CPU computes
a solution to a 10 DOF problem for the Nao robot using RRT. The compile-
time polymorphism in MPT more efficiently computes samples which results
in finding solutions sooner. The dashed gray line shows OMPL running on
an Intel i7-7820HQ @ 2.9 GHz—showing the CPU performance difference
that MPT aims to address.

0
30
60
90

120
150
180

se
co

nd
s

MPT kd-tree float
MPT kd-tree double

MPT GNAT float
MPT GNAT double
OMPL (GNAT double)

Fig. 8. Nao computes 5 000 vertex RRT* graph for a 10 DOF task using
MPT and OMPL running on an Intel Atom processor.

a mpt::Planner<Scenario, Algorithm> object, where the
Scenario is defined in a similar manner to Listing 1, and
Algorithm is an MPT-provided algorithm selection tag, such
as mpt::RRT<>. Under the hood, MPT uses a cascade of
template specializations to resolve a final algorithm imple-
mentation. The planning algorithms included in MPT’s initial
release are parallel lock-free [26] versions of RRT [14],
RRT* [27], PRM [15], PRM* [27], and IRS [28].

IV. APPLICATIONS

In this section we demonstrate MPT’s performance on an
articulated robot and in OMPL’s SE(3) rigid-body planning
benchmarks. We compare to OMPL as it is an example
of a well-designed flexible motion planning library that
uses runtime polymorphism. To the extent possible, we set
up corresponding motion planners from MPT and OMPL
to run identical algorithms. The performance benefit of
MPT over OMPL thus comes from the MPT’s compile-
time data-structure and algorithm selections, compact state
representation, non-virtual methods, and affordances that
allow the compiler to inline and vectorize code. This does
however come at the cost of losing runtime flexibility and
a potentially steeper learning curve. We run MPT with both
single (“float”) and double precision arithmetic. OMPL only
supports double precision arithmetic. OMPL uses GNAT for
nearest neighbor searching so we compare to MPT using
GNAT. We also compare against MPT’s automatic selection
of kd-trees for nearest neighbor searching.

A. Small Humanoid Motion Planning using an Intel Atom

We use MPT to solve a 10 degree of freedom (DOF) task
on a SoftBank Nao small humanoid robot shown in Fig. 6.
This robot has a low-power (2 to 2.5 W) Intel Atom Z530 @
1.6 GHz CPU. To avoid taxing our robot, we run hundreds
of simulations on a more recent Atom N270 @ 1.6 GHz,
noting that the CPUs perform similarly in benchmarks [30].



85
mm56m

m

(a) Raspberry Pi 3 B (b) alpha-1.5 (c) cubicles (d) Twistycool/Easy (e) Home (f) Apartment

Fig. 9. The low-power CPU of a Raspberry Pi Model 3 B [29] (a) uses MPT to solve SE(3) rigid-body motion planning problems (b)–(f) from OMPL [10].

0

20

40

60

80

100

alpha-1.5 Easy cubicles Twistycool Home Apartment

se
co

nd
s

MPT kd-tree float 4-core
MPT kd-tree float
MPT kd-tree double
MPT GNAT float
MPT GNAT double
OMPL (GNAT double)

Fig. 10. The Raspberry Pi 3 computes a 10 000 vertex RRT* graph for
SE(3) rigid body motion planning problems from OMPL [10]. To the extent
possible, MPT and OMPL are set up to run identically. Collision detection,
which is not provided by MPT or OMPL, is plotted in the unfilled blocks.

The Nao simulation uses an RRT [14] motion planner that
terminates as soon as it finds a feasible plan. We plot the
observed solution probability given the wall-clock time spent
computing. As the graph in Fig. 7 shows, MPT’s custom
generated motion planner solves the planning problem in less
than half the time of a runtime polymorphic system.

We also run the asymptotically-optimal RRT* [27] motion
planner until it creates a 5 000 vertex motion graph. Over
50 runs all implementations of the planner require approxi-
mately the same number of iterations and generate paths of
similar cost distribution, confirming the planners implement
nearly identical algorithms. Fig. 8 shows the wall-clock time
to compute the graph, showing the performance impact of
having a custom generated planner, using single-precision
floats, and using kd-trees for nearest neighbor.

B. Rigid Body Motion Planning using a Raspberry Pi

We use a Raspberry Pi 3 Model B v 1.2 (Fig 9 (a))
to compute RRT* solutions to SE(3) rigid-body planning
problems from OMPL (Fig. 9 (b)–(f)). The Pi is a low-power
(2 to 3 W) 4-core ARM-architecture processor which would
make a suitable processor for a battery-powered small robot
due to its low power consumption and small form factor.
Fig. 10 shows the wall-clock time elapsed when computing
a 10 000 vertex graph. In this setup, we also show the benefit
of the parallelism included in MPT by running PRRT* [26],
a parallelized version of RRT*, running on all 4-cores.

C. Reduced Memory Usage

We measure and compare the mean memory usage of
RRT* runs from the Nao and SE(3) scenarios. The results
in Fig. 11 show the impact of the compact memory repre-
sentation and the choice of nearest neighbor structures. The
difference between MPT’s GNAT and kd-tree data structures
shows that GNAT is more memory efficient. This implies
some MPT users will have to choose between the speed
of a kd-tree vs. the lower memory usage of GNAT. The

0.0
0.5
1.0
1.5
2.0
2.5

Nao SE(3)

M
iB

MPT GNAT float
MPT kd-tree float

MPT GNAT double
MPT kd-tree double

OMPL (GNAT double)

Fig. 11. Memory usage with 10 000 RRT* graph vertices as generated
by MPT and OMPL for the Nao and SE(3) problems on 32-bit CPUs.

comparison between MPT’s GNAT using double-precision
and OMPL shows the impact of the compact data-structures
that MPT is able to generate. The difference in improvements
between the Nao and SE(3) highlights the impact of compile-
time state composition since the complex object graph for
SE(3) states (Fig. 4) incurs more overhead than the Nao sce-
nario’s relatively simple R10 state. Finally, the figure shows
the significant impact of changing floating-point precision—
when the loss of precision is acceptable, MPT may enable
planners to run on systems where memory usage comes at a
premium.

V. CONCLUSIONS AND FUTURE WORK

We presented Motion Planning Templates, a framework
based upon the compile-time polymorphic system of C++
templates for building motion planners for robots with low-
power CPUs. MPT’s template system generates custom plan-
ning code specific to the robot and a set of tasks encompassed
by a concept of a scenario.

In benchmarks on a small humanoid robot and synthetic
benchmarks on rigid body motions, MPT’s generated plan-
ners demonstrate better performance and lower memory us-
age than planners based upon runtime polymorphism. While
this approach loses the flexibility of runtime polymorphism
and introduces a potential learning curve to developers more
familiar with runtime polymorphic systems, the trade off may
be worth the cost, especially in small low-powered robots
where every CPU cycle counts.

MPT is an evolving project under active development.
Current plans involve adding more planners, supporting more
robots with low-power CPUs, and integrating with other
libraries. Compiling on low-power CPUs is slow, so we plan
to build tools allow standard desktop setups to cross-compile
for the target robot systems.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Science Foundation (NSF) under Awards IIS-1149965 and
CCF-1533844.



REFERENCES

[1] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in 20th Annual IEEE Symp. on Foundations of Computer Science, Oct.
1979, pp. 421–427.

[2] H. Choset, K. M. Lynch, S. A. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[3] T. L. Veldhuizen, “C++ templates are turing complete,” Indiana
University, Tech. Rep., 2003.

[4] J. Ichnowski and R. Alterovitz, “Concurrent nearest-neighbor search-
ing for parallel sampling-based motion planning in SO(3), SE(3), and
Euclidean topologies,” in Algorthmic Foundations of Robotics (Proc.
WAFR 2018). Springer, 2018 (to appear).

[5] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2011.

[6] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundation of
Robotics VIII. Springer, 2009, pp. 449–464.

[7] A. Yershova and S. M. LaValle, “Improving motion-planning algo-
rithms by efficient nearest-neighbor searching,” IEEE Trans. Robotics,
vol. 23, no. 1, pp. 151–157, 2007.

[8] J. Ichnowski and R. Alterovitz, “Fast nearest neighbor search in
for sampling-based motion planning,” in Algorithmic Foundations of
Robotics XI. Springer, 2015, pp. 197–214.

[9] ISO/IEC, “ISO international standard ISO/IEC 14882:2017(E)—
programming languages—C++,” International Organization for Stan-
dards (ISO), Geneva, Switzerland, Standard, Dec 2017.

[10] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics and Automation Magazine, vol. 19, no. 4,
pp. 72–82, Dec. 2012. [Online]. Available: http://ompl.kavrakilab.org

[11] M. Otte and N. Correll, “C-FOREST: Parallel shortest path planning
with superlinear speedup,” IEEE Trans. Robotics, vol. 29, no. 3, pp.
798–806, 2013.

[12] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, vol. 79, 2008.

[13] M. Rickert and A. Gaschler, “Robotics library: An object-oriented
approach to robot applications,” in Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017,
pp. 733–740.

[14] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[15] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[16] I. A. Şucan and S. Chitta, “Moveit!” http://moveit.ros.org, 2013.
[17] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier

to entry of complex robotic software: a moveit! case study,” Journal
of Software Engineering for Robotics, 2014.

[18] ROS.org, “Robot Operating System (ROS),” http://ros.org, 2012.
[19] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris,

“Robot motion planning on a chip.” in Robotics: Science and Systems,
2016.

[20] B. Stroustrup, The C++ programming language. Pearson Education,
2013.

[21] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, “A
study of devirtualization techniques for a Java just-in-time compiler,”
in ACM SIGPLAN Notices, vol. 35, no. 10. ACM, 2000, pp. 294–310.

[22] B. Jacob, G. Guennebaud, et al. (2018) Eigen. [Online]. Available:
http://eigen.tuxfamily.org

[23] M. Kleinbort, O. Salzman, and D. Halperin, “Collision detection or
nearest-neighbor search? on the computational bottleneck in sampling-
based motion planning,” in Algorthmic Foundations of Robotics (Proc.
WAFR 2016). Springer, 2016.

[24] J. L. Bentley and J. B. Saxe, “Decomposable searching problems I.
static-to-dynamic transformation,” J. Algorithms, vol. 1, no. 4, pp.
301–358, 1980.

[25] S. Brin, “Near neighbor search in large metric spaces,” in Proc. 21st
Conf. on Very Large Databases (VLDB), Zurich, Switzerland, 1995,
pp. 574–584.

[26] J. Ichnowski and R. Alterovitz, “Scalable multicore motion planning
using lock-free concurrency,” IEEE Transactions on Robotics, vol. 30,
no. 5, pp. 1123–1136, 2014.

[27] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, June 2011.

[28] J. D. Marble and K. E. Bekris, “Asymptotically near optimal planning
with probabilistic roadmap spanners,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 432–444, 2013.

[29] Raspberry Pi Foundation. (2018) Raspberry Pi 3 model
B. [Online]. Available: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/

[30] Snapsort, Inc. (2018) Intel Atom Z530 vs N270. [Online]. Available:
http://cpuboss.com/cpus/Intel-Atom-Z530-vs-Intel-Atom-N270

http://ompl.kavrakilab.org
http://eigen.tuxfamily.org
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://cpuboss.com/cpus/Intel-Atom-Z530-vs-Intel-Atom-N270

	Introduction
	Design Principles
	Performance over runtime flexibility
	Floating-point precision selection
	Custom state and trajectory data types
	(De-)Composable Metric Spaces
	Multi-core Ready
	C++ 17 Header-only Library

	Related Work

	Background
	Motion Planning Problem
	Compile-time Polymorphism
	C++ Template Metaprogramming

	Approach
	Scenario Specification
	(De-)Composable Metric Spaces
	Nearest Neighbors
	Planner Algorithm Selection

	Applications
	Small Humanoid Motion Planning using an Intel Atom
	Rigid Body Motion Planning using a Raspberry Pi
	Reduced Memory Usage

	Conclusions and Future Work
	References

